Какую форму имеют магнитопроводы однофазных трансформаторов
Перейти к содержимому

Какую форму имеют магнитопроводы однофазных трансформаторов

  • автор:

Типы магнитопроводов трансформаторов

Магнитопровод. Магнитопровод в трансформаторе выполняет две функции: во-первых, он составляет магнитную цепь, по которой замыкается основной магнитный поток трансформатора, а во-вторых, он предназначен для установки и крепления обмоток, отводов, переключателей. Магнитопровод имеет шихтованную конструкцию, т. е. он состоит из тонких (обычно толщиной 0,5 мм) стальных пластин, покрытых с двух сторон изолирующей пленкой (например, лаком). Такая конструкция магнитопровода обусловлена стремлением ослабить вихревые токи, наводимые в нем переменным магнитным потоком, а, следовательно, уменьшить величину потерь энергии в трансформаторе.

Силовые трансформаторы выполняются с магнитопроводами трех типов: стержневого, броневого и бронестержневого.

Рис. 1.3. Форма сечения стержней:
а – трансформаторов малой и средней мощности;
б – трансформаторов большой мощности

В магнитопроводе стержневого типа (рис. 1.2, а) вертикальные стержни 1, на которых расположены обмотки 2,сверху и снизу замкнуты ярмами 3.На каждом стержне расположены обмотки соответствующей фазы и проходит магнитный поток этой фазы: в крайних стержнях — потоки ФА и Фс, а в среднем стержне — поток Фв. На рис. 1.2, б показан внешний вид магнитопровода. При этом стержни имеют ступенчатое сечение, вписываемое в круг диаметром d(рис. 1.3). Стержни трансформаторов большой мощности имеют много ступеней, что обеспечивает лучшее заполнение сталью площади внутри обмотки. Для лучшей теплоотдачи иногда между отдельными пакетами стержня оставляют воздушные зазоры шириной 5—6 мм, служащие вентиляционными каналами.

Рис. 1.4. Однофазный трансформатор броневого типа: а- устройство; б- внешний вид
Магнитопровод броневого типа представляет собой разветвленную конструкцию со стержнем и ярмами, частично прикрывающими («бронирующими») обмотки (рис. 1.4). Магнитный поток в стержне магнитопровода броневого типа в два раза больше, чем в ярмах, каждое из которых имеет сечение, вдвое меньшее сечения стержня. Из-за технологической сложности изготовления магнитопроводы броневого типа не получили широкого распространения, их применяют лишь в силовых трансформаторах весьма малой мощности (радиотрансформаторы).

Рис. 1.5. Магнитопроводы бронестержневых трансформаторов: а — однофазного; б — трехфазного
В трансформаторах большой мощности применяют бронестержневую конструкцию магнитопровода (рис. 1.5), которая хотя и требует несколько повышенного расхода электротехнической стали, но позволяет уменьшить высоту магнитопровода (НБС < НС), а следовательно, и высоту трансформатора. Это имеет большое значение при транспортировке трансформаторов.
По способу сочленения стержней с ярмами различают стыковую и шихтованную конструкции стержневого магнитопровода (рис. 1.6).

Рис. 1.6. Стыковая (а) и шихтованная (б) конструкции магнитопроводов
При стыковой конструкции (рис. 1.6, а) стержни и ярма собирают раздельно, насаживают обмотки на стержни, а затем приставляют верхнее и нижнее ярма, заранее проложив изолирующие прокладки между стыкующими элементами, с целью ослабления вихревых токов, возникающих при взаимном перекрытии листов стержней и ярм. После установки двух ярм всю конструкцию прессуют и стягивают вертикальными шпильками. Стыковая конструкция хотя и облегчает сборку магнитопровода, но не получила распространения в силовых трансформаторах из-за громоздкости стяжных устройств и необходимости механической обработки стыкующихся поверхностей для уменьшения магнитного сопротивления в месте стыка.
Шихтованная конструкция магнитопроводов силовых трансформаторов показана на рис. 1.6, б, когда стержни и ярма собирают слоями в переплет. Обычно слой содержит 2–3 листа. В настоящее время магнитопроводм силовых трансформаторов изготовляют из холоднокатаной электротехнической стали, у которой магнитные свойства вдоль направления прокатки листов лучше, чем поперек. Поэтому при шихтованной конструкции в местах поворота листов на 90° появляются «зоны несовпадения» направления прокатки с направлением магнитного потока, На этих участках наблюдаются увеличение магнитного сопротивления и рост магнитных потерь. С целью ослабления этого явления применяют для шихтовки пластины (полосы) со скошенными краями. В этом случае вместо прямого стыка (рис. 1.7, а) получают косой стык (рис. 1.7, б), у которого «зона несовпадения» гораздо меньше.
Недостатком магнитопроводов шихтованной конструкции является некоторая сложность сборки, так как для насадки обмоток на стержни приходится расшлихтовывать верхнее ярмо, а затем после насадки обмоток вновь его зашихтовывать.

Стержни магнитопроводов во избежание распушения спрессовывают (скрепляют). Делают это обычно наложением на стержень бандажа из стеклоленты или стальной проволоки. Стальной бандаж выполняют с изолирующей пряжкой, что исключает создание замкнутых стальных витков на стержнях. Бандаж накладывают равномерно, с определенным натягом. Для опрессовки ярм 3 и мест их сочленения со стержнями 1 используют ярмовые балки 2, которые в местах, выходящих за крайние стержни (рис. 18), стягивают шпильками.
Во избежание возникновения разности потенциалов между металлическими частями во время работы трансформатора, что может вызвать пробой изоляционных промежутков, разделяющих эти части, магнитопровод и детали его крепления обязательно заземляют. Заземление осуществляют медными лентами, вставляемыми между стальными пластинами магнитопровода одними концами и прикрепляемыми к ярмовым балкам другими концами.

Магнитопроводы трансформаторов малой мощности (обычно мощностью не более 1 кВ·А) чаще всего изготовляют из узкой ленты электротехнической холоднокатаной стали путем навивки. Такие магнитопроводы делают разрезными (рис. 1.9), а после насадки обмоток собирают встык и стягивают специальными хомутами.

Большая Энциклопедия Нефти и Газа

Магнитопровод однофазных трансформаторов обычно делают Ш — образного броневого типа, у трехфазных — либо трех -, либо пятистержневой. Магнитопровод делают наборным из пластин высококачественной электротехнической стали. [1]

Какую форму имеют магнитопроводы однофазных трансформаторов . [2]

На рис. 1.14 показан эскиз магнитопровода однофазного трансформатора . [3]

Обычно магнитопроводы тяговых трансформаторов симметричны и подобны магнитопроводам однофазных трансформаторов общего назначения ( рис. X. Магнитная система тягового трансформатораОЦР — 5600 / 25 стержневая с вертикальным расположением магнитопроводов. Стержни 2 ступенчатого типа, а верхнее ярмо 1 и нижнее 3 скреплены балками, стягивающими весь магнитопровод трансформатора. [4]

Магнитная система или магнитопровод собирается из листовой трансформаторной стали толщиной 0 5 или 0 35 мм. Отдельные листы изолированы друг от друга тонким слоем лака, что приводит к уменьшению потерь на вихревые токи в железе. Магнитопровод однофазного трансформатора ( рис. 4 — 4) состоит из двух сердечников ( стержней) 1 на которых располагаются первичная и вторичная обмотки, и двух частей, свободных от обмотки, служащих для замыкания потока. [5]

В зависимости от формы магнитопровода и расположения обмоток на нем трансформаторы могут быть стержневыми и броневыми. Эти стержни соединены ярмом с двух сторон так, что магнитный поток замыкается по стали. Магнитопровод броневого однофазного трансформатора ( рис. 74, б) имеет один стержень, на котором полностью помещены обмотки трансформатора. Стержень с двух сторон охватывается ( бронируется) ярмом так, что обмотка частично защищена магнитопроводом от механических повреждений. [7]

В зависимости от формы магнитопровода и расположения обмоток на нем трансформаторы могут быть стержневыми и броневыми. Эти стержни соединены ярмом с двух сторон так, что магнитный поток замыкается через сталь. Магнитопровод броневого однофазного трансформатора ( рис. 102, б) имеет один стержень, на котором полностью размещены обмотки трансформатора. Стержень с двух сторон охватывается ( бронируется) ярмом так, что обмотка частично защищена сердечником от механических повреждений. [9]

В последнее время в конструкции стержневых магнитопроводов внесены значительные изменения. Косой стык в конструкции магнитопроводов позволяет заметно уменьшить потери холостого хода за счет некоторого усложнения в изготовлении. На рис. 30, а, б показаны пластины с косым стыком и магнитопровод однофазного трансформатора с косым стыком пластин после расшихтовки верхнего ярма, а на рис. 31-часть верхнего ярма ( в процессе шихтовки) над крайним и средним стержнями трехфазного трансформатора мощностью 1000 кВ — А. [11]

В многорамных магнитопроводах, состоящих из отдельных рам, расположенных рядом, каждая рама имеет свои ярмовые балки, выполненные в виде пластин толстолистовой стали. Кроме того, все рамы скреплены общими ярмовыми балками корытного сечения. При необходимости ремонта одной из рам ее отделяют от других ( см. § 3 — 3) и производят ремонт также как обычного магнитопровода однофазного трансформатора . [13]

Магнитопровод трансформатора

Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток. Одновременно магнитопровод служит основой для установки и крепления обмоток, отводов, переключателей и других деталей активной части трансформатора.

Магнитопровод собирают из отдельных тонких пластин электротехнической стали, изолированных друг от друга пленкой специального жаростойкого покрытия или лака. Жаростойкое покрытие обычно наносят непосредственно на металлургическом заводе, изготовляющем сталь; пленку лака — на трансформаторном заводе после резки (штамповки) пластин.

Магнитопроводы выполняют двух типов: стержневого и броневого.

В магнитопроводе стержневого типа (рисунок 1, а) вертикальные стержни 1 имеют ступенчатое сечение, вписывающееся в круг. На них расположены обмотки 2 цилиндрической формы. Части магнитопровода, не имеющие обмоток и служащие для образования замкнутой цепи, называют ярмами.

В броневом магнитопроводе (рисунок 1, б) стержни расположены горизонтально и имеют прямоугольное поперечное сечение. Соответственно этому и обмотки такого магнитопровода имеют прямоугольную форму. Из-за очень сложной технологии изготовления броневую конструкцию применяют только для некоторых типов специальных трансформаторов; все силовые трансформаторы отечественного производства имеют стержневую конструкцию.

конструкции магнитопроводов трансформаторов

а — стержневая; б – броневая; 1 — стержень; 2 – обмотки; 3 — ярмо
Рисунок 1 — Основные типы конструкций магнитопроводов

По способу соединения стержней с ярмами различают стыковую и шихтованную конструкции стержневого магнитопровода.

При стыковой конструкции стержни и ярма собирают раздельно, насаживают обмотки на стержни, а затем сверху приставляют верхнее ярмо. Чтобы избежать замыкания пластин, между стыкующимися частями магнитопровода помещают прокладки из электрокартона. После установки верхнего ярма всю конструкцию прессуют и стягивают вертикальными шпильками.

Стыковая конструкция существенно облегчает сборку, так как для насадки обмоток достаточно снять верхнее ярмо. Однако необходимость в громоздких стяжных устройствах, а также в механической обработке стыкующихся поверхностей стержней и ярм (что необходимо для уменьшения магнитного сопротивления) привела к тому, что для силовых трансформаторов стыковую конструкцию магнитопроводов не применяют. Чаще всего ее используют для токоограничивающих или шунтирующих реакторов.

При шихтованной конструкции стержни и ярма собирают в переплет, т. е. разбивают по толщине на слои (обычно по два или три листа), составленные из отдельных пластин так, чтобы в каждом слое часть пластин стержня заходила в ярмо. При этом пластины одного слоя перекрывают стыки пластин смежного слоя. Преимуществом шихтованной конструкции перед стыковой являются меньшая масса и большая механическая прочность, небольшие зазоры в местах стыков и меньший ток холостого хода трансформаторов.

Однако при шихтованной конструкции усложняется сборка трансформатора: для насадки на стержни обмоток приходится сначала расшихтовать верхнее ярмо по отдельным слоям, а затем после насадки обмоток вновь зашихтовать. Эта работа трудоемка и очень ответственна, так как при недостаточно тщательном ее выполнении могут резко ухудшиться характеристики трансформатора.

Если после зашихтовки окажутся увеличенными зазоры между пластинами ярма и стержня, это ухудшит условия для прохождения магнитного потока и увеличит ток холостого хода трансформатора. Если по каким-либо причинам в ярмо будет уложено меньше пластин, чем это необходимо, уменьшится его поперечное сечение, следовательно, возрастет плотность магнитных силовых линий (магнитная индукция), увеличатся потери и ток холостого хода. Если при расшихтовке или шихтовке ярма будут небрежно обращаться с пластинами (удары, механические повреждения, порча изоляции), то это также явится причиной ухудшения экономических характеристик трансформатора.

В последнее время в конструкции стержневых магнитопроводов внесены значительные изменения. Изменилась форма пластин, из которых собирается магнитопровод: вместо прямоугольных пластин часто применяют пластины, одна или две узкие стороны которых срезаны под углом (чаще всего 45°). «Косой стык» в конструкции магнитопроводов позволяет заметно уменьшить потери холостого хода за счет некоторого усложнения в изготовлении. На рисунке 2, а, б показаны пластины с косым стыком и магнитопровод однофазного трансформатора с косым стыком пластин после расшихтовки верхнего ярма, а на рисунке 3 — часть верхнего ярма (в процессе шихтовки) над крайним и средним стержнями трехфазного трансформатора мощностью 1000 кВА.

Пластины магнитопровода

1 — магнитопровод; 2 — ярмовая балка; 3 — нижнее ярмо
Рисунок 2 — Пластины магнитопровода с косым стыком (а) и магнитопровод однофазного трансформатора с косым стыком пластин после расшихтовки верхнего ярма (б)

Магнитопровод трехфазного трансформатора

а — над крайним стержнем; б — над средним стержнем; 1 — пластины крайнего стержня; 2 — верхнее ярмо; 3 — прессующее кольцо; 4 — пластины среднего стержня; 5 — устройство для подъема; 6 — обмотка ВН
Рисунок 3 — Магнитопровод трехфазного трансформатора с косым стыком пластин

Обмотки стержневого магнитопровода имеют в горизонтальном сечении форму окружности. Для лучшего использования площади круга поперечное сечение стержней магнитопровода также стремятся приблизить к кругу. Однако круглое сечение стержней потребовало бы большого числа различных по ширине пластин стали, что значительно усложнило бы технологию изготовления. Поэтому сечение стержней делают многоступенчатым.

Ярма магнитопровода трансформаторов I—III габаритов, выпускавшихся отечественными заводами еще совсем недавно, имели прямоугольную или Т-образную форму со ступенькой, обращенной в сторону «окна» магнитопровода. В новых конструкциях форма сечения ярма (для лучшего распределения магнитного потока) повторяет форму сечения стержня, да и сами стержни стали «полнее»: количество ступеней (пакетов из пластин разной ширины) увеличилось, следовательно, увеличилось и сечение активной стали в площади круга. На рисунке 4 показаны сечения Т-образного и многоступенчатого ярм магнитопроводов трансформаторов I— III габаритов.

Форма сечения ярм магнитопроводов трансформаторов

а — Т-образного, б — многоступенчатого; 1 — верхнее ярмо, 2 — верхняя ярмовая балка, 3 — нижняя ярмовая балка, 4 — нижнее ярмо
Рисунок 4 — Форма сечения ярм магнитопроводов трансформаторов I—III габаритов

Готовый магнитопровод должен обладать достаточной жесткостью. Неравномерная и недостаточная опрессовка, недобор или перебор пластин в одном из стержней или в ярме вызывают повышенную вибрацию, что может привести к механическому разрушению деталей крепления магнитопровода. Повышенная вибрация сопровождается шумом. Поэтому при сборке магнитопровода пластины стержней и ярм должны быть опрессованы и скреплены как бы в одно целое.

Существуют различные способы прессовки. В трансформаторах небольшой мощности стержни прессуют деревянными планками, вбиваемыми при сборке активной части трансформатора между цилиндром внутренней обмотки и стержнем магнитопровода. Эти планки расклинивают стержни относительно обмоток и опрессовывают их.

Для прессовки магнитопроводов более мощных трансформаторов широко применяют стяжку стержней металлическими шпильками.

До последнего времени в трансформаторостроении широко применялись конструкции магнитопроводов с отверстиями в активной стали. Такие магнитопроводы стягивались горизонтальными шпильками, проходящими в отверстиях, выштампованных в каждой пластине. Шпильки приходилось надежно изолировать от стали во избежание замыкания пластин, которое может вызвать увеличение вихревых токов, местный нагрев и «пожар в стали».

Однако конструкции магнитопроводов с отверстиями в активной стали стержней и ярм имеют существенные недостатки. Отверстия штампуются на специальных прессах (эта одна из наиболее трудоемких операций при изготовлении магнитопроводов); вокруг каждого отверстия появляется зона механически деформированной стали (для снятия возникшего наклепа необходим отжиг пластин); отверстия уменьшают сечение и вызывают местное увеличение потерь холостого хода. Наконец, даже самая надежная изоляция шпилек, прессующих стержни и ярма магнитопровода, может с течением времени нарушиться с тяжелыми последствиями для трансформатора. Поэтому в последнее время получили широкое распространение конструкции так называемых бесшпилечных магнитопроводов. Существует довольно много конструкций бесшпилечных магнитопроводов, отличающихся способом прессовки стержней и ярм. Так, у трансформаторов мощностью 250—630 кВА стержни затягивают временными струбцинами еще в горизонтальном положении сразу после сборки. При насадке обмоток (как правило, намотанных на бумажно-бакелитовом цилиндре) струбцины снимают, а между цилиндром и магнитопроводом устанавливают деревянные планки и клинья, жестко прессующие пластины стержня.

У трансформаторов большей мощности стержни прессуют стальными бандажами или бандажами из стеклоленты. Чтобы избежать образования замкнутого витка, стальные бандажи выполняют с изолирующей пряжкой. Бандажи из стеклоленты наматывают с помощью специального устройства, позволяющего равномерно укладывать ленту с необходимым для запрессовки стержня натягом.

Для прессовки ярм используют или вынесенные за крайние стержни шпильки, стягивающие ярмовые балки (балки при этом делают механически очень прочными), или стальные полубандажи, охватывающие верхние и нижние ярма. В некоторых конструкциях вместо полубандажей ставят стальные шпильки, требующие, однако, некоторого увеличения окна магнитопровода.

На рисунке 5 показано ярмо магнитопровода, запрессованное стальными полубандажами. Полубандаж представляет собой стальную ленту 1 шириной 40—60 мм и толщиной 4—6 мм (обычно берут две ленты толщиной по 2—З мм). К концам ленты приваривают стальные шпильки 2, пропускаемые через пластины 3 из прочного изоляционного материала (чаще всего для этих целей применяют стеклопластики). При затяжке гаек 4, наворачиваемых на шпильки, создается необходимое усилие запрессовки ярма. Чтобы избежать замыкания пластин стали ярма полубандажом, под него подкладывают коробочку из электрокартона толщиной 2—3 мм.

1 — стальная лента, 2 – шпилька, 3 — пластина из стеклопластика, 4 — прессующая гайка
Рисунок 5 — Ярмо магнитопровода, запрессованное полубандажами

Однако одни только полубандажи не могут создать усилий, достаточных для прессовки ярма. Для затяжки ярм обязательно применяют специальные стяжные устройства по торцам магнитопровода, вынесенные за активную сталь. В трансформаторах мощностью 4000—6300 кВА это могут быть просто стальные шпильки, изолированные от возможного замыкания со стержнем бумажно-бакелитовыми трубками, в трансформаторах большей мощности — специальные «коробки», упирающиеся в активную сталь крайних стержней магнитопровода.

Для многих трансформаторов применяют прессовку обмоток нажимными кольцами. Дело в том, что в процессе работы происходит постепенная усушка электрокартонных деталей обмоток, особенно если обмотки и активная часть трансформатора были недостаточно просушены при изготовлении. Такая усушка приводит к уменьшению высоты и ослаблению запрессовки обмоток, что резко снижает динамическую прочность трансформатора при коротких замыканиях и может стать причиной его разрушения.

Нажимные кольца позволяют создать необходимые усилия запрессовки и, что особенно важно, подпрессовать обмотки, если при ревизии обнаружится ослабление их осевого крепления. До последнего времени нажимные кольца делали из стали. В настоящее время их часто выполняют из различных пластических материалов, главным образом стеклопластиков. На рисунке 6 показаны прессовка обмоток нажимными кольцами и конструкция прессующего устройства.

Прессовка обмоток трансформатора

1 — верхнее ярмо, 2 — обмотка, 3 — прессующее кольцо, 4 — нажимной винт, 5 — ярмовая балка
Рисунок 6 — Прессовка обмоток нажимными кольцами и конструкция прессующего устройства

Во время работы трансформатора между его обмотками и заземленными частями (например, баком) существует электрическое поле. Все металлические части трансформатора, находящиеся в этом поле, заряжаются, т. е. приобретают некоторый потенциал. Между заряженными деталями и заземленным баком возникают разности потенциалов. Несмотря на малую величину, они могут оказаться достаточными для пробоя небольших изоляционных промежутков, разделяющих металлические части. Пробои нежелательны, так как они ведут к разложению и порче масла и всегда сопровождаются характерным треском, что вызывает сомнения в исправности изоляции трансформатора. Поэтому магнитопровод и детали его крепления обязательно заземляют, т. е. придают им всем одинаковый потенциал — потенциал бака (земли); возникающие при этом электрические заряды по заземлениям «стекают» с металлических деталей трансформатора в землю.

Заземляют ярмовые балки, все металлические крепления и детали, за исключением горизонтальных стяжных шпилек, потенциал которых всегда близок к потенциалу стали магнитопровода. Заземление осуществляют с помощью медных лент, вставляемых между пластинами стали магнитопровода и закрепляемых другими концами на ярмовой балке. Верхнюю и нижнюю балки связывают вертикальными стяжными шпильками, а с заземленным баком трансформатора — подъемной шпилькой.

Возможны различные схемы заземления металлических деталей: они зависят от конструкции магнитопровода, крепления активной части в баке, связи между отдельными деталями. В любом случае выполнение указаний о заземлении отдельных элементов конструкции трансформатора является обязательным.

Устройство трансформаторов

Магнитная система. В зависимости от конфигурации магнитной системы трансформаторы подразделяют на стержневые (рис. 2.2, а), броневые (рис. 2.2, б) и тороидальные (рис. 2.2, в).Стержнем называют часть магнитопровода, на которой размещают обмотки. Часть магнитопровода, на которой обмотки отсутствуют, называют ярмом. Трансформаторы большой и средней мощности обычно выполняют стержневыми. Они имеют лучшие условия охлаждения и меньшую массу, чем броневые.

Силовые трансформаторы большой мощности броневого типа отечественная промышленность не выпускает.

Рис. 2.2. Основные типы однофазных трансформаторов:

Но при значительных мощностях (более 80—100 MB•А на фазу) часто применяютбронестержневые трансформаторы, у которых крайние стержни имеют боковые ярма (рис. 2.3,а). Такая конструкция позволяет уменьшить поперечное сечение верхнего и нижнего ярм по сравнению со стержневыми трансформаторами, в результате чего уменьшается высота трансформатора и упрощается его транспортировка по железным дорогам. При дальнейшем повышении мощности для еще большего уменьшения высоты верхнего и нижнего ярм применяют трансформаторы многостержневой конструкции. В этом случае «расщепляют мощность» каждой фазы между двумя или тремя отдельными стержнями, т. е. обмотки каждой фазы располагают на нескольких стержнях, включенных в магнитном отношении параллельно (рис. 2.3,6).

Для уменьшения потерь от вихревых токов магнитопроводы трансформаторов (рис. 2.4) собирают из изолированных листов электротехнической стали толщиной 0,28—0,5 мм при частоте 50 Гц. Обычно применяют анизотропную холоднокатаную сталь с ребровой структурой (марки 3412-3416) и содержанием кремния 2,8 — 3,8%. Магнитные свойства этой стали резко улучшаются при совпадении направлений магнитного потока и прокатки: потери в стали на перемагничивание уменьшаются в два-три раза, а магнитная проницаемость и индукция насыщения возрастают. Однако использование холоднокатаной стали усложняет конструкцию и технологию изготовления магнитопроводов, так как при этом требуется исключить прохождение магнитного потока поперек направления прокатки или по крайней мере уменьшить длину участков, на которых это явление возникает.

Рис. 2.3. Однофазные трансформаторы большой мощности:

Рис. 2.4. Магнитная система силового трехфазного трансформа­тора:

По способу сборки различают стыковые и шихтованные магнитопроводы. В стыковых магнитопроводах стержни и ярма собирают и скрепляют раздельно, а затем устанавливают в стык и соединяют между собой. В месте стыка во избежание замыкания листов устанавливают изоляционные прокладки. В шихтованных магнитопроводах ярма и стержни собирают как цельную конструкцию с взаимным перекрытием отдельных слоев в месте стыка («впереплет»). Каждый слой состоит из двух — трех листов. При сборке магнитопровода листы в двух смежных слоях располагают, как показано на рис. 2.5, о и б, т. е. листы каждого последующего слоя перекрывают стык в листах предыдущего слоя, существенно уменьшая магнитное сопротивление в месте сочленения. После сборки магнитопровода листы верхнего ярма вынимают, на стержни устанавливают катушки и ярмо снова ставят на место (рис. 2.4,б). Шихтованные магнитопроводы имеют значительно меньшее магнитное сопротивление, чем стыковые; поэтому последние применяют сейчас только в микротрансформаторах.

При изготовлении магнитопроводов из холоднокатаной текстурованной стали листы в местах сочленения крайних стержней с ярмами скашивают примерно на 45° (рис. 2.5, в и г).

Рис. 2.5. Расположение листов в двух смежных слоях магнитопровода силового трехфазного трансформатора: а, в, е — 1, 3, 5-й и другие слои; б, г, д — 4, 2, 6-й и другие слои; 1 — листы крайних стержней; 2 —листы среднего стержня; 3, 4, 5 — листы верхнего и нижнего ярм.

Скос листов позволяет уменьшить магнитное сопротивление магнитопровода и потери мощности в нем, так как при прямоугольной форме листов в местах поворота магнитного потока на 90° возникают добавочные потери из-за несовпадения направлений индукционных линий и прокатки стали. Сборка магнитопроводов из листов с косым стыком является весьма трудоемкой, так как в целях перекрытия стыков листов при шихтовке приходится смещать их по длине. Поэтому в силовых трансформаторах широко применяют комбинированный способ шихтовки, при котором стыки листов ярма со средним стержнем (рис. 2.5, д и е) делают прямыми, а с крайними стержнями — косыми, или первый слой листов выполняют с косыми стыками, а второй — с прямыми.

Стержни магнитопровода в силовых трансформаторах сравнительно небольшой мощности имеют прямоугольное или крестовидное сечение (рис. 2.6, а и б), а в более мощных — ступенчатое, по форме приближающееся к кругу (рис. 2.6, в) (их собирают из листов различной ширины). Такая форма обеспечивает получение требуемого поперечного сечения стержня при минимальном диаметре, что позволяет уменьшить длину витков обмоток, а следовательно, и расход обмоточных проводов.

Рис. 2.6. Формы сечения стержней силовых трансформаторов:

При большом сечении стержней их собирают из отдельных стальных пакетов, между которыми располагают продольные каналы шириной 5 — 6 мм, а в некоторых кон­струкциях и поперечный канал (рис. 2.6, г) для циркуляции охлаждающей жидкости.

Стяжку листов стержней (опрессовку стержней) в силовых трансформаторах сравнительно небольшой мощности осуществляют с помощью деревянных или пластмассовых планок и стержней, устанавливаемых между стальным стержнем и жестким изоляционным цилиндром, на котором намотана обмотка НН (рис. 2.7, а).

В более мощных трансформаторах с магнитопроводами из холоднокатаной анизотропной стали стержни стягивают бандажами из стеклоленты или стальной ленты (рис. 2.7,6). Чтобы стальные бандажи не образовали короткозамкнутых витков, их разрезают и стягивают с помощью изоляционных пряжек. Для получения равномерного сжатия стальных листов перед наложением бандажей стержень опрессовывают на сбо­рочном стенде. Опрессовка стержней обеспечивает необходи­мую жесткость конструкции магнитопровода и предотвращает повышенную вибрацию его листов, сопровождающуюся шумом.

Рис. 2.7. Способы прессовки стержней и ярм:

В магнитопроводах из горячекатаной стали стержни стягивают стальными шпильками, изолированными относительно стержней трубками из изоляционного материала (рис. 2.7, в). Такой способ опрессовки при холоднокатаной стали недопустим, так как магнитные силовые линии огибают отверстия, пробитые в стальных листах для шпилек, и, следовательно, отклоняются от направления проката стали.

Ярма, соединяющие стержни, выполняют обычно прямоугольного, Т-образного или ступенчатого сечения на 2 — 5% больше сечения стержней. Это уменьшает индукцию в стали ярма и потери мощности в ней. Ярма стягивают с помощью деревянных или стальных опорных балок, бандажей из стеклоленты или стальной ленты (рис. 2.7, г) или посредством шпилек (рис. 2.7, д).

Магнитопровод вместе с опорными балками и другими прессующими деталями образует остов трансформатора. При работе силовых трансформаторов магнитопровод и другие стальные части находятся в сильном электрическом поле, вследствие чего они могут приобрести электрический заряд. Чтобы избежать этого, остов заземляют с помощью медных лент.

Трансформаторы малой мощности и микротрансформаторы часто выполняют броневыми, так как они имеют более низкую стоимость по сравнению со стержневыми трансформаторами из-за меньшего числа катушек и упрощения сборки и изготовления. Применяют также и маломощные трансформаторы стержневого типа с одной или двумя катушками. Преимущество тороидальных трансформаторов — отсутствие в магнитной системе воздушных зазоров, что значительно уменьшает магнитное сопротивление магнитопровода.

В трансформаторах малой мощности магнитопровод собирают из штампованных пластин П-, Ш- и О-образной формы (рис. 2.8, а, б, в). При использовании листов Ш- и П-образной формы магнитопровод может быть собран «впереплет» или «встык». Сборку пластин «встык» применяют при необходимости введения в магнитопровод воздушного зазора; в этом случае в месте стыка устанавливают изоляционные прокладки.

Рис. 2.8. Магнитопроводы трансформаторов малой мощности: а, д — броневой, б, г — стержневой, в, е — тороидальный, ж — трехфазный.

Большое значение получили также магнитопроводы, навитые из узкой ленты электротехнической стали (обычно из анизотропной холоднокатаной стали) или из специальных железоникелевых сплавов типа пермаллой. Их можно использовать для стержневых, броневых, тороидальных и трехфазных трансформаторов. Основными преимуществами их перед шихтованными являются лучшее использование ферромагнитного материала благодаря ориентации магнитного потока в направлении прокатки стали или пермаллоя и более высокое сопротивление вихревым токам, что обусловливает уменьшение потерь мощности в магнитопроводе, особенно при повышенных, частотах. Ленточные магнитопроводы (рис.2.8,г,д,е,ж) бывают неразъемными и разъемными. Разъемные ленточные магнитопроводы выполняют из двух половин. Чтобы уменьшить магнитное сопротивление магнитопровода в местах стыка, торцовые поверхности обеих половин шлифуют, затем; вкладывают в катушку и склеивают по шлифованным поверхностям специальным клеем, изготовленным на основе эпоксидной смолы с ферромагнитным наполнителем. Монолитность конструкции ленточного магнитопровода обеспечивается путем применения клеющих лаков и эмалей.

Для трансформаторов, работающих при частоте 400 и 500 Гц, магнитопроводы выполняют из специальных сортов электротехнической стали с малыми удельными потерями при повышенной частоте, а также из железоникелевых сплавов типа пермаллой, которые имеют большие начальную и максимальную магнитные проницаемости и позволяют получить магнитные поля с большой индукцией при сравнительно слабой напряженности. Толщина листов составляет 0,2; 0,15; 0,1 и 0,08 мм. При частотах более 10—20 кГц магнитопроводы прессуют из порошковых материалов (магнитодиэлектриков и ферритов).

Обмотки. В современных трансформаторах первичную и вторичную обмотки стремятся расположить для лучшей магнитной связи как можно ближе одну к другой. При этом на каждом стержне магнитопровода размещают обе обмотки либо концентрически — одну поверх другой, либо в виде нескольких дисковых катушек, чередующихся по высоте стержня. В первом случае обмотки называют концентрическими, во втором —чередующимися. В силовых трансформаторах обычно применяют концентрические обмотки, причем ближе» к стержням располагают обмотку НН, требующую меньшей изоляции относительно остова трансформатора, а снаружи — обмотку ВН (рис. 2.9, а).

Рис. 2.9. Расположение обмоток на стержнях в трансформаторах:

1 — стержень;
2 — обмотка ВН;
3 — обмотка НН;
4,5 — группы катушек.

В некоторых случаях для уменьшения индуктивного сопротивления рассеяния обмоток применяют двойные концентрические (расщепленные) обмотки (рис. 2.9,6), в которых обмотку НН делят на две части с одинаковым числом витков. Аналогично можно выполнить и обмотку ВН. При чередующихся обмотках (рис. 2.9, в) всю обмотку подразделяют на симметричные группы, состоящие из одной или нескольких катушек ВН и расположенных по обе стороны от них двух или нескольких катушек НН. Чередующиеся обмотки применяют редко и в основном для специальных трансформаторов.

Обмотки трансформаторов изготовляют из медных или алюминиевых проводов. При использовании алюминия по­перечное сечение провода берется примерно на 70% больше, чем при использовании меди из-за большего удельного электрического сопротивления алюминия. В связи с этим габариты и масса трансформаторов с алюминиевыми обмотками больше, чем у трансформаторов с медными обмотками. При сравнительно небольших мощностях и токах обмотки выполняют из изолированного провода круглого сечения, при больших мощностях и токах применяют провода прямоугольного сечения. В ряде случаев обмотки наматывают из нескольких параллельных проводов.

По конструкции концентрические обмотки подразделяют на цилиндрические, непрерывные и винтовые.
Цилиндрические обмотки (рис. 2.10, а), выполненные из пря­моугольного провода, обычно применяют в качестве обмоток низшего напряжения при мощностях до 250 кВ•А на один стержень (до 630 кВ•А для трехфазного трансформатора) и напряжении до 6 кВ. При мощности 10—16 кВ*А обмотку наматывают в один-два слоя, а при больших мощностях — в два слоя, соединенных последовательно (рис. 2.10,6).

В зависимости от силы тока каждый слой может состоять из одного или нескольких параллельных проводов (суммарный ток стержня обычно не превышает 800 А). Провод наматывают по винтовой линии на бумажно-бакелитовые цилиндры и одно­временно изолируют его от стержня магнитопровода и от соседних катушек.

Рис. 2.10. Цилиндрические обмотки:

Если обмотка имеет несколько слоев, то между ними прокладывают изоляционные планки, образующие: каналы для прохода масла.

Обмотки высшего напряжения трансформаторов мощностью до 250 кВА на один стержень и напряжением до 35 кВ, а также обмотки низшего напряжения при 3 — 10 кВ выполняют цилиндрическими многослойными (рис. 2.10, в). Для обмоток используют провод круглого или прямоугольного сечения, который наматывают на жесткие бумажно-бакелитовые цилиндры; каждый слой образуется из одного или нескольких параллельных проводов (суммарный ток стержня обычно не превышает 135 А). Витки всех слоев соединяют последовательно; изоляцией между слоями служит кабельная бумага. При большом количестве слоев для улучше­ния охлаждения обмотку разделяют на две концентрические катушки. Между этими катушками оставляют канал для прохода масла. Иногда в качестве обмоток высшего напряжения при мощностях до 335 кВ-А на стержень и напряжении до 35 кВ, применяют многослойные цилиндрические катушечные обмотки (рис. 2.11, а). Такая обмотка состоит из ряда многослойных дисковых катушек, расположенных вдоль стержня и выполненных из провода небольшого сечения (ток до 45 А). Между катушками оставляют каналы для охлаждения.

В трансформаторах мощностью от 160 до 63000 кВ-А на стержень и выше при напряжениях от 3 до 220 кВ в качестве обмоток высшего напряжения часто применяют непрерывные спиральные катушечные обмотки.

Рис. 2.11. Цилиндрическая катушечная (а) и непре­рывная (б) обмотки:

Обмотку назы­вают непрерывной потому, что ее наматывают без разрывов, 1. е. переход из одной катушки в другую производится непрерывно, без паек. В непрерывной обмотке может быть до шести параллельных проводов. Такая обмотка (рис. 2.11,6) состоит из ряда последовательно соединенных между собой плоских дисковых катушек (секций), выполненных из провода прямоугольного сечения. Катушки имеют одинаковые размеры и расположены одна над другой. Для охлаждения между катушками создают радиальные каналы, образованные про кладками из электрокартона. Непрерывные спиральные ка тушечные обмотки можно применять и в качестве обмоток низшего напряжения при токах 20—400 А (при медных про­водах) и 10—200 А (при алюминиевых проводах).

Винтовые одно- и многоходовые обмотки (рис. 2.12, а) используют обычно в качестве обмоток низшего напряжения в трансформаторах мощностью свыше 250 кВ-А на стержень при напряжениях до 15 кВ и токах свыше 300 А для медных проводов и 150—200 А для алюминиевых. Винтовую обмотку наматывают по винтовой линии из нескольких параллельных проводов прямоугольного сечения, прилегающих друг к другу в радиальном направлении. Подобно резьбе винта она может быть одно-, двух- и иногда многоходовой. Между отдельными витками и параллельными ходами располагают охлаждающие каналы.

При использовании винтовых и непрерывных катушечных обмоток, выполненных из нескольких параллельных проводников, необходимо принимать меры для равномерного распределения между ними тока, так как более удаленные от оси катушки провода имеют несколько большую длину, а следовательно, и активное сопротивление (чем расположенные ближе к оси).

Рис. 2.12. Одноходовая винтовая обмотка (а) и схемы транспозиции
ее параллельных проводов (б); (в) и (г):

Кроме того, витки, образуемые этими проводами, сцеплены с различными по величине магнитными потоками и в них индуцируются разные ЭДС. Чтобы уравнять длины параллельных проводов и создать одинаковые условия для индуцирования в них ЭДС, осуществляют транспозицию проводов, т. е. провода периодически по длине обмотки меняют местами (рис. 2.12,6) так, чтобы каждый провод занимал все возможные положения относительно оси катушки. Транспозиция может быть общей (изменяют на обратное расположение всех параллельных проводов) — рис. 2.12, в и групповой (изменяют местами две подгруппы проводов) — рис. 2.12, г.

В настоящее время широкое применение получают винтовые обмотки из транспонированного провода, в котором отдельные проводники (жилы) с лаковой изоляцией меняются местами в процессе изготовления провода (рис. 2.13,а,в). Поверх него накладывают общую изоляцию из кабельной бумаги.

Рис. 2.13. Специальные провода:

Применяют также подразделенные провода (рис. 2.13,6), состоящие та двух-трех изолированных проводников, охватываемых общей изоляцией. Такое разделение проводника Приводит к значительному (на 20—30%) снижению добавочных потерь от индуцируемых в проводниках вихревых токов.

В трансформаторах малой мощности и микротрансформаторах используют однослойные и многослойные обмотки из круглого провода с эмалевой или хлопчатобумажной изоляцией, которые наматывают на гильзу или на каркас из электрокартона (рис. 2.14,а); между слоями проводов прокладывают изоляцию из кабельной бумаги или ткани. В микро­трансформаторах часто обмотки выполняют из алюминиевой фольги толщиной 30—20 мкм. Изоляцией здесь служит окисная Пленка фольги, которая обладает достаточной теплоемкостью, теплопроводностью а может выдерживать рабочее напряжение до 100 В. В высокочастотных трансформаторах применяют расщепленные многожильные провода типа литцендрат (ЛЕНЮ, ЛЭЛО и др.). Для трансформаторов, работающих в условиях высокой температуры и радиоактивного облучения, используют провода из анодированного алюминия и с изоляцией из кварцевых нитей.

Рис. 2.14. Устройство трансформаторов малой мощности:

В последнее время широко применяются галетные обмотки. Такая обмотка состоит из отдельных унифицированных элементов — галет, каждая из которых представляет собой закон­ченный конструктивный элемент (рис. 2.14,6). Галеты собирают на стержне магнитопровода и соединяют между собой в соответствии с электрической схемой трансформатора. Путем последовательного и параллельного соединения унифициро­ванных галет можно получать различные значения токов и напряжений трансформатора. Галеты могут быть выполнены как из обмоточного провода, так и из алюминиевой фольги. В тороидальных трансформаторах обмотки располагают по всей окружности магнитопровода, причем на внутренней по­верхности укладывают большее число слоев, чем на внешней. Изоляцию обмоток от магнитопровода осуществляют путем обматывания последнего лентой из изоляционного материала.

Изоляция силовых трансформаторов. В трансформаторах изоляцию обмоток подразделяют на главную — изоляцию их от магнитопровода и между собой (обмоток НН от ВН) и продольную — изоляцию между витками, слоями и катуш­ками каждой обмотки. Имеется также изоляция отводов от обмоток, переключателей и выводов. Изоляция обмоток трансформатора от заземленных частей и друг от друга определяется в основном электрической прочностью при частоте 50 Гц. Она обеспечивается соответствующим выбором величины изоляционных промежутков, которые в масляных трансформаторах одновременно выполняют роль охлаждающих каналов.

Чтобы предотвратить пробой изоляции при воздействии на обмотку импульсных перенапряжений в высоковольтных трансформаторах, между обмотками дополнительно ставят жесткие бумажно-бакелитовые цилиндры или мягкие цилиндры из электроизоляционного картона. При этом (во избежание электрического разряда по поверхности изоляционных цилиндров) они должны иметь по высоте большие размеры, чем обмотки (рис. 2.15). Между обмотками высшего напряжения различных фаз устанавливают межфазную изоляционную перегородку. Изоляционное расстояние обмоток от ярма обеспечивают шайбами и прокладками из электроизоляционного картона. Между концевой изоляцией обмотки и ярмовыми балками магнитопровода в некоторых трансформаторах устанавливают металлические разрезные или неметаллические прессующие кольца.

Рис. 2.15. Конструкция главной изоляции трансформаторов класса напряжения 10 кВ (а) и 35 кВ (б):

В трансформаторах напряжением 35 кВ для защиты от атмосферных перенапряжений две начальные и две конечные катушки обмотки высшего напряжения выполняют с усиленной изоляцией. Такая изоляция ухудшает условия охлаждения начальных и конечных катушек, поэтому их выполняют из провода большего поперечного сечения.

В трансформаторах напряжением 110 кВ и выше для уменьшения напряжения на концевых катушках обмотки высшего напряжения и выравнивания электрического поля у концов обмотки применяют емкостную компенсацию в виде емкостных витков и емкостных колец (рис. 2.16), которые служат электрическими экранами.

Рис. 2.16. Установка емкостного кольца и экранирующих витков на обмотке:

Изоляция между катушками, слоями и витками (продольная изоляция) обеспечивает как электрическую прочность обмотки при частоте 50 Гц, так и прочность при воздействии импульсных перенапряжений. Обычно межкатушечную изоляцию осуществляют радиальными масляными каналами, простыми и угловыми шайбами из электроизлляционного картона. В качестве межслойной изоляции обычно применяют несколько слоев кабельной бумаги, электроизоляционный картон или лакоткань. Изоляцию между витками обеспечивают в основном собственной изоляцией обмоточного провода.

Вводы трансформатора. Для вывода наружу концов от обмоток в трансформаторах, охлаждаемых маслом или негорючим жидким диэлектриком, используют проходные фарфоровые изоляторы, размещаемые на крышке или на стенке бака. Проходной изолятор вместе с токоведущим стержнем и крепежными деталями называют вводом.

Вводы трансформаторов, устанавливаемых внутри помещений, имеют гладкую наружную поверхность (рис. 2.17, а), а вводы трансформаторов, предназначенных для наружной установки, снабжают ребрами (рис. 2.17,6), число которых зависит от напряжения соответствующей обмотки трансформатора.

Рис. 2.17. Вводы транс­форматоров:

При наличии ребер увеличивается расстояние между токоведущим стержнем и корпусом по поверхности изолятораи уменьшается вероятность поверхностного разряда во время дождя, при попадании на изолятор листьев и т. п. Крепление ввода к крышке бака и токоведущего стержня в изоляторе должно быть прочным, а применяемые уплотнения — маслостойкими.

При напряжениях свыше 110 кВ вводы часто выполняют составными — из двух фарфоровых изоляторов (рис. 2.17, в). Внутри такой ввод заполняют маслом, не сообщающимся с маслом, находящимся в баке трансформатора. Токоведущий кабель проходит внутри металлической трубы, которую изолируют кабельной бумагой или бумажно-бакелитовыми цилиндрами с установленными в них металлическими обкладками из фольги (для выравнивания электрического поля).

В трансформаторах, рассчитанных на большие токи, вокруг ввода создается большой магнитный поток, вследствие чего в крышке бака и крепежном фланце возникают значительные вихревые токи, нагревающие эти детали до высокой температуры. Во избежание этого при больших токах вместо стального или чугунного фланцев применяют латунные и в крышке вырезают для них общее отверстие (рис. 2.17, г). При этом магнитные потоки всех вводов замыкаются вокруг отверстия и при одно- и трехфазном токах сильно уменьшаются из-за взаимной компенсации магнитодвижущих сил. В трансформаторах, охлаждаемых, воздухом, концы от обмоток присоединяют к контактным зажимам, которые укрепляют к остову трансформатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *