Что из перечисленного обладает наиболее высокой электропроводностью
Перейти к содержимому

Что из перечисленного обладает наиболее высокой электропроводностью

  • автор:

Что из перечисленного обладает наиболее высокой электропроводностью

Алюминий легко окисляется на воздухе :

и при действии серной и щавелевой кислот ( H 2 SO 4 , H 2 C 2 O 4 )

Оксидная пленка на поверхности алюминия защищает его от дальнейшего окисления (пассивация). Промышленное оксидирование алюминия создает антикоррозийное и электроизоляционное покрытие, которое часто сочетают с окраской и полировкой для улучшения внешнего вида. Пробивное напряжение таких покрытий доходит до 400 В, ( U пр = 400 В).

Но пленка Al 2 O 3 затрудняет пайку и создает большое сопротивление в контактах. При действии влаги в местах контакта Al — Cu образуется гальванопара с высоким значением э.д.с.

анод Al ½ H 2 O ; O 2 ½ Cu катод

j a = -1 , 7 B A нод ( + ) : Al 0 — 3 e ˉ ® Al 3+ K атод ( — ) : 2 H 2 O + O 2 + 4 e ˉ ® 4 OH ˉ j k = — 0 , 83 B

Al 3+ + 3 OH ® Al ( OH ) 3

При этом алюминиевый проводник разрушается.

Для проводов воздушных линий с большим натяжением и нагрузкой применяется алюминиевый сплав альдрей, который состоит :

(98,5 ¸ 99 % ) Al + (0,3 ¸ 0,5 % ) Mg + (0,4 ¸ 0,7 % ) Si + (0,2 ¸ 0,3 % ) Fe

Повышение механической прочности достигается термообработкой, возрастает прочность на растяжение до 35 кг / мм 2 при удлинении 6,5 % и r = 3,17 10 Ом × мм 2 / м. Таким образом, альдрей по механической прочности примерно равен меди, а по легкости – алюминию.

Для передачи энергии применяются сталеалюминиевые провода, в котором центральные жилы стальные, а наружные – алюминиевые.

Железо и стали

Стали, используемые в основном в качестве конструкционного материала и магнитного материала в сердечниках трансформаторов, обладают более высоким удельным сопротивлением r по сравнению с медью, около 10 . 10 ‾ 8 Ом × м. В качестве проводникового материала применяют сталь, с содержанием углерода 0,1 ¸ 0,15 % с r в 6–7 раз больше, чем у меди. Ее используют для проводов воздушных линий передач небольших мощностей на короткие расстояния. Для предохранения от коррозии провода и изделия из стали покрывают цинком.

Мягкий, пластичный, мало прочный металл, с низкой вибростойкостью. Температура плавления 327 °С. Удельное сопротивление r = 2, 4, 1 мкОм × м при температурах t = 0, 200, 350 °С, соответственно.

Свинец ядовит. Антикоррозийность высокая. Применяют в качестве защитных оболочек в кабельной промышленности, плавких предохранителей, пластин свинцовых аккумуляторов, поглотителей рентгеновских лучей и радиоактивных излучений. По мере возможности вытесняется полихлорвинилом.

Чистое олово обладает крупнокристаллической структурой. При изгибе слышен треск от трения кристаллов, что определяет чистоту металла. Температура плавления 232 °С.

Благодаря мягкости и вязкости из него изготовляют фольгу. Высокая антикоррозийность позволяет использовать для защитных покрытий лужением или гальванизацией. Входит в состав бронз. Применяют при пайке.

С развитием вакуумной техники, реактивной техники и применением радиоэлектронной аппаратуры в космосе повысились требования к рабочим температурам, достигающим 2500 ° С. В этих условиях в качестве проводниковых и конструкционных материалов применяют тугоплавкие металлы и их сплавы : вольфрам ( W ) , молибден ( Mo ) , тантал ( Ta ) , ниобий ( Nb ) , титан ( Ti ) , цирконий ( Zr ) , рений ( Re ) .

Вольфрам – тяжелый, твердый, наиболее тугоплавкий металл. Добывается в основном из руд двух соединений : вольфрамит FeMnWO 4 и шеелит CaWO 4 .

Руды сплавляют с содой на воздухе, получают Na 2 WO 4 , который извлекают из сплава водой, а железо и марганец превращаются в нерастворимые соединения Fe 2 O 3 и Mn 3 O 4 .

Из водного раствора действием HCl выделяют свободную вольфрамовую кислоту H 2 WO 4 в виде аморфного желтого осадка :

При прокаливании вольфрамовая кислота переходит в WO 3 . Восстанавливая оксид вольфрама водородом или углеродом ( чистые сорта сажи ) , получают порошок металлического W . Порошок прессуют и спекают в бруски ( штабики ) . Спекание в атмосфере водорода проводят в две стадии.

Первая стадия – предварительное спекание в водородных печах при 1100 – 1200 ° С с целью повышения механической прочности и электрической проводимости штабиков.

Вторая стадия – высокотемпературное спекание при пропускании через штабик электрического тока, постепенно нагревающего его до 3000 — 3200 ° С.

При этом получается компактный металл, поступающий на механическую обработку: ковку, протяжку.

W – белый тяжелый металл плотностью 19,3 . 10 3 кг / м 3 , t пл ≈ 3400 °С. Вольфрам можно сваривать и вытягивать в тонкие нити, прокатывать в листы. Содержание вольфрама в металле не менее 99,5 %. Максимальная рабочая температура в вакууме – 2560 °С, удельное сопротивление r = 0,055 × мкОм × м, температура испарения t исп = 5930 °С. Для повышения чистоты вольфрама применяют метод электроннолучевой плавки и зонной очистки. Из вольфрама изготовляется проволока, фольга, катоды накала мощных генераторных ламп и кенотронов, сетки усилительных и генераторных ламп, вводы в вакуумные приборы, контакты на большие мощности тока, нити ламп накаливания.

Сплавы вольфрама с медью и серебром сочетают в себе высокие электропроводность, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей. Сплавы с кобальтом и хромом – стеллиты обладают высокой твердостью, износоустойчивостью, жаростойкостью.

На воздухе вольфрам окисляется при температуре красного каления. Стоек по отношению к кислотам, даже к царской водке, но растворяется в горячей «адской» смеси -смеси азотной и плавиковой (фтороводородной) кислот

W + 2 HNO 3 + 8 HF = H 2 [WF 8 ] + 2 NO + 4 H 2 O

с образованием октафторовольфрамовой ( VI ) кислоты.

Молибден – серебристо-белый металл. Добывают из руды молибденит или молибденовый блеск MoS 2 (похож на графит). Перерабатывая руду, получают MoO 3 . Восстановление MoO 3 ведется в две стадии:

Получается порошкообразный мелкозернистый (1 — 2 мкм) чистый металл с небольшим содержанием кислорода и азота. Процесс получения молибдена аналогичен получению вольфрама.

Плотность, 10 3 кг/ м 3

Температура плавления, ° C

Электропроводность металлов

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы — электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Серебро

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы — медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

Медь

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Алюминий

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже — не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции — изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Тесты курсов НМО/ДПП ПК «Электролечение в физиотерапии»

Действующим фактором в методе гальванизации является [ править ]

Выберите один ответ:

1. переменный ток малой силы и высокого напряжения

2. постоянный ток низкого напряжения и небольшой силы

3. ток высокой частоты и напряжения

4. постоянный импульсный ток низкой частоты, малой силы

Максимальная продолжительность процедуры местной гальванизации составляет … МИНУТ [ править ]

Выберите один ответ:

Для гальванизации используется аппарат [ править ]

Выберите один ответ:

Из ниже перечисленных тканевых образований и органов наиболее высокой электропроводностью обладают все перечисленные, кроме [ править ]

Выберите один ответ:

1. костная ткань

3. паренхиматозные органы

4. мышечная ткань

Противопоказанием для гальванизации и лекарственного электрофореза является [ править ]

Выберите один ответ:

1. экзема в стадии ремиссии

2. травматический неврит лучевого нерва в стадии восстановления

3. индивидуальная непереносимость

4. хронический гепатохолецистит вне обострения

Показанием для гальванизации и лекарственного электрофореза является [ править ]

Выберите один ответ:

1. острый гнойный средний отит

2. расстройство кожной чувствительности

3. индивидуальная непереносимость гальванического тока

4. экзема в стадии ремиссии

Из нижеперечисленных утверждений верно, что гальванический ток … [ править ]

Выберите один ответ:

1. оказывает противоотечное действие

2. оказывает бактериостатическое действие

3. повышает чувствительность тканей к действию лекарственных веществ

4. назначают в острой стадии гнойного процесса

ПРЕИМУЩЕСТВОМ МЕТОДА ЛЕКАРСТВЕННОГО ЭЛЕКТРОФОРЕЗА ЯВЛЯЕТСЯ [ править ]

Выберите один ответ:

1. воздействие непосредственно на весь организм

2. создание кожного депо лекарственного вещества

3. болезненное введение лекарственного препарата

4. наличие множества противопоказаний

Недостатком метода лекарственного электрофореза является [ править ]

Выберите один ответ:

1. безболезненность процедуры

2. не все лекарственные препараты могут быть использованы для лекарственного электрофореза

3. воздействие непосредственно на патологический очаг

4. аллергические реакции встречаются редко

Электропроводность металлов: от чего зависит и как используется в производстве

Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.

Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.

Природа электропроводности металлов

Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».

В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.

Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.

Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.

Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.

По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.

1-min.jpg

Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.

Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.

Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.

Электрическое сопротивление металлов

Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.

Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.

2-min.jpg

Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.

Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.

В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:

  • Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
  • Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.

Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:

Σ = 1/ρ, где ρ – удельное сопротивление вещества.

Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.

В случае с растворами в качестве носителей заряда выступают ионы.

Степень электропроводности разных металлов и сплавов

Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.

3-min.jpg

Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.

Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.

Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.

Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.

По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.

Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.

Опасность металлов с высокой электропроводностью

Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.

Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.

Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.

Зависимость электропроводности металлов от факторов внешней среды

Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:

  • температурой;
  • давлением;
  • наличием магнитных полей;
  • светом;
  • агрегатным состоянием вещества.

Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.

Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.

Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:

4-min.jpg

На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.

У полупроводников зависимость будет представлена так:

5-min.jpg

Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.

Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.

Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.

Рекомендуем статьи

  • Сплав железа и меди: область применения
  • Углерод в металле и его влияние на свойства материала
  • Легированные конструкционные стали: характеристики и применение

Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.

Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.

Автор статьи

Макаров Максим

Руководитель отдела продаж

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *