Приложение N 1. Термины и их определения
Защитное заземление — преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.
Заземлитель — проводящая часть (электрод) или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.
Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.
Заземляющий проводник — проводник, соединяющий заземляемую часть (точку) с заземлителем.
Заземляющее устройство — преднамеренно образованная совокупность соединенных между собой заземлителей и заземляющих проводников.
Общая сеть заземления — совокупность главных и местных заземлителей и соединяющих их заземляющих проводников, предназначенных для защиты заземлением.
161. Что является определением термина «Заземлитель»?
ПУЭ п.1.7.15. Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
Комментарии
Новый комментарий
На вопрос ещё не добавлено комментариев. Нашли ошибку или считаете, что вопрос некорректно составлен? — расскажите об этом.
Оставлять комментарии могут только зарегистрированные пользователи
Активируйте «полный доступ», чтобы убрать всю рекламу на сайте
Нашли ошибку или есть предложения? — напишите нам
154. Что является определением термина «Заземлитель»?
ПУЭ п.1.7.15. Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
Комментарии
Новый комментарий
На вопрос ещё не добавлено комментариев. Нашли ошибку или считаете, что вопрос некорректно составлен? — расскажите об этом.
Оставлять комментарии могут только зарегистрированные пользователи
Активируйте «полный доступ», чтобы убрать всю рекламу на сайте
Нашли ошибку или есть предложения? — напишите нам
Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части
Защитное заземление – заземление, выполняемое в целях электробезопасности.
Защитное заземление —это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.
Цель защитного заземления —снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.
При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. При длительном прохождении тока сопротивление тела снижается до 500 – 300 Ом.
Примечание: сопротивление тела человека постоянному току от 3 до 100 кОм.
Расчеты, приведенные на рисунках, весьма приблизительны, но показывают оценить эффективность защитного заземления.
Существенное влияние на ток, проходящий через человека, оказывает величина тока короткого замыкания и сопротивление системы заземления. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.
Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.
Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.
1. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.
Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.
Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.
Заземлители
1.Естественные
— водопроводные трубы, проложенные в земле (ХВ)
— металлические конструкции здания и фундаменты, надежно соединенные с землей
— металлические оболочки кабелей
— обсадные трубы артезианских скважин
— газопроводы и трубопроводы с горючими жидкостями
— алюминиевые оболочки подземных кабелей
— трубы теплотрасс и горячего водоснабжения
Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.
2. Искуственные
Контурные
При контурном заземлении обеспечивается выравнивание потенциалов в защищаемой зоне и уменьшается напряжение шага.
Выносные: групповые и одиночные
Позволяют выбрать место с минимальным сопротивлением грунта.
Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.
Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.
Особая проблема — создание качественного заземления в условиях вечной мерзлоты. Здесь стоит обратить внимание на системы электролитического заземления, позволяющие эффективно решить проблему.
Подробную информацию о различных схемах зазелителей, способах расчета и консультации можно получить на сайте www.zandz.ru
Основная система уравнивания потенциалов.
Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.
Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:
1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;
2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;
3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;
4)металлические трубы коммуникаций , входящих в здание…
5 ) металлические части каркаса здания;
6 ) металлические части централизованных систем вентиляции и кондиционирования….
7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;
8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;
9 ) металлические оболочки телекоммуникационных кабелей.
Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)
Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.
Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.
Система дополнительного уравнивания потенциалов
— должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток (ПУЭ п. 1.7.83).
Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.
Как видно из рисунков, схема электропитания претерпевает существенные изменения. Чрезвычайно важно обеспечить соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов. При этом, даже если не будет выполнено соединение корпусов приборов с шиной ( безалаберная эксплуатация, особенно переносных приборов ) система сохранит свою эффективность по безопасности. Ситуация, когда земли розеток и приборов не подключены к шине, а сторонние проводящие части гарантированно соединены с шиной уравнивания потенциалов, в разы ухудшает электробезопасность в помещении даже по сравнению с классической схемой питания.
Сторонняя проводящая часть — проводящая часть, не являющаяся частью электроустановки.
Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.
При формировании дополнительной системы уравнивания потенциалов возникает вопрос, что подключать, а что не подключать на шину дополнительного уравнивания потенциалов, чтобы добиться необходимого уровня электробезопасности и не делать систему слишком громоздкой. Здесь, с точки зрения здравой логики, можно руководствоваться двумя принципами:
- Фактическая ( потенциальная ) возможность связи с «землей».
- Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.
Примеры сторонних проводящих частей подключаемых / не подключаемых к шине дополнительного уравнивания потенциалов:
Сторонняя проводящая часть
Металлическая полка, закрепленная на стене из непроводящего материала.
Металлическая полка, закрепленная на стене из железобетона.
(потенциальная связь с «землей» за счет крепежа к стене)
Металлическая полка, закрепленная на стене из непроводящего материала.
На полке расположен электроприбор.
(возможность появления потенциала при аварии прибора с классом изоляции I)
Металлическая тумбочка с резиновыми (пластиковыми) колесиками на бетонном полу.
Металлическая тумбочка с резиновыми колесиками на бетонном полу.
В помещении грязь и пыль в сочетании с повышенной влажностью.
(потенциальная связь с «землей» за счет загрязнения и повышенной влажности)
Некоторое количество вопросов с уравниванием потенциалов возникает по ванным и душевым помещениям. Современные требования и рекомендации по устройству системы дополнительного уравнивания потенциалов изложены в циркуляре № 23/2009.
Широкое применение пластиковых труб породило закономерный вопрос: является ли водопроводная вода сторонней проводящей частью и возможен ли занос потенциала через воду….
Ответ, содержащийся в циркуляре, несколько настораживает: « … Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть . »
К сожалению, вода нормального качества из наших кранов течет не всегда и лучше перестраховаться, используя токопроводящие вставки на отводах от стояков водопровода подключив их к шине дополнительного уравнивания потенциалов, чтобы не подключать отдельно каждый кран. Этот метод в качестве рекомендуемого описан в этом же циркуляре.
Практика выполнения дополнительной системы уравнивания потенциалов.
Фактически наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:
Вариант 1. С использованием стандартных коробок уравнивания потенциалов ( КУП ).
Вариант 2. Стальная шина 4х40 ( 4х50 ) с приварными болтами опоясывающая помещение.
Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.
Вариант 4. Использование шины заземления в РЩ ( для небольших помещений ).
Вариант 5. С использованием специализированного щитка типа ЩРМ – ЩЗ
( встроенный щиток с шиной 100 мм 2 ( Cu ) со степенью защиты IP54 ).
Главные требования нормативов по устройству шины дополнительного уравнивания потенциалов содержат два требования:
— возможность осмотра соединения
— возможность индивидуального отключения
- Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м.( ? ). Сечение 4 мм 2 Сu ( ПВ-1, ПВ-3 ). См. ПУЭ 1.7.82 рис. 1.7.7.
- Для электроустановки здания, где применяются негорючие ( ВВГ нг –FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПВ-1, ПВ-3 ( проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления ). Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
- Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и тд. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант — короба фирмы DKC в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.
МЕД. ГОСТ Р 50571.28 п. 710.413.1.6.3 « Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…»
Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом № 5, схема которого представлена на рисунке.