Термистор и варистор в чем разница
Перейти к содержимому

Термистор и варистор в чем разница

  • автор:

Термистор и варистор в чем разница

Москатов Е. А. Книга «Электронная техника. Начало»

1. Простейшие компоненты

1.1. Резисторы

Резисторы – это компоненты, основным параметром которых выступает сопротивление. Промышленность для аппаратуры широкого потребления выпускает резисторы сопротивлением примерно от 0,1Ом до 100МОм и мощностью от 0,125Вт до 100Вт.

В соответствии с веществами, из которых изготавливают важнейшие части компонентов, выделяют группы металлофольговых, проволочных и непроволочных резисторов. Металлофольговые резисторы изготавливают на основе диэлектриков, на которые наносят фольговые покрытия, к которым подсоединяют выводы. Проволочные резисторы выполняют из проволоки с высоким удельным сопротивлением, материалом которой часто служит нихром, манганин, константан и подобные сплавы. Чтобы уменьшить габариты таких резисторов, проволоку обычно навивают на диэлектрический каркас, например, спиралью укладывают на керамический стержень. Паразитная индуктивность проволочных резисторов при указанном способе изготовления довольно велика. Непроволочные резисторы можно отнести к классам углеродистых, полупроводниковых, металлодиэлектрических или композитных компонентов.

По возможности регулировки сопротивления резисторы подразделяют на постоянные, подстроечные и переменные. У постоянных резисторов сопротивление должно быть неизменно. У подстроечных резисторов его можно некоторое число раз отрегулировать, после чего наступит физический износ деталей. У переменных резисторов его можно изменять много раз. Подстроечные и переменные резисторы относят к группам регулировочных резисторов.

1.2. Варисторы и негисторы

Варисторы – это компоненты, сопротивление которых уменьшается при повышении приложенного напряжения сверх определённого значения. Таким образом, сопротивления варисторов нелинейны. Основным материалом для производства варисторов обычно выступает карбид кремния. Когда приложенное к выводам варистора напряжение превысит фиксированный порог, происходит пробой окислов, которыми покрыты кристаллы карбида кремния, и возникает эмиссия носителей заряда с поверхностей этих кристаллов. Это вызывает уменьшение сопротивления варистора. Варистор можно включать в цепь в любой полярности. Вольтамперная характеристика (ВАХ) варисторов симметрична, что отражено на рис. 1.1.

Варисторы нашли широкое применение в качестве компонентов, которые включают после предохранителя параллельно питающей сети на входе электропитающих устройств с целью защиты последних от кратковременных перенапряжений, иногда возникающих в сети.

Негисторами называют специальные варисторы, вольтамперная характеристика которых имеет участок отрицательного сопротивления и симметрична. Микромощные негисторы применяют в микросхемах.

1.3. Терморезисторы

Терморезисторы – это компоненты, сопротивления которых зависят от температуры. Важным параметром терморезисторов выступает температурный коэффициент сопротивления (ТКС), который отражает, на сколько процентов станет иным сопротивление детали при изменении температуры на 1 °C. Терморезисторы, сопротивление которых возрастает при увеличении температуры, обладают положительным ТКС, и такие компоненты называют позисторами. Эти терморезисторы изготовляют чаще всего с использованием твёрдых растворов титаната бария. Терморезисторы, сопротивление которых уменьшается при увеличении температуры, обладают отрицательным значением ТКС, их изготавливают на основе оксидов магния, оксидов никеля и прочих оксидов с примесями кремния или германия. Помимо ТКС, к основным параметрам терморезисторов относят сопротивление в холодном состоянии, максимальную рабочую температуру, максимальную мощность рассеяния и др.

Маломощные терморезисторы применяют в качестве датчиков температуры, реле времени, а мощные – для ограничения импульсов тока, потребляемых от питающей сети импульсными источниками питания и т.д.

1.4. Конденсаторы

Конденсаторы – это компоненты, основным параметром которых выступает ёмкость, а основное назначение состоит в накоплении электрических зарядов. Ёмкость конденсатора тем выше, чем больше площадь обкладок, меньше расстояние между ними и чем выше диэлектрическая проницаемость вещества между обкладками. Простейший конденсатор состоит из двух обкладок, между которыми размещён слой диэлектрика. Для экономии места диэлектрики и обкладки конденсаторов большой ёмкости сворачивают в рулоны. Диэлектрики конденсаторов могут быть выполнены:

из оксидной плёнки;

из газов или воздуха;

из твёрдых органических материалов;

из твёрдых неорганических материалов.

Различают постоянные, подстроечные и переменные конденсаторы. Постоянные конденсаторы обладают фиксированной ёмкостью, подстроечные конденсаторы допускают некоторое число регулировок ёмкости, а конденсаторы переменной ёмкости допускают её многократное изменение. Фактическая ёмкость постоянных конденсаторов всегда отличается от номинальной ёмкости. В документации на конденсаторы обычно указаны допустимые отклонения фактических ёмкостей относительно номинальных.

Важным параметром конденсаторов выступает тангенс угла потерь, которым называют отношение активной мощности к реактивной при фиксированной частоте, напряжённости поля, температуре.

1.5. Ионисторы

Ионисторы – это химические источники тока, обладающие исключительно высокой ёмкостью, обусловленной наличием двойного электрического слоя, возникающего на поверхности электродов, которые помещены в электролит. Ионисторы не относят к конденсаторам, хотя ёмкость – это их основной показатель. Ионисторы не имеют диэлектрика, а наличие изоляторов, называемых сепараторами, между электродами необходимо сугубо для исключения их замыкания, но не для увеличения ёмкости. Сепараторы изготавливают из таких материалов, которые свободно пропускают ионы электролита. Электроды выполняют из материалов, которые порождают заряды с противоположными знаками. Их изготавливают из пористых веществ, например, активированного угля или графена, чтобы получить очень большую площадь поверхности, к которой поступает электролит. В качестве твёрдого электролита используют RbAg 4 J 5 и пр. Ионы электролита притягиваются к электродам, и на поверхностях каждого электрода возникает слой из анионов и катионов, которые образуют электрический слой. Так как электрические слои возникают на обоих электродах, они носят название двойного электрического слоя. Толщина электрического слоя чрезвычайно мала и может составлять несколько нанометров, ввиду чего ёмкость ионисторов может быть очень большой. Отдельные экземпляры ионисторов обладают ёмкостью в тысячи фарад при номинальном напряжении в несколько вольт. Ионисторы применяют в резервных источниках питания, в устройствах запуска двигателей и т.д.

1.6. Моточные компоненты

1.6.1. Катушки индуктивности и дроссели

Катушки индуктивности – это компоненты, предназначенные для накопления энергии в магнитном поле, и состоящие из проводов, уложенных в обмотки, которые обычно охватывают магнитопроводы. Магнитопроводы, выполненные из ферромагнетиков, используют для увеличения индуктивности катушек, а выполненные из диамагнетиков уменьшают их индуктивность. Обмотки катушек индуктивности выполняют проводами круглого или прямоугольного сечений, а обмотки некоторых мощных высокочастотных компонентов – медными или посеребрёнными лентами. Катушки индуктивности без магнитопроводов и с магнитопроводами из диамагнетиков применяют только при протекании по обмоткам токов высокой частоты. С целью снижения паразитных индуктивности рассеяния и ёмкостей обмоток производят намотку отдельных катушек индуктивности проводами, которые укладывают с шагом под определённым углом. Так, широко распространена намотка типа «универсаль». Для расчёта индуктивности однослойной катушки цилиндрической формы без магнитопровода при укладке провода виток к витку можно применить следующую формулу:

L ≈ (d • W 2 • 10 –3 ) / (0,45 + ℓ / d), мкГн,

где d – внешний диаметр обмотки, мм;

W – число витков обмотки;

ℓ – длина обмотки, мм.

А число витков такой катушки индуктивности определим согласно выражению:

W ≈ 32 • √( (ℓ / d + 0,45) • ℓ / d).

Индуктивность тороидальной катушки без магнитопровода найдём по формуле:

L ≈ (3,1 • b 2 • W 2 • 10 –4 ) / D, мкГн,

где b – диаметр одного полного витка (или, то же самое, диаметр поперечного сечения катушки), мм;

D – усреднённый диаметр тора, мм.

Дроссели пульсирующего тока – это катушки индуктивности, предназначенные для пропускания постоянной составляющей тока и задерживания его переменной составляющей. Такие дроссели используют, например, в фильтрах постоянного напряжения источников питания. Дроссели переменного тока нужны для создания индуктивного сопротивления в цепях, по которым протекает сугубо переменный ток. Эти дроссели применяют, например, в качестве компонентов колебательных систем резонансных и квазирезонансных импульсных источников питания. На пути протекания магнитных потоков в сердечники описываемых дросселей часто вводят немагнитные зазоры, благодаря которым по обмоткам дросселей можно пропускать большие токи без вхождения магнитопроводов в насыщение.

1.6.2. Трансформаторы и пьезотрансформаторы

Трансформаторами называют статические компоненты, предназначенные для преобразования электрической энергии одной величины в электрическую энергию другой величины. Трансформация возможна только переменного напряжения. Конструктивно трансформаторы имеют магнитопроводы, на которые укладывают провода обмоток. Типы и марки магнитопроводов выбирают в зависимости от частоты, заданного температурного диапазона, скважности и прочего. Магнитопроводы высокочастотных трансформаторов изготавливают обычно из ферритов, низкочастотных – из трансформаторных сталей и пермаллоев. Для обеспечения высокого напряжения пробоя между обмотками прокладывают изоляцию. Ту обмотку двухобмоточного трансформатора, на которую подают напряжение, называют первичной, а ту, с которой снимают напряжение, – вторичной. Если переменное напряжение на первичной обмотке меньше, чем напряжение на вторичной обмотке, то такой трансформатор называют повышающим. А если наоборот – то называют понижающим. Если часть энергии из первичной обмотки поступает во вторичную обмотку не через магнитную цепь, а по электрическому соединению, то имеем дело с автотрансформатором.

Различают сигнальные трансформаторы и трансформаторы питания. Сигнальные трансформаторы предназначены для передачи сигналов с минимальными искажениями. Бывает, что сигнальные трансформаторы задействуют для гальванической развязки цепей. Трансформаторы питания нужны в устройствах, обеспечивающих электропитание аппаратуры, которая по каким-либо причинам не может быть подключена непосредственно к питающей сети, например, ввиду несоответствия величин напряжений.

Промышленность также выпускает пьезотрансформаторы. Эти компоненты не имеют обмоток, а их принцип действия основан на наличии пьезоэффекта. Пьезотрансформатор состоит из кристалла вещества, в который вожжены серебряные электроды, обладающего пьезоэффектом, т.е. способностью к обратимым механическим деформациям под влиянием на него электрического поля. К таким веществам относят титанит бария, кварц, турмалин и прочие. Когда переменное напряжение подают на два предназначенные для этого электрода пьезотрансформатора, в кристалле сегнетодиэлектрика возникают упругие колебания, которые дойдя до другой пары электродов, приводят к появлению между ними ЭДС. Пьезотрансформаторы могут функционировать в узкой полосе частот, на которой можно наблюдать резонансные явления. Крепление пьезотрансформаторов осуществляют мягкими кронштейнами или скобами в тех местах, в которых амплитуда изгиба пьезопластин минимальна. Наибольшая мощность пьезотрансформаторов обычно не велика и часто составляет всего от 5Вт до 30Вт.

Чем отличается Варистор от Термистора?

Что такое Термистор знаю от нагрева уходит номинальное сопротивление, а что тогда такое варистор.

Голосование за лучший ответ

от напряжения зависимость

при превышении номинального напряжения на нем он как бы пробивается и замыкает цепь.

Сопротивление от напруги.

Термистор-это резистор с изменяемым от нагрева сопротивлением.
А варистор-защитный элемент, сопротивление которого резко падает при превышении определённого порога напряжения.

термистор — сопротивление зависит от температуры
варистор — сопротивление зависит от напряжения.

это все РЕЗИСТОРЫ

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Термистор и варистор в чем разница

Текущее время: Сб мар 16, 2024 00:55:41

Часовой пояс: UTC + 3 часа

Запрошенной темы не существует.

Часовой пояс: UTC + 3 часа

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB
Extended by Karma MOD © 2007—2012 m157y
Extended by Topic Tags MOD © 2012 m157y

Работоспособность сайта проверена в браузерах:
IE8.0, Opera 9.0, Netscape Navigator 7.0, Mozilla Firefox 5.0
Адаптирован для работы при разрешениях экрана от 1280х1024 и выше.
При меньших разрешениях возможно появление горизонтальной прокрутки.
По всем вопросам обращайтесь к Коту: kot@radiokot.ru
©2005-2024

Элементная база блоков питания

В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов — Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)

В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр — сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.

Рис. Пример реального участка схемы блока питания — фильтра от ВЧ помех.

Варистор

Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.

Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.

Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.

Рис. Для увеличения скорости срабатывания защиты, предохранитель и варистор объеденяют вместе.

Обозначение варистора на плате.

VZ (Принтер) MV (Источник бесперебойного питания) ZNR (Блок питания АТХ)
MOV (Источник бесперебойного питания) Z (Блок питания светодиодного прожектора) DNR
фото отсутствует фото отсутствует фото отсутствует
RU RV VAR
фото отсутствует
VDR

Обозначение варистора на схеме.

Рис. Условное обозначение варистора на схеме

Особенности применения варисторов.

  • Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
  • Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.

Терморезистор

Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) — сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) — сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания

Рис. Принцип работы NTC-термистора в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания — ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний разогревается и его сопротивление падает почти до десятых долей Ома, и далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.

Обозначение термистора на плате.

TH THR TR
RTH RT PTC

Обозначение термистора на схеме.

Рис. Условное обозначение терморезистора на схеме

На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.

Рис. Пример комбинации при обозначении терморезистора

Особенности применения термисторов.

  • Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
  • Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
  • Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.

Помехоподавляющие конденсаторы

Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.

Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения.

Конденсатор X типа

Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.

Рис. Принцип работы Х конденсатора.

Обозначение X конденсатора на плате.

Cx С

Обозначение X конденсатора на схеме.

Обосначается как обычный конденсатор, с суффиксом x, например Cx

Рис. Обозначение Х конденсатора на схеме .

Особенности применения Х конденсаторов.

  • Конденсатор невозгораемый при любых условиях
  • Неисправность конденсатора не приведет к поражению электрическим током.
  • Емкость Х конденсатора, чем больше — тем лучше.
  • X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
  • Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Конденсатор Y типа

Конденсатор Y типа – конденсатор для подавления помехи возникающей между

  • фазой и землей (не путать с нулем)
  • нулем и землей.

Рис. Принцип работы Y конденсатора.

Обозначение Y конденсатора на плате.

Нет изображения Нет изображения
CY С

Обозначение Y конденсатора на схеме.

Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.

Рис. Обозначение Y конденсатора на схеме .

Особенности применения Y конденсаторов.

  • Конденсатор в случае пробоя уходит в обрыв
  • Неисправность конденсатора может привести к поражению электрическим током.
  • Емкость Y конденсатора, чем меньше — тем лучше.
  • Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
  • Y конденсатор можно применять вместо X конденсатора, наоборот нет.
  • Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Быстродействующие диоды.

В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные. Импульсные диоды можно отнести к быстродействующим.

Iпр.макс., А Наименование Корпус Uобр., В Uпад., В tвосст., нс
1 1N4933. 1N4937 DO-41 50 — 600 1,2 200
1 FR101. FR107 DO-41 50 — 1000 1,2 150-500

Например FR107 1000в, 1А 0,500мкс

Поделиться

1 комментарий

yu ye 16 мая 2022 11:47

© 2010-2024 — ZIPSTORE.RU Запчасти и компоненты для торгового оборудования

Наш адрес: г. Москва, ул. Полярная, д. 31, стр. 1. Телефон: +7 495 649 16 77 (Skype, ICQ). Режим работы: понедельник — пятница с 9:00 до 18:00; суббота и воскресенье — выходной. Доставка по России, Белоруссии, Украине, Казахстану: Москва, Подольск, Сергиев Посад, Истра, Рязань, Курск, Липецк, Тула, Иваново, Воронеж, Ярославль, Тверь, Смоленск, Калуга, Белгород, Орел, Тамбов, Кострома, Брянск, Красноярск, Норильск, Кемерово, Новокузнецк, Новосибирск, Омск, Барнаул, Иркутск, Братск, Бийск, Улан-Удэ, Томск, Абакан, Чита, Горно-Алтайск, Кызыл, Санкт-Петербург, СПб, Выборг, Вологда, Череповец, Мурманск, Сыктывкар, Ухта, Архангельск, Северодвинск, Великий Новгород, Петрозаводск, Гомель, Гродно, Витебск, Могилев, Брест, Минск, Алма-Ата, Астана, Ереван, Киев, Днепропетровск, Львов, Ташкент, Могилев, Псков, Калининград, Нарьян-Мар, Уфа, Стерлитамак, Самара, Тольятти, Сызрань, Нижний Новгород, Арзамас, Саратов, Энгельс, Пермь, Ижевск, Казань, Набережные Челны, Бугульма, Пенза, Оренбург, Орск, Чебоксары, Новочебоксарск, Ульяновск, Киров, Йошкар-Ола, Саранск, Екатеринбург, Верхняя Пышма, Серов, Челябинск, Магнитогорск, Снежинск, Тюмень, Курган, Нижневартовск, Сургут, Надым, Ростов-на-Дону, Волгодонск, Таганрог, Волгоград, Волжский, Краснодар, Армавир, Астрахань, Майкоп, Владивосток, Уссурийск, Хабаровск, Комсомольск-на-Амуре, Советская Гавань, Южно-Сахалинск, Благовещенск, Петропавловск-Камчатский, Мирный, Ставрополь, Минеральные Воды, Махачкала, Нальчик, Алушта, Армянск, Джанкой, Евпатория, Керчь, Севастополь, Симферополь, Судак, Крым, Феодосия, Ялта. Сайт отвечает на вопросы: Как отремонтировать, настроить, установить оборудование? Где скачать документацию (инструкцию, мануал)? Где посмотреть партномер? Где купить запчасти (запасные части, зип), комплектующие, аксессуары и термоэтикетка, чековая лента для весов, термопринтеров штрих-кода, чековых принтеров? Обслуживание весов, кассовых аппаратов, термопринтеров, терминалов сбора данных, сканеров штрих-кода: каким образом возможно своими силами? Вас интересует наличие, цена, купить запчасти за наличный и безналичный расчет? — сделайте запрос нашим менеджерам. Официальный сайт компании Zipstore.ru.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *