Что означает x в физике
Перейти к содержимому

Что означает x в физике

  • автор:

Что означает буква x в физике.

Какие силы нужно приложить к концам проволоки жёсткостью 100кН/м, чтобы растянуть её на 1 мм?
исходя из этой задачи, как можно назвать букву x?
решение:
дано: СИ
R(жесткость) =100 кН/м 100000 Н/м
х=1 мм 0,001 м
найти:
F-?

решение:
F=Rx=100000*0.001=100 Н = 1кН
ответ: 100 Н

Хм, кажется, координата
Алексей ПрилищПрофи (857) 6 лет назад
Требуется в решении задач
Алексей ПрилищПрофи (857) 6 лет назад
Когда дан кинематический закон движения тела в определённой задаче нужна координата x
Все что угодно. Нередко — координату на оси.

вы написали
Какие силы нужно приложить к концам проволоки жёсткостью 100кН/м, чтобы растянуть её на 1 мм?
исходя из этой задачи, как можно назвать букву x?
решение:
дано: СИ
R(жесткость) =100 кН/м 100000 Н/м
х=1 мм 0,001 м
найти:
F-?

решение:
F=Rx=100000*0.001=100 Н = 1кН
ответ: 100 Н
****
Здесь х — это абсолютное удлинение проволоки

TaniaГений (56711) 6 лет назад

обратите внимание:
я исправила на «абсолютное удлинение проволоки».
относительное удлинение — это x/(x+L), где L — это начальная длина проволоки

Ни одна буква в физике сама по себе НИЧЕГО не означает. А вот когда вы ей ПРИСВОИЛИ какое-то значение — она начала означать. Но никаких ЗАДАННЫХ значений не существует и существовать НЕ МОЖЕТ — величин много, а букв — мало.

Учебник. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Её называют

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Fx = Fупр = –kx.

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жёсткостью тела. В системе СИ жёсткость измеряется в Коэффициент жёсткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение называется относительной деформацией, а отношение , площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна

Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2∙10 11 Н/м 2 , а для резины E ≈ 2∙10 6 Н/м 2 , порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на

Упругую силу N → , действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому её часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает N → = – m g → . Сила P → , с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в её витках возникают сложные деформации

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная не должна При больших деформациях возникают необратимые явления (текучесть)

Сила упругости

Если вы возьмете резиновый шарик и шар из камня и начнете кидать в стену (скучный день выдался, мало ли) — заметите, что они отталкиваются совершенно по-разному. Про силу упругости, которая объясняет этот процесс — в этой статье.

· Обновлено 31 января 2024

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или замедляется, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которая является мерой действия одного тела на другое.

Она измеряется в ньютонах — это единица измерения названа в честь Исаака Ньютона.

что такое сила

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат действия этой силы.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

векторная величина

Открыть диалоговое окно с формой по клику

Деформация

Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил

Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу сил. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения
  • Деформация сжатия
  • Деформация сдвига
  • Деформация при кручении
  • Деформация при изгибе

Какая профессия тебе подходит? Узнай за 10 минут!

Получи больше пользы от Skysmart:

  • Подготовься к ОГЭ на пятёрку.
  • Подготовься к ЕГЭ по 3 предметам на 240+ баллов с гарантией.

Сила упругости: Закон Гука

Давайте займемся баскетболом. Начнем набивать мяч о пол, он будет чудесно отскакивать. Этот удар можно назвать упругим. Если при ударе деформации не будет совсем, то он будет называться абсолютно упругим.

Если вы перепутали мяч и взяли пластилиновый, он деформируется при ударе и не оттолкнется от пола. Такой удар будет называться абсолютно неупругим.

Деформацию тоже можно назвать упругой (при которой тело стремится вернуть свою форму и размер в изначальное состояние) и неупругой (когда тело не может вернуться в исходное состояние).

При деформации возникает сила упругости— это та сила, которая стремится вернуть тело в исходное состояние, в котором оно было до деформации.

Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, пропорциональна абсолютному значению изменения длины тела. Выражение, описывающее эту закономерность, называется законом Гука.

Какой буквой обозначается сила упругости?

Закон Гука

—сила упругости [Н]

k — коэффициент жесткости [Н/м]

х — изменение длины (деформация) [м]

Изменение длины может обозначаться по-разному в различных источниках.

Варианты обозначений: x, ∆x, ∆l.

Это равноценные обозначения — можно использовать любое удобное.

Поскольку сила упругости всегда направлена против деформации (она же стремится все «распрямить»), в Законе Гука должен быть знак минус. Часто его и можно встретить в разных учебниках. Но поскольку мы учитываем направление этой силы при решении задач, знак минус можно не ставить.

Задачка

На сколько удлинится рыболовная леска жесткостью 0,3 кН/м при равномерном (без ускорения) поднятии вверх рыбы весом 300 г?

Решение:

Сначала определим силу тяжести. Не забываем массу представить в единицах СИ – килограммах.

СИ — международная система единиц.

«Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

m = 300 г = 0,3 кг

Если принять ускорение свободного падения равным 10 м/с*с, то модуль силы тяжести равен :

F = mg = 0,3*10 = 3 Н.

Вспомним закон Гука:

И выразим из него модуль удлинения лески:

Так как одна сила уравновешивает другую, мы можем их приравнять:

Подставим числа, жесткость лески при этом выражаем в ньютонах:

Ответ: удлинение лески равно 1 см.

Параллельное и последовательное соединение пружин

В Законе Гука есть такая величина, как коэффициент жесткости— это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.

Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.

Последовательное соединение системы пружин

Последовательное соединение характерно наличием одной точки соединения пружин.

система пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

Коэффициент жесткости при последовательном соединении пружин

k — общая жесткость системы [Н/м]

k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м]

i — общее количество всех пружин, задействованных в системе [-]

Параллельное соединение системы пружин

Последовательное соединение характерно наличием двух точек соединения пружин.

параллельное соединение систем пружин

В случае когда пружины соединены параллельно величина общего коэффициента жесткости системы будет увеличиваться. Формула для расчета будет выглядеть так:

Коэффициент жесткости при параллельном соединении пружин

k — общая жесткость системы [Н/м]

k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м]

i — общее количество всех пружин, задействованных в системе [-]

Задачка

Какова жесткость системы из двух пружин, жесткости которых k1 = 100 Н/м, k2 = 200 Н/м, соединенных: а) параллельно; б) последовательно?

Решение:

а) Рассмотрим параллельное соединение пружин.

параллельное соединение пружин

При параллельном соединении пружин общая жесткость

k = k₁ + k₂ = 100 + 200 = 300 Н/м

б) Рассмотрим последовательное соединение пружин.

последовательное соединение пружин

При последовательном соединении общая жесткость двух пружин

Что означает x в физике

Путь при равномерном движении:

Формула Путь при равномерном движении

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Формула Координата при равномерном прямолинейном движении

Средняя скорость пути:

Формула Средняя скорость пути

Средняя скорость перемещения:

Формула Средняя скорость перемещения

Определение ускорения при равноускоренном движении:

Определение ускорения при равноускоренном движении

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Формула Зависимость скорости от времени при равноускоренном движении

Средняя скорость при равноускоренном движении:

Формула Средняя скорость при равноускоренном движении

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Формула Перемещение при равноускоренном прямолинейном движении

Формула Перемещение при равноускоренном прямолинейном движении

Формула Перемещение при равноускоренном прямолинейном движении

Координата при равноускоренном движении изменяется по закону:

Формула Координата при равноускоренном движении

Проекция скорости при равноускоренном движении изменяется по такому закону:

Формула Проекция скорости при равноускоренном движении

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Формула Скорость, с которой упадет тело падающее с высоты без начальной скорости

Время падения тела с высоты h без начальной скорости:

Формула Время падения тела с высоты без начальной скорости

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v0, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула Максимальная высота на которую поднимется тело, брошенное вертикально вверх

Формула Время подъема тела брошенного вертикально вверх на максимальную высоту

Формула Полное время полета тела брошенного вертикально вверх (до возвращения в исходную точку)

Формула для тормозного пути тела:

Формула для тормозного пути тела

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Формула Время падения тела при горизонтальном броске

Дальность полета тела при горизонтальном броске с высоты H:

Формула Дальность полета тела при горизонтальном броске

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Формула Полная скорость при горизонтальном броске

Формула Угол наклона скорости при горизонтальном броске

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Формула Максимальная высота подъема при броске под углом к горизонту

Время подъема до максимальной высоты при броске под углом к горизонту:

Формула Время подъема до максимальной высоты при броске под углом к горизонту

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Формула Дальность полета тела брошенного под углом к горизонту

Формула Полное время полета тела брошенного под углом к горизонту

Определение периода вращения при равномерном движении по окружности:

Определение периода вращения

Определение частоты вращения при равномерном движении по окружности:

Определение частоты вращения

Связь периода и частоты:

Формулы Связь периода и частоты

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Формула Линейная скорость при равномерном движении по окружности

Угловая скорость вращения при равномерном движении по окружности:

Формула Угловая скорость вращения

Связь линейной и скорости и угловой скорости выражается формулой:

Формула Связь линейной и скорости и угловой скорости

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Формула Связь угла поворота и пути при равномерном движении по окружности

Центростремительное ускорение находится по одной из формул:

Формула Центростремительное ускорение

Динамика

Второй закон Ньютона:

Формула Второй закон Ньютона

Здесь: F — равнодействующая сила, которая равна сумме всех сил действующих на тело:

Формула Равнодействующая сила

Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

Формула Второй закон Ньютона в проекциях на оси

Третий закон Ньютона (сила действия равна силе противодействия):

Формула Третий закон Ньютона

Формула Сила упругости

Общий коэффициент жесткости параллельно соединённых пружин:

Формула Общий коэффициент жесткости параллельно соединённых пружин

Общий коэффициент жесткости последовательно соединённых пружин:

Формула Общий коэффициент жесткости последовательно соединённых пружин

Сила трения скольжения (или максимальное значение силы трения покоя):

Формула Сила трения скольжения

Закон всемирного тяготения:

Формула Закон всемирного тяготения

Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

Формула Ускорение свободного падения

Где: g — ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

Формула Сила тяжести

Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

Формула Ускорение свободного падения на некоторой высоте от поверхности планеты

Скорость спутника на круговой орбите:

Формула Скорость спутника на круговой орбите

Первая космическая скорость:

Формула Первая космическая скорость

Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

Формула Закон Кеплера

Статика

Момент силы определяется с помощью следующей формулы:

Формула Момент силы

Условие при котором тело не будет вращаться:

Формула Правило моментов

Координата центра тяжести системы тел (аналогичные уравнения для остальных осей):

Формула Координата центра тяжести системы тел

Гидростатика

Определение давления задаётся следующей формулой:

Формула Давление

Давление, которое создает столб жидкости находится по формуле:

Формула Давление столба жидкости

Но часто нужно учитывать еще и атмосферное давление, тогда формула для общего давления на некоторой глубине h в жидкости приобретает вид:

Формула Давление на глубине

Идеальный гидравлический пресс:

Формула Соотношение равенство давлений

Формула Соотношение равенство работ

Любой гидравлический пресс:

Формула Соотношение равенство объёмов

КПД для неидеального гидравлического пресса:

Формула КПД для неидеального гидравлического пресса

Сила Архимеда (выталкивающая сила, V — объем погруженной части тела):

Формула Сила Архимеда

Импульс

Импульс тела находится по следующей формуле:

Формула Импульс тела

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Формула Изменение импульса тела или системы тел

Общий импульс системы тел (важно то, что сумма векторная):

Формула Общий импульс системы тел

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Формула Второй закон Ньютона в импульсной форме

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Формула Закон сохранения импульса

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Формула Закон сохранения проекции импульса

Работа, мощность, энергия

Механическая работа рассчитывается по следующей формуле:

Формула Механическая работа

Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

Формула Мощность

Мгновенная механическая мощность:

Формула Мгновенная механическая мощность

Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

Формула Коэффициент полезного действия (КПД)

Формула для кинетической энергии:

Формула для кинетической энергии

Потенциальная энергия тела поднятого на высоту:

Формула Потенциальная энергия тела поднятого на высоту

Потенциальная энергия растянутой (или сжатой) пружины:

Формула Потенциальная энергия растянутой (или сжатой) пружины

Полная механическая энергия:

Формула Полная механическая энергия

Связь полной механической энергии тела или системы тел и работы внешних сил:

Формула Связь полной механической энергии тела или системы тел и работы внешних сил

Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

Формула Закон сохранения механической энергии (ЗСЭ)

Молекулярная физика

Химическое количество вещества находится по одной из формул:

Формула Химическое количество вещества

Масса одной молекулы вещества может быть найдена по следующей формуле:

Формула Масса одной молекулы вещества

Связь массы, плотности и объёма:

Формула Связь массы, плотности и объёма

Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

Формула Основное уравнение молекулярно-кинетической теории идеального газа

Определение концентрации задаётся следующей формулой:

Формула Определение концентрации

Для средней квадратичной скорости молекул имеется две формулы:

Формула Средняя квадратичная скорость молекул

Средняя кинетическая энергия поступательного движения одной молекулы:

Формула Средняя кинетическая энергия поступательного движения одной молекулы

Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:

Формула Связь постоянной Больцмана, постоянной Авогадро и универсальной газовой постоянной

Следствия из основного уравнения МКТ:

Формула Следствия из основного уравнения МКТ

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):

Формула Уравнение состояния идеального газа Уравнение Клапейрона-Менделеева

Газовые законы. Закон Бойля-Мариотта:

Формула Закон Бойля-Мариотта

Формула Закон Гей-Люссака

Формула Закон Шарля

Универсальный газовый закон (Клапейрона):

Формула Универсальный газовый закон Клапейрона

Давление смеси газов (закон Дальтона):

Формула Давление смеси газов Закон Дальтона

Тепловое расширение тел. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

Формула Тепловое расширение жидкостей

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

Формула Тепловое расширение твердых тел

Термодинамика

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Формула Количество теплоты при нагревании или остывании

Теплоемкость (С — большое) тела может быть рассчитана через удельную теплоёмкость (c — маленькое) вещества и массу тела по следующей формуле:

Формула Теплоемкость

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Формула Количество теплоты при нагревании или остывании

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

Формула Количество теплоты при парообразовании и конденсации

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

Формула Количество теплоты при плавлении и кристаллизации

При сгорании топлива выделяется количество теплоты равное:

Формула Количество теплоты при сгорании топлива

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Формула Уравнение теплового баланса

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Формула Уравнение теплового баланса

Работа идеального газа:

Формула Работа идеального газа

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в pV координатах. Внутренняя энергия идеального одноатомного газа:

Формула Внутренняя энергия идеального одноатомного газа

Изменение внутренней энергии рассчитывается по формуле:

Формула Изменение внутренней энергии

Первый закон (первое начало) термодинамики (ЗСЭ):

Формула Первый закон Первое начало термодинамики

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):

Формула Изохорный процесс

Изобарный процесс (p = const):

Формула Изобарный процесс

Изотермический процесс (T = const):

Формула Изотермический процесс

Адиабатный процесс (Q = 0):

Формула Адиабатный процесс

КПД тепловой машины может быть рассчитан по формуле:

Формула КПД тепловой машины

Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Формула Работа совершенная тепловой машиной за один цикл

Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Формула КПД цикла Карно

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Формула Абсолютная влажность

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Формула Относительная влажность через плотности

Формула Относительная влажность через давления

Потенциальная энергия поверхности жидкости площадью S:

Формула Потенциальная энергия поверхности жидкости

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:

Формула Сила поверхностного натяжения

Высота столба жидкости в капилляре:

Формула Высота столба жидкости в капилляре

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

Формула Высота столба жидкости в капилляре при полном смачивании

Электростатика

Электрический заряд может быть найден по формуле:

Формула Электрический заряд

Линейная плотность заряда:

Формула Линейная плотность заряда

Поверхностная плотность заряда:

Формула Поверхностная плотность заряда

Объёмная плотность заряда:

Формула Объёмная плотность заряда

Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):

Формула Закон Кулона

Где: k — некоторый постоянный электростатический коэффициент, который определяется следующим образом:

Формула Электростатический коэффициент

Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):

Формула Напряжённость электрического поля

Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):

Формула Принцип суперпозиции для электрических полей

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:

Формула Напряженность электрического поля точечного заряда

Напряженность электрического поля, которую создает заряженная плоскость:

Формула Напряженность электрического поля заряженной плоскости

Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:

Формула Потенциальная энергия взаимодействия двух электрических зарядов

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

Формула Электрическое напряжение

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Формула Связь между напряженностью поля и напряжением

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Формула Работа электрического поля как разность начальной и конечной потенциальной энергии

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

Формула Работа электрического поля

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

Формула Работа электрического поля в однородном поле

Определение потенциала задаётся выражением:

Формула Определение потенциала

Потенциал, который создает точечный заряд или заряженная сфера:

Формула Потенциал точечного заряда

Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):

Формула Принцип суперпозиции для электрического потенциала

Для диэлектрической проницаемости вещества верно следующее:

Формула Диэлектрическая проницаемость

Определение электрической ёмкости задаётся формулой:

Формула Электрическая ёмкость

Ёмкость плоского конденсатора:

Формула Ёмкость плоского конденсатора

Заряд конденсатора:

Формула Заряд конденсатора

Напряжённость электрического поля внутри плоского конденсатора:

Формула Напряжённость электрического поля внутри плоского конденсатора

Сила притяжения пластин плоского конденсатора:

Формула Сила притяжения пластин плоского конденсатора

Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):

Формула Энергия конденсатора

Объёмная плотность энергии электрического поля:

Формула Объёмная плотность энергии электрического поля

Электрический ток

Сила тока может быть найдена с помощью формулы:

Формула Сила тока

Формула Плотность тока

Сопротивление проводника:

Формула Сопротивление проводника

Зависимость сопротивления проводника от температуры задаётся следующей формулой:

Формула Зависимость сопротивления проводника от температуры

Закон Ома (выражает зависимость силы тока от электрического напряжения и сопротивления):

Формула Закон Ома

Закономерности последовательного соединения:

Формула Закономерности последовательного соединения

Закономерности параллельного соединения:

Формула Закономерности параллельного соединения

Электродвижущая сила источника тока (ЭДС) определяется с помощью следующей формулы:

Формула Электродвижущая сила источника тока (ЭДС)

Закон Ома для полной цепи:

Формула Закон Ома для полной цепи

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Формула Падение напряжения во внешней цепи Напряжение на клеммах источника

Сила тока короткого замыкания:

Формула Сила тока короткого замыкания

Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока протекающего по проводнику обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике:

Формула Работа электрического тока Закон Джоуля-Ленца

Мощность электрического тока:

Формула Мощность электрического тока

Энергобаланс замкнутой цепи

Полезная мощность или мощность, выделяемая во внешней цепи:

Формула Мощность, выделяемая во внешней цепи

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Формула Максимально возможная полезная мощность источника

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Формула Внутреннее сопротивление источника тока при равных мощностях

Мощность потерь или мощность внутри источника тока:

Формула Мощность внутри источника тока

Полная мощность, развиваемая источником тока:

Формула Полная мощность, развиваемая источником тока

КПД источника тока:

Формула КПД источника тока

Электролиз

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Формула Электролиз

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

Формула Электрохимический эквивалент

Где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Формула Постоянная Фарадея

Магнетизм

Сила Ампера, действующая на проводник с током помещённый в однородное магнитное поле, рассчитывается по формуле:

Формула Сила Ампера

Момент сил действующих на рамку с током:

Формула Момент сил действующих на рамку с током

Сила Лоренца, действующая на заряженную частицу движущуюся в однородном магнитном поле, рассчитывается по формуле:

Формула Сила Лоренца

Радиус траектории полета заряженной частицы в магнитном поле:

Формула Радиус траектории полета заряженной частицы в магнитном поле

Модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением:

Формула Модуль индукции магнитного поля прямолинейного проводника с током

Индукция поля в центре витка с током радиусом R:

Формула Индукция поля в центре витка с током

Внутри соленоида длиной l и с количеством витков N создается однородное магнитное поле с индукцией:

Формула Индукция внутри соленоида

Магнитная проницаемость вещества выражается следующим образом:

Формула Магнитная проницаемость вещества

Магнитным потоком Φ через площадь S контура называют величину заданную формулой:

Формула Магнитный поток

ЭДС индукции рассчитывается по формуле:

Формула ЭДС индукции

При движении проводника длиной l в магнитном поле B со скоростью v также возникает ЭДС индукции (проводник движется в направлении перпендикулярном самому себе):

Формула ЭДС индукции при движении проводника

Максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S, вращающемся с угловой скоростью ω в магнитном поле с индукцией В:

Формула Максимальное значение ЭДС индукции в контуре вращающемся с угловой скоростью в магнитном поле

Формула Индуктивность катушки

Где: n — концентрация витков на единицу длины катушки:

Формула Концентрация витков на единицу длины катушки

Связь индуктивности катушки, силы тока протекающего через неё и собственного магнитного потока пронизывающего её, задаётся формулой:

Формула Связь индуктивности катушки, силы тока протекающего через неё и собственного магнитного потока

ЭДС самоиндукции возникающая в катушке:

Формула ЭДС самоиндукции

Энергия катушки (вообще говоря, это энергия магнитного поля внутри катушки):

Формула Энергия катушки

Объемная плотность энергии магнитного поля:

Формула Объемная плотность энергии магнитного поля

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω0:

Формула Уравнение колебательного процесса

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Формула Закон движения для гармонических колебаний

Период колебаний вычисляется по формуле:

Формула Период колебаний

Формула Частота колебаний

Циклическая частота колебаний:

Формула Циклическая частота колебаний

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Формула Зависимость скорости от времени при гармонических механических колебаниях

Максимальное значение скорости при гармонических механических колебаниях:

Формула Максимальное значение скорости при гармонических механических колебаниях

Зависимость ускорения от времени при гармонических механических колебаниях:

Формула Зависимость ускорения от времени при гармонических механических колебаниях

Максимальное значение ускорения при механических гармонических колебаниях:

Формула Максимальное значение ускорения при механических гармонических колебаниях

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Формула Циклическая частота колебаний математического маятника

Период колебаний математического маятника:

Формула Период колебаний математического маятника

Циклическая частота колебаний пружинного маятника:

Формула Циклическая частота колебаний пружинного маятника

Период колебаний пружинного маятника:

Формула Период колебаний пружинного маятника

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Формула Максимальное значение кинетической энергии при механических гармонических колебаниях

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Формула Максимальное значение потенциальной энергии при механических гармонических колебаниях

Взаимосвязь энергетических характеристик механического колебательного процесса:

Формула Взаимосвязь энергетических характеристик колебательного процесса

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Формула Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Формула Период гармонических колебаний в электрическом колебательном контуре

Циклическая частота колебаний в электрическом колебательном контуре:

Формула Циклическая частота колебаний в электрическом колебательном контуре

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Формула Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Формула Зависимость электрического тока протекающего через катушку индуктивности от времени

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Формула Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Формула Максимальное значение силы тока при гармонических колебаниях в электрическом контуре

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Формула Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Формула Действующее значение силы тока

Действующее значение напряжения:

Формула Действующее значение напряжения

Мощность в цепи переменного тока:

Формула Мощность в цепи переменного тока

Трансформатор

Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Формула Соотношение для трансформатора

Коэффициент трансформации вычисляется по формуле:

Формула Коэффициент трансформации

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

Формула Соотношение для идеального трансформатора

В неидеальном трансформаторе вводится понятие КПД:

Формула КПД трансформатора

Волны

Длина волны может быть рассчитана по формуле:

Формула Длина волны

Разность фаз колебаний двух точек волны, расстояние между которыми l:

Формула Разность фаз колебаний двух точек волны

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Формула Скорость электромагнитной волны в некоторой среде

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

Формула Скорость электромагнитной волны в вакууме

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

Формула Связь скорости света в вакууме и веществе

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Формула Показатель преломления

Оптика

Оптическая длина пути определяется формулой:

Формула Оптическая длина пути

Оптическая разность хода двух лучей:

Формула Оптическая разность хода двух лучей

Условие интерференционного максимума:

Формула Условие интерференционного максимума

Условие интерференционного минимума:

Формула Условие интерференционного минимума

Формула дифракционной решетки:

Формула дифракционной решетки

Закон преломления света на границе двух прозрачных сред:

Формула Закон преломления света на границе двух прозрачных сред

Постоянную величину n21 называют относительным показателем преломления второй среды относительно первой. Если n1 > n2, то возможно явление полного внутреннего отражения, при этом:

Формула Полное внутреннее отражение

Формула тонкой линзы:

Формула тонкой линзы

Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета:

Формула Линейное увеличение

Атомная и ядерная физика

Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:

Формула Энергия кванта Энергия фотона

Формула Импульс фотона

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):

Формула Формула Эйнштейна для внешнего фотоэффекта

Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение Uз и элементарный заряд е:

Формула Максимальная кинетическая энергия вылетающих электронов при фотоэффекте

Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:

Формула Красная граница фотоэффекта

Второй постулат Бора или правило частот (ЗСЭ):

Формула Второй постулат Бора или правило частот

В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

Формула Связь радиуса на первой и остальных орбитах в атоме водорода

Формула Связь скорости на первой и остальных орбитах в атоме водорода

Формула Связь энергии на первой и остальных орбитах в атоме водорода

На любой орбите в атоме водорода кинетическая (К) и потенциальная (П) энергии электрона связаны с полной энергией (Е) следующими формулами:

Формула Связь потенциальной, кинетической и полной энергии в атоме водорода

Формула Связь потенциальной, кинетической и полной энергии в атоме водорода

Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:

Формула Число нуклонов в ядре

Формула Дефект массы

Энергия связи ядра выраженная в единицах СИ:

Формула энергия связи ядра выраженная в единицах СИ

Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):

Формула Энергия связи ядра выраженная в МэВ

Формула альфа-распада

Формула бета-распада

Закон радиоактивного распада:

Формула Закон радиоактивного распада

Ядерные реакции

Для произвольной ядерной реакции описывающейся формулой вида:

Формула Ядерная реакция общий вид

Выполняются следующие условия:

Формула Ядерная реакция условия

Энергетический выход такой ядерной реакции при этом равен:

Формула Энергетический выход ядерной реакции

Основы специальной теории относительности (СТО)

Релятивистское сокращение длины:

Формула Релятивистское сокращение длины

Релятивистское удлинение времени события:

Формула Релятивистское удлинение времени события

Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:

Формула Релятивистский закон сложения встречных скоростей

Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:

Формула Релятивистский закон сложения сонаправленных скоростей

Энергия покоя тела:

Формула Энергия покоя тела

Любое изменение энергии тела означает изменение массы тела и наоборот:

Формула Изменение массы тела и его энергии в релятивистской физике

Полная энергия тела:

Формула Полная энергия тела

Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

Формула Важные соотношения в релятивистской физике

Релятивистское увеличение массы:

Формула Релятивистское увеличение массы

Кинетическая энергия тела, движущегося с релятивистской скоростью:

Формула Кинетическая энергия тела, движущегося с релятивистской скоростью

Между полной энергией тела, энергией покоя и импульсом существует зависимость:

Формула Зависимость между полной энергией тела, энергией покоя и импульсом

Равномерное движение по окружности

В качестве дополнения, в таблице ниже приводим всевозможные взаимосвязи между характеристиками тела равномерно вращающегося по окружности (T – период, N – количество оборотов, v – частота, R – радиус окружности, ω – угловая скорость, φ – угол поворота (в радианах), υ – линейная скорость тела, an – центростремительное ускорение, L – длина дуги окружности, t – время):

Всевозможные взаимосвязи между основными характеристиками вращательного движения

Расширенная PDF версия документа «Все главные формулы по школьной физике»:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

VEDAJ.BY - Архитектура и культура БеларусиDVERIDUB.BY - Двери, лестницы и мебель из массива дуба

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

© 2014 — 2024 EDUCON.BY — Физика и Математика — Теория и Задачи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *