Что представляет собой y излучение
Гамма-излучение (γ-излучение) – электромагнитное излучение, принадлежащее наиболее высокочастотной (коротковолновой) части спектра электромагнитных волн. Приведем классификацию электромагнитных волн:
Название | Длина волны, м | Частота, Гц |
---|---|---|
радиоволны | 3·10 5 — 3 | 10 3 — 10 8 |
микроволны | 3 — 3·10 -3 | 10 8 — 10 11 |
инфракрасное излучение | 3·10 -3 — 8·10 -7 | 10 11 — 4 . 10 14 |
видимый свет | 8·10 -7 — 4·10 -7 | 4·10 14 — 8·10 14 |
ультрафиолетовое излучение | 4·10 -7 — 3·10 -9 | 8·10 14 — 10 17 |
рентгеновское излучение | 3·10 -9 — 10 -10 | 10 17 — 3·10 18 |
гамма-излучение | < 10 -10 | > 3·10 18 |
На шкале электромагнитных волн гамма-излучение соседствует с рентгеновскими лучами, но имеет более короткую длину волны. Первоначально термин “гамма-излучение” относился к тому типу излучения радиоактивных ядер, который не отклонялся при прохождении через магнитное поле, в отличие от α- и β-излучений.
Условно верхней границей длин волн гамма-излучения, отделяющей его от рентгеновского излучения, можно считать величину 10 -10 м. При столь малых длинах волн первостепенное значение имеют корпускулярные свойства излучения. Гамма-излучение представляет собой поток частиц — гамма-квантов или фотонов, с энергиями Е = hν (h – постоянная Планка, равная 4.14·10 -15 эВ . сек, ν – частота электромагнитных колебаний). Фотоны с энергиями Е > 10 кэВ относят к гамма-квантам. Между длиной волны λ гамма-излучения и его частотой ν существует то же соотношение, что и для других типов электромагнитных волн:
ν·λ = с (с – скорость света).
Частота гамма-излучения (> 3·10 18 Гц) отвечает скоростям электромагнитных процессов, протекающих внутри атомных ядер и с участием элементарных частиц. Поэтому источниками гамма-излучения могут быть атомные ядра и частицы, а также ядерные реакции и реакции между частицами, в частности аннигиляция пар частица-античастица. И наоборот, гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров ядерного гамма-излучения и гамма-излучения, возникающего в процессах взаимодействия частиц, дает важную информацию о структуре этих микрообъектов.
Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное гамма-излучение) или при их движении в сильных магнитных полях (синхротронное излучение).
Источниками гамма-излучения являются также процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд.
Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения обычно лежит в интервале от нескольких кэВ до нескольких МэВ и спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра.
При распадах частиц и реакциях с их участием обычно испускаются гамма-кванты с бoльшими энергиями — десятки-сотни МэВ.
Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле ядер вещества. Тормозное гамма-излучение имеет сплошной, спадающий с ростом энергии спектр, верхняя граница которого совпадает с кинетической энергией заряженной частицы. На ускорителях заряженных частиц получают тормозное гамма-излучение с энергиями до нескольких десятков ГэВ и более.
Гамма-излучение можно получить при соударении электронов большой энергии от ускорителей с интенсивными пучками видимого света, создаваемых лазерами. При этом электрон передает свою энергию световому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве в результате соударений фотонов с большой длиной волны с быстрыми электронами, ускоренными электромагнитными полями космических объектов.
Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гамма-квантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом — фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. При фотоэффекте гамма-квант выбивает из атома один из его электронов, а сам исчезает. При комптон-эффекте гамма-квант рассеивается на одном из слабо связанных с атомом или свободных электронов вещества. Если энергия гамма-кванта превышает 1.02 МэВ, то возможно его превращение в электрическом поле ядер в пару электрон-позитрон (процесс обратный аннигиляции).
Рис. Зависимость полного коэффициента поглощения гамма-излучения в свинце и алюминии от энергии (сплошные линии). Поглощение за счёт фотоэффекта в алюминии пренебрежимо мало при рассматриваемых энергиях. Пунктирные линии − отдельные вклады, вносимые в полный коэффициент поглощения фотоэффектом, комптоновским рассеянием, рождением пар для свинца.
Гамма-излучение используется в технике (напр., дефектоскопия), радиационной химии (для инициирования химических превращений, напр., при полимеризации), сельском хозяйстве и пищевой промышленности (мутации для генерации хозяйственно-полезных форм, стерилизация продуктов), в медицине (стерилизация помещений, предметов, лучевая терапия) и др.
Что такое радиация?
Вопрос: Какова должна быть общая масса кусков урана, чтобы произошел ядерный взрыв?
Для урана-235 критическая масса составляет примерно 50 кг, если взять шарик такой массы, то диаметр такого шара будет равен 17 см.
Ответ: Для урана-235 критическая масса составляет примерно 50 кг., если взять шарик такой массы, то диаметр такого шара будет равен 17 см.
Демонстрация
что это и есть ли разница?
- радиация
- ионизирующее излучение
- радиоактивность и можно ли ее увидеть
изучаем вопрос далее
- виды ионизирующего излучения
- прохождение излучения через препятствия
- чувствительность организма на действие радиации
переходим к основам
- изотопы
- радионуклиды и период полураспада
- источники ионизирующего излучения
сколько – как узнать?
- единицы измерения
- средства измерения
- правила проведения измерений
живем ли мы в радиации?
- что вокруг нас радиоактивно?
- “черные пески” – опасны?
- авария на Чернобыльской АЭС – что на фото?
Радиация, что это ?
Радиация (в переводе с английского “radiation”) – это излучение, которое применяется не только в отношении радиоактивности, но и для ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Таким образом, в отношении радиоактивности необходимо использовать принятое МКРЗ (Международной комиссией по радиационной защите) и правилами радиационной безопасности словосочетание “ионизирующее излучение”.
✅ С ПОВЕРКОЙ – ГАРАНТИРОВАНА ДОСТОВЕРНОСТЬ ИЗМЕРЕНИЙ.
✅ ВНЕСЁН В ГОСРЕЕСТР СИ РФ.
✅ ОБЕСПЕЧЕНИЕ ВАШЕЙ БЕЗОПАСНОСТИ.
✅ НОВЫЙ, НЕ С ХРАНЕНИЯ.
✅ ХОРОШАЯ ЧУВСТВИТЕЛЬНОСТЬ ДЛЯ ТИПОВЫХ ЗАДАЧ.
✅ ВСЕГДА В НАЛИЧИИ.
ДОЗИМЕТР ГАММА-БЕТА ИЗЛУЧЕНИЯ
МКС-01СА1М
Ионизирующее излучение, что это?
Ионизирующее излучение – излучение (электромагнитное, корпускулярное), которое вызывает ионизацию (образование ионов обоих знаков) вещества (среды). Вероятность и количество образованных пар ионов зависит от энергии ионизирующего излучения.
Радиоактивность, что это?
Радиоактивность – излучение возбужденных ядер или самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц или γ -кванта(ов). Трансформация обычных нейтральных атомов в возбужденное состояние происходит под воздействием внешней энергии различного рода. Далее возбужденное ядро стремится снять избыточную энергию путем излучения (вылет альфа-частицы, электронов, протонов, гамма-квантов (фотонов), нейтронов), до достижения стабильного состояния.
Многие тяжелые ядра (трансурановый ряд в таблице Менделеева – торий, уран, нептуний, плутоний и др.) изначально находятся в нестабильном состоянии. Они способны спонтанно распадаться. Этот процесс также сопровождается излучением. Такие ядра называются естественными радионуклидами.
На этой анимации наглядно показано явление радиоактивности.
Камера Вильсона (пластиковый бокс охлажденный до -30 °C) наполнена паром изопропилового спирта. Жюльен Саймон поместил в нее 0,3-cm³ кусок радиоактивного урана (минерала уранинит). Минерал излучает α-частицы и бета-частицы, так как он содержит U-235 и U-238. На пути движения α и бета частиц находятся молекулы изопропилового спирта.
Поскольку частицы заряжены (альфа – положительно, бета – отрицательно), то они могут отрывать электрон от молекулы спирта (альфа частица) или добавить электроны молекулам спирта бета частицы). Это, в свою очередь, дает молекулам заряд, который затем привлекает незаряженные молекулы вокруг них. Когда молекулы собираются в кучу, то получаются заметные белые облака, что прекрасно видно на анимации. Так мы легко можем проследить пути выбрасываемых частиц.
α-частицы создают прямые, густые облака, в то время как бета-частицы создают длинные.
Какие виды ионизирующего излучения существуют ?
Основными видами ионизирующего излучения, с которыми чаще всего приходится сталкиваться, являются:
- альфа-излучение;
- бета-излучение;
- гамма-излучение;
- рентгеновское излучение.
Конечно, имеются и другие виды излучения (нейтронное, позитронное и др.), но с ними мы встречаемся в повседневной жизни заметно реже. Каждый вид излучения обладает своими ядерно-физическими характеристиками и как следствие – различным биологическим воздействии на организм человека. Радиоактивный распад может сопровождаться одним из видов излучения или сразу несколькими.
Источники радиоактивности бывают природными или искусственными. Природные источники ионизирующего излучения – это радиоактивные элементы, находящиеся в земной коре и образующие природный радиационный фон вместе с космическим излучением.
Искусственные источники радиоактивности, как правило, образуются в ядерных реакторах или ускорителях на основе ядерных реакций. Источниками искусственных ионизирующих излучений могут быть и разнообразные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.
Альфа-излучение (α -излучение) – корпускулярное ионизирующее излучение, состоящее из альфа-частиц (ядер гелия). Образуются при радиоактивном распаде и ядерных превращениях. Ядра гелия обладают достаточно большими массой и энергией до 10 МэВ (Мегаэлектрон-Вольт). 1 эВ = 1,6∙10 -19 Дж. Имея несущественный пробег в воздухе (до 50 см) представляют высокую опасность для биологических тканей при попадании на кожу, слизистые оболочки глаз и дыхательных путей, при попадании внутрь организма в виде пыли или газа (радон-220 и 222). Токсичность альфа-излучения, обуславливается колоссально высокой плотностью ионизации из-за высокой энергии и массы.
Бета-излучение (β -излучение) – корпускулярное электронное или позитронное ионизирующее излучение соответствующего знака с непрерывным энергетическим спектром. Характеризуется максимальной энергией спектра Еβmax, или средней энергией спектра. Пробег электронов (бета-частиц) в воздухе достигает нескольких метров (в зависимости от энергии), в биологических тканях пробег бета-частицы составляет несколько сантиметров. Бета-излучение, как и альфа-излучение, представляет опасность при контактном облучении (поверхностном загрязнении), например, при попадании внутрь организма, на слизистые оболочки и кожные покровы.
Рентгеновское излучение – по своим физическим свойствам подобно гамма-излучению, но имеющее ряд особенностей. Оно появляется в рентгеновской трубке вследствие резкой остановки электронов на керамической мишени-аноде (то место, куда ударяются электроны, изготавливают, как правило, из меди или молибдена) после ускорения в трубке (непрерывный спектр – тормозное излучение) и при выбивании электронов из внутренних электронных оболочек атома мишени (линейчатый спектр). Энергия рентгеновского излучения небольшая – от долей единиц эВ до 250 кэВ. Рентгеновское излучение можно получить, используя ускорители заряженных частиц, – синхротронное излучение с непрерывным спектром, имеющим верхнюю границу.
Прохождение радиации и ионизирующих излучений через препятствия
Чувствительность человеческого организма к воздействию радиации и ионизирующих излучений на него
Изотопы, что это ?
Изотопы – это разнообразие атомов одного и того же химического элемента, располагающие разными массовыми числами, но включающие одинаковый электрический заряд атомных ядер и, следовательно, занимающие в периодической системе элементов Д.И. Менделеева единое место. Например: 131 55Cs, 134 m 55Cs, 134 55Cs, 135 55Cs, 136 55Cs, 137 55Cs. Т.е. заряд в большей степени определяет химические свойства элемента.
Существуют изотопы устойчивые (стабильные) и неустойчивые (радиоактивные изотопы) – спонтанно распадающиеся. Известно около 250 стабильных и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить 206 Pb, являющийся конечным продуктом распада естественного радионуклида 238 U, который в свою очередь появился на нашей Земле в начале образования мантии и не связан с техногенным загрязнением.
Что такое радионуклиды ?
Радионуклиды – ядра, подверженные спонтанному радиоактивному распаду.
ТОП ПРОДАЖ СПЕКТРОМЕТРОВ
От: 10 580 $ с НДС
От: 7 100 $ с НДС
От: 6 254 $ с НДС
Цена по запросу
Цена по запросу
70 572 $ с НДС
18 860 $ с НДС
От: 8 970 $ с НДС
Что такое период полураспада ?
Период полураспада – период времени, в течение которого число ядер данного радионуклида в результате радиоактивного распада снижается в два раза. Эта величина используется в законе радиоактивного распада.
Что такое источник излучения ?
Источник ионизирующего излучения (ИИИ) – объект, который включает в себя радиоактивное вещество или техническое устройство, которое создает или в определенных случаях способно создавать ионизирующее излучение. Различают закрытые и открытые источники излучения.
В каких единицах измеряется радиоактивность ?
Активность радионуклида в соответствии с системой измерений СИ измеряется в Беккерелях (Бк) – по имени французского физика, открывшего радиоактивность в 1896г.), Анри Беккереля. Один Бк равен 1 ядерному превращению в секунду. Мощность радиоактивного источника измеряется соответственно в Бк/с. Отношение активности радионуклида в образце к массе образца называется удельная активность радионуклида и измеряется в Бк/кг (л).
В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма) ?
Что же мы видим на дисплее современных дозиметров, измеряющих ИИ? МКРЗ предложила для оценки облучения человека измерять дозу на глубине d, равной 10 мм. Измеряемая величина дозы на этой глубине получила название амбиентный эквивалент дозы, измеряемая в зивертах (Зв). Фактически это расчетная величина, где поглощенная доза умножена на взвешивающий коэффициент для данного вида излучения и коэффициент, характеризующий чувствительность различных органов и тканей к конкретному виду излучения.
Эквивалентная доза (или часто употребляемое понятие «доза») – равна произведению поглощенной дозы на коэффициент качества воздействия ионизирующего излучения (например: коэффициент качества воздействия гамма-излучения составляет 1, а альфа-излучения – 20).
Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр ( мкбэр) и т.д., 1 бэр = 0,01 Дж/кг. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,
1 Зв = 1 Дж/кг = 100 бэр. 1 мбэр = 1*10 -3 бэр; 1 мкбэр = 1*10 -6 бэр;
Поглощенная доза – количество энергии ионизирующего излучения, которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.
Единица поглощенной дозы – рад, 1 рад = 0,01 Дж/кг. Единица поглощенной дозы в системе СИ – грей, Гр, 1 Гр=100 рад=1 Дж/кг
Мощность эквивалентной дозы (или мощность дозы) – это отношение эквивалентной дозы на промежуток времени ее измерения (экспозиции), единица измерения бэр/час, Зв/час, мкЗв/с и т.д.
В каких единицах измеряется альфа- и бета-излучение ?
Количество альфа- и бета-излучения определяется как плотности потока частиц с единицы площади, в единицу времени – a-частиц*мин/см 2 , β-частиц*мин/см 2 .
Средства измерения радиации и радиоактивности
Для измерения уровней радиации и содержания радионуклидов в разных объектах применяются специальные средства измерения:
- для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, применяются дозиметры и поисковые дозиметры-радиометры разных типов;
- для определения вида радионуклида и его содержания в объектах окружающей среды применяются спектрометры ИИ, которые состоят из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.
В настоящее время присутствует большое количество дозиметров различного типа для решения различных задач радиационного контроля и имеющие широкие возможности.
Вот для примера дозиметры, которые чаще всего используются в профессиональной деятельности:
1. Дозиметр-радиометр МКС-АТ1117М (поисковый дозиметр-радиометр) – профессиональный радиометр используется для поиска и выявления источников фотонного излучения. Имеет цифровой индикатор, возможность установки порога срабатывания звукового сигнализатора, что очень облегчает работу при обследовании территорий, проверки металлолома и др. Блок детектирования выносной. В качестве детектора применяется сцинтилляционный кристалл NaI.
ДозиметрМКС-АТ1117М является универсальным решением различных задач, комплектуется десятком различных блоков детектирования с разными техническими характеристиками. Измерительные блоки позволяют измерять альфа, бета, гамма, рентгеновское и нейтронное излучения.
Информация о блоках детектирования и их применению
Наименование блока детектирования | Измеряемое излучение | Основная особенность (техническая характеристика) | Область применения |
Блок детектирования БДПА-01 | БД для альфа излучения | Диапазон измерения 3,4·10 -3 – 3,4·10 3 Бк·см -2 | БД для измерения плотности потока альфа-частиц с поверхности |
Блок детектирования БДПА-01 | БД для бета излучения | Диапазон измерения1 – 5·10 5 част./(мин·см 2 ) | БД для измерения плотности потока бета-частиц с поверхности |
Блок детектирования БДПА-01 | БД для гамма излучения | Чувствительность 350 имп·с -1 /мкЗв·ч -1 Диапазон измерения 0,03 – 300 мкЗв/ч | Оптимальный вариант по цене, качество, технические характеристики. Имеет широкое применение в области измерения гамма-излучения. Хороший поисковый блок детектирования для нахождения источников излучения. |
Блок детектирования БДПА-01 | БД для гамма излучения | Диапазон измерения 0,05 мкЗв/ч – 10 Зв/ч | Блок детектирования имеющий очень высокий верхний порог измерения гамма-излучения. |
Блок детектирования БДПА-01 | БД для гамма излучения | Диапазон измерения 1 мЗв/ч – 100 Зв/чЧувствительность 900 имп·с -1 /мкЗв·ч -1 | Дорогой блок детектирования, обладающий высоким диапазоном измерения и отличную чувствительность. Используется для нахождения источников излучения с сильным излучением. |
Блок детектирования БДПА-01 | БД для рентгеновского излучения | Диапазон энергии 5 – 160 кэВ | Блок детектирования для рентгеновского излучения. Широко применяется в медицине и установках работающих с выделением рентгеновского излучения маленькой энергии. |
Блок детектирования БДПА-01 | БД для нейтронного излучения | Диапазон измерения 0,1-10 4 нейтр/(с·см 2 )Чувствительность1,5 (имп·с -1 )/(нейтрон·с -1 ·см -2 ) | |
Блок детектирования БДПА-01 | БД для альфа, бета, гамма и рентгеновского излучения | Чувствительность 6,6 имп·с -1 /мкЗв·ч -1 | Универсальный блок детектирования, который позволяет измерять альфа, бета, гамма и рентгеновское излучения. Обладает небольшой стоимостью и плохой чувствительностью. Нашел широкое примирение в области аттестация рабочих мест (АРМ), где в основном требуется проводить измерение локального объекта. |
2. Дозиметр-радиометр ДКС-96 – предназначен для измерения гамма и рентгеновского излучения, альфа излучения, бета излучения, нейтронного излучения. Во многом аналогичен дозиметру-радиометруМКС-АТ1117М.
- измерение дозы и мощности амбиентного эквивалента дозы (далее дозы и мощности дозы) Н*(10) и Н*(10) непрерывного и импульсного рентгеновского и гамма-излучений;
- измерение плотности потока альфа- и бета-излучений;
- измерение дозы Н*(10) нейтронного излучения и мощности дозы Н*(10) нейтронного излучения;
- измерение плотности потока гамма-излучения;
- поиск, а так же локализация радиоактивных источников и источников загрязнений;
- измерение плотности потока и мощности экспозиционной дозы гамма-излучения в жидких средах;
- радиационный анализ местности с учетом географических координат, используя GPS.
3. Дозиметр ДКС-АТ1121 и ДКС-АТ1123 – п переносной дозиметр для дозиметрии непрерывного, кратковременного, а так же импульсного (толькоДКС-АТ1123) рентгеновского и гамма-излучения. Единственное средство измерения на территории РФ, который позволяет проводить замеры кратковременного от 30 мс (ДКС-АТ1121) и импульсного от 10 нс (ДКС-АТ1123) излучения. Позволяет проводить измерение рентгеновского излучения от рентген аппаратов и дефектоскопов.
4. Дозиметр-радиометр МКС-АТ6130 – недорогой, качественный дозиметр для измерения бета и гамма излучений. Подойдет как для профессионального использования, так и для бытового применения. Обладает хорошими техническими характеристиками, небольшими размерами и отличной надежностью. Данный дозиметр подходит для измерения локальных объектов (стройматериалы, пища, деньги…). Хороший выбор за разумные деньги.
5. Индивидуальные дозиметры ДКГ-АТ2503 – надежный прибор по небольшой цене для измерения и регистрации индивидуальной дозы облучения. Основное предназначение дозиметра ДКГ-АТ2503 – определение индивидуального эквивалента дозы Hp(10), вспомогательная – измерение мощности индивидуального эквивалента дозы Hp(10) рентгеновского и гамма-излучения.
6. Спектрометр МКГ-АТ1321 – спектрометрический индивидуальный радиационный детектор МКГ-АТ1321– портативный прибор обладающий очень небольшими размерами для быстрого нахождения радиоактивных источников, а так же материалов. Обладает функцией определения радионуклидов – промышленных, природных, медицинских.
К данному спектрометру как ни к кому подходит термин “карманный спектрометр”. Но несмотря на размеры – возможности по определению радионуклидов впечатляет!
7. Спектрометры МКС-АТ6101 И МКС-АТ6101В – малогабаритный многозадачный сцинтилляционные гамма-спектрометры, которые могут применяться как для работы как в лабораторных, так и в условиях выезда (полях). Основная функция средств измерений – идентификация радионуклидов (природных, ядерных, медицинских, промышленных) без использования персонального компьютера. Второстепенная функция – поиск и обнаружение радиоактивных источников и возможность измерения мощности дозы.
8. Гамма-бета-спектрометр МКС-АТ1315 – двухканальный сцинтилляционный бета-гамма-спектрометр предназначен для единовременного и раздельного определения:
- удельной активности 137 Cs, 40 K и 90 Sr в пробах различной окружающей среды;
- удельной эффективной активности естественных радионуклидов 40 K, 226 Ra, 232 Th в строительных материалах.
Позволяет обеспечивать экспресс-анализ стандартизованных проб плавок металла на наличие радиационного излучения и загрязнения.
9. Гамма-спектрометр на основе ОЧГ детектора. Спектрометры на основе коаксиальных детекторов из ОЧГ (особо чистого германия) предназначены для регистрации гамма-излучения в диапазоне энергий от 40 кэВ до З МэВ.
Ознакомиться с другими средствами измерения для измерения ионизирующего излучения, Вы можете у нас на сайте:
ТОП ПРОДАЖ ДОЗИМЕТРОВ-РАДИОМЕТРОВ
От: 1 450 $ с НДС
От: 4 900 $ с НДС
Снят с производства
От: 875 $ с НДС
Цена по запросу
Цена по запросу
Цена по запросу
ТОП ПРОДАЖ ПЕРСОНАЛЬНЫХ ДОЗИМЕТРОВ
От: 875 $ с НДС
От: 690 $ с НДС
От: 480 $ с НДС
Цена по запросу
Цена по запросу
Цена по запросу
Цена по запросу
Главные правила исполнения дозиметрических измерений
При проведении дозиметрических измерений нужно соблюдать инструкции, изложенные в технической документации на прибор и использовать утвержденные методики измерения.
При измерении мощности дозы гамма-излучения или эквивалентной дозы гамма-излучения следует руководствоваться следующими правилами:
- при проведении дозиметрических измерений, если подразумевается их частое проведение с целью слежения за радиационной обстановкой, необходимо строго соблюдать геометрию и методику измерения;
- для увеличения надежности дозиметрического контроля нужно проводить несколько измерений (но не менее 3-х), затем рассчитать среднее арифметическое;
- при замерах фона дозиметра на местности выбирают участки, удаленные на 40 м от зданий и сооружений;
- измерения на местности проводят на двух уровнях: на высоте 0.1 (поиск) и 1.0 м (измерение для протокола – при этом следует вращать датчик с целью определения максимального значения на дисплее) от поверхности грунта;
- при измерении в жилых и общественных помещениях, измерения проводятся в на высоте 1.0 м от пола, желательно в пяти точках методом «конверта».
При измерении поверхностной загрязненности радионуклидами нужно использовать выносной датчик, а в случае большого загрязнения расположить датчик (и возможно сам прибор) в полиэтиленовый пакет.
Это лишь небольшой перечень рекомендованных действий. Более подробно изучить вопросы проведения дозиметрических и радиометрических измерений можно на обучающем курсе в нашем Учебном центре.
что вокруг нас радиоактивно ?
Почти все что нас окружает, даже сам человек. Естественная радиоактивность в какой-то мере является натуральной средой обитания человека, если она не превышает естественных уровней. На планете есть участки с повышенным относительно среднего уровня радиационного фона. Однако в большинстве случаев, каких-либо весомых отклонений в состоянии здоровья населения при этом не наблюдается, так как эта территория является их естественной средой обитания. Примером такого участка территории является, например, штат Керала в Индии.
Для истинной оценки, возникающих иногда в печати пугающих цифр, следует отличать :
- естественную, природную радиоактивность;
- техногенную, т.е. изменение радиоактивности среды обитания под влиянием человека (добыча ископаемых, выбросы и сбросы промышленных предприятий, аварийные ситуации и много другое).
Как правило, устранить элементы природной радиоактивности почти невозможно. Как можно избавиться от 40 К, 226 Ra, 232 Th, 238 U,которые повсюду распространены в земной коре и находятся практически во всем, что нас окружает, и даже в нас самих?
Из всех природных радионуклидов наибольшую опасность для здоровья человека представляют продукты распада природного урана (U-238) – радий (Ra-226) и радиоактивный газ радон (Ra-222). Главными «поставщиками» радия-226 в окружающую природную среду являются предприятия, занимающиеся добычей и переработкой различных ископаемых материалов: добыча и переработка урановых руд; нефти и газа; угольная промышленность; производство строительных материалов; предприятия энергетической промышленности и др.
Радий-226 хорошо подвержен выщелачиванию из минералов содержащих уран. Этим его свойством объясняется наличие крупных количеств радия в некоторых видах подземных вод (некоторые из них, обогащенные газом радоном применяются в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах варьируется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л.
Значительной составляющей природной радиоактивности является продукт распада радия-226 – радон-222.
Радон – инертный, радиоактивный газ, без цвета и запаха с периодом полураспада 3.82 дня. Альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому большей частью концентрируется в погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д.
Считается, что до 70% действия радиации на население связано с радоном в жилых зданиях. Главным источником поступления радона в жилые здания являются (по мере возрастания значимости):
- водопроводная вода и бытовой газ;
- строительные материалы (щебень, гранит, мрамор, глина, шлаки, и др.);
- почва под зданиями.
Более подробно о радоне и приборах для его измерения: РАДИОМЕТРЫ РАДОНА И ТОРОНА.
Профессиональные радиометры радона стоят неподъемные деньги, для бытового использования – рекомендуем Вам обратить внимание на бытовой радиометр радона и торона производства Германия: Radon Scout Home .
Что такое “черные пески” и какую опасность они представляют ?
«Черные пески» (цвет варьируется от светло-желтого до красно-бурого, коричневого, встречаются разновидности белого, зеленоватого оттенка и черные) представляют собой минерал монацит – безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO4, которые заменяются торием. Монацит насчитывает до 50-60% окисей редкоземельных элементов: окиси иттрия Y2O3до 5%, окиси тория ThO2до 5-10%, иногда до 28%. Попадается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород содержащих монацит, он собирается в россыпях, которые представляют собой крупные месторождения.
Россыпи монацитовых песков существующие на суше, как правило, не вносят особенного изменения в получившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области), на Урале (Красноуфимск) и др. областях создают ряд проблем, связанных с возможностью облучения.
Например, из-за морского прибоя за осенне-весенний период на побережье, в следствии естественной флотации, набирается существенное количество “черного песка”, характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк/кг и более), который создает на локальных участках уровни гамма-излучения порядка 3,0 и более мкЗв/час. Естественно, отдыхать на таких участках небезопасно, поэтому ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются некоторые участки побережья.
Самая знаменитая фотография с Чернобольской АЭС
На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним.
Нечто необъяснимо жуткое в этой сцене, и тому есть причина. Вы видите крупнейшее скопление, вероятно, самого токсичного вещества, когда-либо созданного человеком. Это ядерная лава или кориум.
В течение дней и недель после аварии на Чернобыльской атомной электростанции 26 апреля 1986 года просто зайти в помещение с такой же кучей радиоактивного материала – её мрачно прозвали “слоновья нога” – означало верную смерть через несколько минут. Даже десятилетие спустя, когда была сделана эта фотография, вероятно, из-за радиации фотоплёнка вела себя странно, что проявилось в характерной зернистой структуре. Человек на фотографии, Артур Корнеев, скорее всего, посещал это помещение чаще, чем кто-нибудь другой, так что подвергся, пожалуй, максимальной дозе радиации.
Удивительно, но, по всей вероятности, он ещё жив. История, как США получили во владение уникальную фотографию человека в присутствии невероятно токсичного материала сама по себе окутана тайной – также как и причины, зачем кому-то понадобилось делать селфи рядом с горбом расплавленной радиоактивной лавы.
Фотография впервые попала в Америку в конце 90-х, когда новое правительство получившей независимость Украины взяло под контроль ЧАЭС и открыло Чернобыльский центр по проблемам ядерной безопасности, радиоактивных отходов и радиоэкологии. Вскоре Чернобыльский центр пригласил другие страны к сотрудничеству в проектах ядерной безопасности. Министерство энергетики США распорядилось оказать помощь, направив соответствующий приказ в Pacific Northwest National Laboratories (PNNL) – многолюдный научно-исследовательский центр в Ричленде, шт. Вашингтон.
В то время Тим Ледбеттер (Tim Ledbetter) являлся одним из новичков в ИТ-отделе PNNL, и ему поручили создать библиотеку цифровых фотографий для Проекта по ядерной безопасности Министерства энергетики, то есть для демонстрации фотографий американской публике (точнее, для той крохотной части публики, которая тогда имела доступ в интернет). Он попросил участников проекта сделать фотографии во время поездок в Украину, нанял фотографа-фрилансера, а также попросил материалы у украинских коллег в Чернобыльском центре. Среди сотен фотографий неуклюжих рукопожатий чиновников и людей в лабораторных халатах, однако, есть с десяток снимков с руинами внутри четвёртого энергоблока, где десятилетием раньше, 26 апреля 1986 года, во время испытания турбогенератора произошёл взрыв.
Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум.
Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум .
Кориум формировался за пределами научно-исследовательских лабораторий минимум пять раз, говорит Митчелл Фармер (Mitchell Farmer), ведущий инженер-ядерщик в Аргоннской национальной лаборатории, ещё одном учреждении Министерства энергетики США в окрестностях Чикаго. Однажды кориум сформировался на реакторе Three Mile Island в Пенсильвании в 1979 году, однажды в Чернобыле и три раза при расплавлении реактора в Фукусиме в 2011 году. В своей лаборатории Фармер создал модифицированные версии кориума, чтобы лучше понять, как избежать подобных происшествий в будущем. Исследование субстанции показало, в частности, что полив водой после формирования кориума в реальности препятствует распаду некоторых элементов и образованию более опасных изотопов.
Из пяти случаев формирования кориума только в Чернобыле ядерная лава смогла вырваться за пределы реактора. Без системы охлаждения радиоактивная масса ползла по энергоблоку в течение недели после аварии, вбирая в себя расплавленный бетон и песок, которые перемешивались с молекулами урана (топливо) и циркония (покрытие). Эта ядовитая лава текла вниз, в итоге расплавив пол здания. Когда инспекторы наконец проникли в энергоблок через несколько месяцев после аварии, они обнаружили 11-тонный трёхметровый оползень в углу коридора парораспределения внизу. Тогда его и назвали “слоновьей ногой”. В течение последующих лет “слоновью ногу” охлаждали и дробили. Но даже сегодня её остатки всё ещё теплее окружающей среды на несколько градусов, поскольку распад радиоактивных элементов продолжается. Ледбеттер не может вспомнить, где конкретно он добыл эти фотографии. Он составил фотобиблиотеку почти 20 лет назад, и веб-сайт, где они размещаются, до сих пор в хорошей форме; только уменьшенные копии изображений потерялись. (Ледбеттер, всё ещё работающий в PNNL, был удивлён узнать, что фотографии до сих пор доступны в онлайне). Но он точно помнит, что никого не отправлял фотографировать “слоновью ногу”, так что её, скорее всего, прислал кто-то из украинских коллег. Фотография начала распространяться по другим сайтам, а в 2013 году на неё наткнулся Кайл Хилл (Kyle Hill), когда писал статью о “слоновьей ноге” для журнала Nautilus. Он отследил её происхождение до лаборатории PNNL. На сайте было найдено давно потерянное описание фотографии: “Артур Корнеев, зам. директора объекта Укрытие, изучает ядерную лаву “слоновью ногу”, Чернобыль. Фотограф: неизвестен. Осень 1996″. Ледбеттер подтвердил, что описание соответствует фотографии.
Артур Корнеев– инспектор из Казахстана, который занимался образованием сотрудников, рассказывая и защищая их от “слоновьей ноги” с момента её образования после взрыва на ЧАЭС в 1986 году, любитель мрачно пошутить. Скорее всего, последним с ним разговаривал репортёр NY Times в 2014 году в Славутиче – городе, специально построенном для эвакуированного персонала из Припяти (ЧАЭС).
Вероятно, снимок сделан с более длинной выдержкой, чем другие фотографии, чтобы фотограф успел появиться в кадре, что объясняет эффект движения и то, почему наголовный фонарь выглядит как молния. Зернистость фотографии, вероятно, вызвана радиацией.
Для Корнеева это конкретное посещение энергоблока было одним из нескольких сотен опасных походов к ядру с момента его первого дня работы в последующие дни после взрыва. Его первым заданием было выявлять топливные отложения и помогать замерять уровни радиации (“слоновья нога” изначально “светилась” более чем на 10 000 рентген в час, что убивает человека на расстоянии метра менее чем за две минуты). Вскоре после этого он возглавил операцию по очистке, когда с пути иногда приходилось убирать цельные куски ядерного топлива. Более 30 человек погибло от острой лучевой болезни во время очистки энергоблока. Несмотря на невероятную дозу полученного облучения, сам Корнеев продолжал возвращаться в спешно построенный бетонный саркофаг снова и снова, часто с журналистами, чтобы оградить их от опасности.
В 2001 году он привёл репортёра Associated Press к ядру, где уровень радиации был 800 рентген в час. В 2009 году известный беллетрист Марсель Теру написал статью для Travel + Leisure о своём походе в саркофаг и о сумасшедшем провожатом без противогаза, который издевался над страхами Теру и говорил, что это “чистая психология”. Хотя Теру именовал его как Виктора Корнеева, по всей вероятности человеком был Артур, поскольку он опускал такие же чёрные шутки через несколько лет с журналистом NY Times.
Его нынешнее занятие неизвестно. Когда Times нашло Корнеева полтора года назад, он помогал в строительстве свода для саркофага – проекта стоимостью $1,5 млрд, который должен быть закончен в 2017 году. Планируется, что свод полностью закроет Убежище и предотвратит утечку изотопов. В свои 60 с чем-то лет Корнеев выглядел болезненно, страдал от катаракт, и ему запретили посещение саркофага после многократного облучения в предыдущие десятилетия.
Впрочем, чувство юмора Корнеева осталось неизменным . Похоже, он ничуть не жалеет о работе своей жизни: “Советская радиация, – шутит он, – лучшая радиация в мире”.
ТОП ПРОДАЖ РАДИОМЕТРОВ РАДОНА
Что представляет собой y излучение
Ионизирующее излучение делится на электромагнитное (фотонное) и корпускулярное. К корпускулярного относятся: альфа-частицы, бета-частицы, протоны, нейтроны и пр. К фотонному: гамма-лучи и рентгеновское излучение.
Гамма-излучение – это коротковолновое электромагнитное излучение, которое по своим свойствам подобно рентгеновскому, однако имеет значительно большую энергию и скорость (примерно равная скорости света).
— источники ионизирующего излучения природного происхождения (радиоактивные руды и минералы, содержащие уран, торий, актиноуран, другие долгоживущие радионуклиды, не входящие в естественные радиоактивные ряды, например калий ( 40 К), рубидий ( 87 Rb), гадолиний ( 152 Gd), гафний ( 174 Hf)
— источники ионизирующего излучения искусственного происхождения (ядерные станции, ускорители и т.д.).
Гамма-лучи имеют наибольшую проникающую способность всех видов ионизирующего излучения. Соответственно, от них труднее защититься.
Чем опасны гамма-лучи?
Естественное гамма-излучение вреда для здоровья человека практически не несет, т.к. оно минимально. Совсем другое – искусственные источники.
Благодаря чрезвычайно высокой проникающей способности, гамма-лучи легко проникают в живые клетки, вызывая их повреждение. При взаимодействии с клетками организма происходит резкое возбуждение атомов, их ионизация, в результате чего – начинает меняться структура молекул, возникают различные патологии и заболевания.
Наиболее уязвимыми к атаке гамма-лучей являются клетки кроветворной системы, пищеварительного тракта, лимфатических желез, половых органов и волосяных фолликул.
Где применяется гамма-излучение?
Гамма-излучение применяют при стерилизации некоторых продуктов, медицинских инструментов, оборудования. Благодаря гамма-лучам определяют глубину скважин и устанавливают залегающие почвы в геологии (γ-каротаж). Кроме того, гамма-излучение используется в науке, технике, энергетике, медицине и тому подобное.
Как защитить себя от облучения?
Защитить персонал от облучения искусственными источниками помогут классические методы защиты – временем, количеством, расстоянием. Это означает, что время работы в опасных местах должно быть ограничено. Кроме того, в случае необходимости должны применяться защитные материалы, такие как свинец, бетон, свинцовое стекло, сталь, обедненный уран и тому подобное. Пригодятся также средства индивидуальной защиты, манипуляторы, дистанционные инструменты.
Лучшим барьером для гамма-лучей является свинец, но его использование ограничивает низкая температура плавления. Поэтому в горячих точках чаще всего применяют вольфрам, тантал и железо.
Что касается защиты населения, то люди в первую очередь должны обращать внимание на подозрительные предметы с пометкой «радиационная опасность». При обнаружении таких предметов – ни в коем случае нельзя их трогать, следует как можно быстрее отойти на максимально возможное расстояние и сразу же оповестить правоохранительные органы. В основном опасные находки встречаются в местах скопления металлолома, на мусорниках, свалках, заброшенных военных объектах.
При возникновении радиационных аварий, наиболее действенной защитой от внешнего гамма-излучения являются специальные укрытия, при их отсутствии – подвалы домов. Чем толще стены, тем надежнее укрытие. Подвал многоэтажного дома способен ослабить действие ионизирующего излучения в 1000 раз.
Редакция сайта Uatom.org
Радиационная безопасность
Ионизирующее излучение (далее — ИИ) – это излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков, то есть к ионизации среды (см. рисунок 1). Такими свойствами обладают радиоактивные излучения, излучения высоких энергий, рентгеновские лучи и др. Видимый свет и ультрафиолетовое излучение не относят к ионизирующим излучениям.
По виду частиц, входящих в состав ИИ, различают 3 основных вида радиоактивного излучения:
- Альфа-излучение – представляет собой поток альфа-частиц (ядер атомов гелия). Относятся к сильно ионизирующим частицам, быстро теряющим свою энергию при взаимодействии с атомами вещества. По этой причине альфа-излучение имеет маленькую проникающую способность (путь в веществе) и не способно проникнуть даже через слой обычной бумаги или кожу человека. Альфа-частицы опасны лишь при внутреннем облучении органов и тканей.
- Бета-излучение – представляет собой поток электронов. Из-за более низкой, чем у альфа-частиц, ионизирующей способности могут преодолеть большее расстояние в веществе (2-3 см. в биологической ткани).
- Гамма-излучение не состоит из частиц как альфа- и бета-излучения. Оно, так же как и свет Солнца, представляет собой электромагнитную волну, распространяющуюся со скоростью света. Ионизирующая способность гамма-излучения низка. Проникающая способность – самая большая (в биологических тканях гамма-кванты не задерживаются).
Также существует нейтронное излучение, но о нем немного позже.
Что такое нейтронное излучение?
Нейтронное излучение – это ядерное излучение, состоящее из потоков частиц с нейтральным зарядом (нейтронов). Проникающая способность нейтронов очень велика по причине отсутствия заряда и, как следствие, слабого взаимодействия с веществом. Но важно отметить, что характер взаимодействия нейтронов со средой сильно зависит от энергии частиц. По этой причине нейтроны разделяют на группы в зависимости от их энергии. Основные из них это тепловые и быстрые нейтроны. При этом энергия быстрых нейтронов в миллиарды раз больше энергии тепловых нейтронов. Больше – значит лучше!?
Но не в этом случае. Так, быстрые нейтроны, сталкиваясь со значительным количеством нуклонов (общее название для протонов и нейтронов в ядре), замедляются, а более медленные (тепловые) нейтроны, могут «спокойно» подойти к ядру и быть захваченными им, в результате происходит реакция превращения элемента. Именно эта реакция проложила дорогу к созданию ядерного реактора. В настоящее время тепловые нейтроны имеют большое значение не только для работы ядерных реакторов. Они широко используются для получения радиоактивных изотопов, изучения свойств ядер, структурного исследования кристаллов, исследования динамики атомов твердых тел, свойств молекул и т.д. узнать больше
Каковы медицинские аспекты воздействия ионизирующего излучения?
Радиоактивность – это самопроизвольное превращение атомных ядер, сопровождающееся испусканием элементарных частиц или более лёгких ядер. Ядра, подверженные таким превращениям, называют радиоактивными, а процесс превращения – радиоактивным распадом. Радиоактивность — не новое явление. Оно существовало во Вселенной всегда. Радиоактивные материалы входят в состав Земли, и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества.
Радиация для большинства людей — предмет непонятный. Радиация невидима и неосязаема, именно поэтому человек готов предполагать самое худшее, когда речь заходит о влиянии радиации на здоровье. Этот страх, в свою очередь, успешно эксплуатируется недобросовестными политиками, экологами и средствами массовой информации, которые заботятся не о том, чтобы правдиво и адекватно разъяснить населению, что же в действительности представляет собой радиация; наоборот, им зачастую выгодно создать вокруг этого явления негативный, зловещий ореол.
А если взглянуть с научной точки зрения — что же известно о действии ионизирующего излучения на организм человека?
Живая клетка на 60–70% состоит из воды. Поэтому поток частиц ионизирующего излучения, проникая в организм, взаимодействует, прежде всего, с водой, что приводит к ее радиационному разложению — этот процесс называется радиолизом воды.
Под действием радиации в клетках живых организмов образуются чужеродные химические соединения. Продукты радиолиза «атакуют» молекулярные структуры клеток, разрушают их, прерывают нормальное течение внутриклеточных процессов. В итоге, нормальное функционирование клеток нарушается, и при определенных дозах они гибнут. Но клетки человеческого организма обладают способностью «залечивать» радиационные повреждения.
Действительно, человек постоянно подвергается воздействию природной радиации, и в среднем облучается в год на 3,95 мЗв*. Кроме того, на Земле есть регионы, где природный фон превышает среднее по планете значение в разы и в десятки раз: в их число входят некоторые районы Франции, Финляндия, Швеция, Алтайский край, прибрежные территории юго-запада Индии, некоторые курорты Бразилии.
Миллионы жителей нашей планеты испытывают повышенную радиационную нагрузку за счет природных факторов, при этом, радиация не оказывает никакого влияния на их здоровье. Более того, многие районы с повышенным радиационным фоном являются признанными курортами (например, та же Финляндия, Кавказские Минеральные Воды, Карловы Вары и пр.).
Если перейти от слов к цифрам, то следует отметить следующее. Российские нормы — одни из самых жестких в мире. Так, Международное Агентство по Атомной Энергии (МАГАТЭ) признает безопасной для здоровья годовую дозу 50 мЗв. По российским нормам предельная годовая доза для персонала АЭС, работающего непосредственно в условиях воздействия ионизирующего излучения, составляет 20 мЗв. Контрольный уровень дозы, установленный в НИЦ «Курчатовский институт» — ПИЯФ, составляет 18 мЗв. Облучение персонала контролируется с помощью современных индивидуальных дозиметров — специальных приборов, которые выдаются каждому сотруднику перед входом в «грязную» зону и выводят информацию на цифровое табло. Такие же дозиметры выдаются и экскурсионным группам, посещающим ядерные установки.
Необходимо также помнить, что в НИЦ «Курчатовский институт» — ПИЯФ достаточно большой штат сотрудников, много отделов, множество видов работ, в большей части которых исключены дозовые нагрузки. Например, персонал, работающий в административном корпусе, вообще не подвергается облучению. Самые большие дозы получают рабочие, которые выполняют ремонтные работы на радиоактивно загрязненном оборудовании — на них приходится более 70% коллективной дозы. Но и они получают меньше установленной в Институте пороговой безопасной дозы в 18 мЗв в год.
* — по данным Федерального государственного статистического наблюдения за 2010 год (Информационный сборник: «Дозы облучения населения Российской Федерации в 2010 году»).
Какие источники ионизирующего излучения есть в НИЦ «Курчатовский институт» — ПИЯФ?
НИЦ «Курчатовский институт» — ПИЯФ – многопрофильный научный центр, на территории которого расположилось несколько научно-исследовательских комплексов и установок.
Высокопоточный реактор ПИК
Реактор ПИК по своим параметрам должен стать одним из лучших пучковых исследовательских реакторов в мире. На данный момент пучковых реакторов подобного класса в мире по пальцам пересчитать: HFR (Франция), модернизированный HFIR (США), FRM II (Германия). Не трудно заметить, что ввод в эксплуатацию реакторного комплекса ПИК обеспечит существенное увеличение доли России на мировых рынках оказания высокотехнологичных услуг по использованию нейтронных и ядерных методов в разработке новых материалов и изделий.
Большинство экспериментов на новом реакторе будет выполняться на выведенных нейтронных пучках. Развитая система нейтроноводов обеспечит одновременную работу до 40 экспериментальных станций.
Реактор ВВР-М
На реакторе ВВР-М уже более 50 лет идет активное и успешное освоение техники генерации холодных и ультрахолодных нейтронов. В настоящее время развернуты работы в области ядерной физики, физики твердого тела, воздействия излучения на электрические, механические и оптические свойства материалов. Кроме того, молодые специалисты установки, ставшие за короткий срок опытными операторами, ведут плодотворные исследования по физике и технике реактора, совершенствуют отдельные системы управления и защиты, исследуют водный режим, разрабатывают методики измерения активностей и загрязненностей и т.д.
Научно-исследовательский ускорительный комплекс СЦ-1000
Протонный синхроциклотрон СЦ-1000 является одной из базовых установок Института. Был введен в эксплуатацию в 1970 году и к сегодняшнему дню прошел уже несколько модернизаций.
Научно-исследовательский комплекс на базе СЦ-1000 используется для исследований в области физики элементарных частиц, структуры атомного ядра и механизма ядерных реакций, физики твердого тела, а также в области прикладной физики.
Циклотрон Ц-80
Изохронный ускоритель протонов обеспечит производство чистых радионуклидов для медицины и лечения офтальмологических больных методами протонной терапии. Комплексный пуск систем Ц-80 был произведен в декабре 2013 года. Циклотроны Ц-80 предвещают мировые позиции по производству сверхчистых радионуклидов.
Как защищены жители г. Гатчина и окружающая среда от воздействия ядерных установок НИЦ «Курчатовский институт» — ПИЯФ?
Ядерные установки НИЦ «Курчатовский институт» — ПИЯФ эксплуатируются надежно и безопасно, что подтверждается результатами регулярных проверок независимых органов (Ростехнадзор). Высокая степень безопасности обеспечена множеством факторов. Основной из них – последовательная реализация концепции глубоко эшелонированной защиты. Она основана на применении следующих систем:
- физические барьеры на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду (матрица тепловыделяющих элементов, оболочки тепловыделяющих элементов, корпус реактора, защитные боксы и трубные коридоры с поддонами, контаймент);
- технические и организационные меры по защите этих барьеров и сохранению их эффективности;
- организационные меры по защите персонала, населения и окружающей среды.
Принцип глубокоэшелонированной защиты предполагает также наличие такой концепции безопасности, которая предусматривает не только средства предотвращения аварий, но и средства управления последствиями аварий, обеспечивающих локализацию радиоактивных веществ в пределах гермооболочки.
Необходимо отметить также применение активных (то есть требующих вмешательства человека и наличия источника энергоснабжения) и пассивных (не требующих вмешательства оператора и источника энергии) систем безопасности. Кроме того, в НИЦ «Курчатовский институт» — ПИЯФ развита культура безопасности на всех этапах жизненного цикла: от выбора площадки (обязательно только в тех в местах, где отсутствуют запрещающие факторы) до вывода из эксплуатации.
Для защиты реактора от внешних воздействий сооружен железобетонный контейнер, часть которого находится внутри здания. При этом контейнер рассчитан на то, чтобы выдерживать колоссальные нагрузки – падение самолета, смерч, ураган, землетрясение или взрыв. Помимо основных функций, контейнер используется в качестве комплекса герметичных помещений (системы удержания радиоактивности).
На территории НИЦ «Курчатовский институт» — ПИЯФ и в близлежащих районах ведется мониторинг радиационной обстановки. Контроль радиационной обстановки осуществляет отдел радиационной безопасности Института. Подробнее — читать ответ на вопрос 6.
Как и чем обеспечивается контроль радиационной безопасности в НИЦ «Курчатовский институт» — ПИЯФ?
Обеспечение радиационной безопасности при эксплуатации установок является важной и приоритетной задачей персонала НИЦ «Курчатовский институт» — ПИЯФ. Персоналом отдела радиационной безопасности управления ядерной и радиационной безопасности Института и объектовых служб радиационной безопасности ведется постоянный контроль за радиационной обстановкой как на отдельных установках и территории института, так и на территории санитарно-защитной зоны (СЗЗ) Института и за её пределами. Граница санитарно-защитной зоны Института по радиационному, физическому (не радиационному) и химическому факторам воздействия на население представляет собой форму неправильного эллипса с радиусами R1 = 1.1 км вокруг трубы реактора ВВР-М и R2 = 0.9 км вокруг трубы реактора ПИК.
Параметры радиационной обстановки отслеживаются за счет:
- индивидуального дозиметрического контроля персонала;
- отбора проб воздуха из рабочих помещений радиационных объектов;
- контроля гамма-нейтронных полей;
- контроля загрязнения радиоактивными веществами кожных покровов, спецодежды, обуви, средств индивидуальной защиты персонала, рабочих поверхностей оборудования и помещений;
- контроля выбросов и сбросов радиоактивных веществ в окружающую среду;
- использования автоматизированной системы мониторинга радиационной обстановки (АСМРО);
- отбора проб окружающей среды на территории института, СЗЗ и за её пределами.
Радиационный контроль осуществляется с помощью стационарных блоков, устройств и установок; воздухоотборной системы; переносных и носимых приборов радиационного контроля.
Средние фоновые значения радиационной обстановки на территории Института, в СЗЗ и за её пределами находятся на уровне естественного радиационного фона порядка 0,12-0,16 мкЗв/ч (12-16 мкР/ч).
В Российской Федерации допустимые нормы облучения регламентируются Санитарными нормами и правилами СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности» (НРБ-99/2009), согласно которым, годовая эффективная доза облучения населения не должна превышать 5 мЗв в год, а для персонала 50 мЗв в год. Данное ограничение дозы облучения не включает в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.
С радиационной обстановкой на территории Северно-Западного региона можно ознакомиться на карте радиационного фона Северно-Западного региона от ФГБУ «Северо-Западное управление по гидрометеорологии и мониторингу окружающей среды»
Кто и как контролирует безопасность ядерных установок НИЦ «Курчатовский институт» — ПИЯФ?
Ядерные установки (далее – ЯУ) на всех этапах своей жизнедеятельности обязаны удовлетворять установленным требованиям безопасности. Это достигается, в том числе, соблюдением требований норм и правил в области использования атомной энергии и условий действия выданных Институту лицензий на вид деятельности в области использования атомной энергии.
Контролирующим органом выступают Северо-Европейское Межрегиональное Управление по надзору за ядерной и радиационной безопасностью Ростехнадзора и Федеральное медико-биологическое агентство. Надзорные органы ставят для себя следующие основные задачи:
- следить за соблюдением требований ядерной, радиационной, технической и пожарной безопасности при обращении с ядерными материалами, а также с радиоактивными веществами и радиоактивными отходами;
- организовывать и осуществлять проверки (плановые и внеплановые инспекции) и контроль за соблюдением поднадзорными ЯУ и организациями законодательства Российской Федерации нормативных правовых актов, норм и правил в области использования атомной энергии, требований технических регламентов в области использования атомной энергии. Также проводятся проверки, направленные на оценку достоверности сведений, содержащихся в документах, обосновывающих обеспечение безопасности заявленной деятельности, представляемых организациями для получения лицензий Ростехнадзора;
- участвовать в рассмотрении документов и в работе комиссий в процессе выдачи определенным категориям работников разрешений на право ведения работ в области использования атомной энергии.
В каких отношениях НИЦ «Курчатовский институт» — ПИЯФ с экологическими движениями?
НИЦ «Курчатовский институт» — ПИЯФ находится в тесных партнерских отношениях с Гатчинским экологическим движением. Движение зародилось в 1990 году и поставило своей целью вложить в молодое поколение экологические знания, с самого раннего детства привить бережное отношение к природе и окружающей среде. На лекциях и семинарах Школьной Экологической Инициативы юные исследователи знакомятся с проблемами современной экологии и путями их решения в интересной творческой форме.
Экологическое движение выпускает собственную публикацию. Познакомиться подробнее с экологическим движением можно на их официальном сайте