Как узнать падение напряжения на светодиоде
Перейти к содержимому

Как узнать падение напряжения на светодиоде

  • автор:

Измерение падения напряжения на светодиоде

Анастасия19

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Поделиться

Последние посетители 0 пользователей онлайн

  • Ни одного зарегистрированного пользователя не просматривает данную страницу

Объявления

Сообщения

Есть идеи почему сопротивление разное у этих 2х видов?

He3haika

Я уж было подумал другое.

Только зионы не все инструкции поддерживают, от чего по производительности на уровне и3, а то и ниже.

Инструкции не зря пишут.

Да просто включил в тестере функцию исключения сопротивления щупов а не знал что он в этот момент режим авто вырубает так как не пользовался этой функцией)) вот и получилось что получилось))

сравнил с тем что выкладывали на 3 странице. Вроде бы все сходится

Dr. West

Серверные Хeon под 771 сокет. Путём несложной переделки сокета или самого процессора и модифицированного биоса встают в материнки с 775 сокетом. А по цене заметно дешевле «разрешённых» Квадов. На Али завались.

Как узнать напряжение питания светодиода

Светодиод — полупроводниковый прибор, который преобразует прямой электрический ток в световое излучение. Английское название LED расшифровывается, как light emitting diode. Если раньше светодиоды представляли интерес только для узкого круга ученых, то сейчас их активно используют оформители для украшения помещений и разработки концепции светодизайна. В отличие от ламп накаливания, светодиоды преобразуют ток в световое излучение с минимальными потерями, то есть LED-лампы практически не нагреваются при наличии хорошего теплоотвода.

Напряжение питания светодиода

Если еще в середине прошлого века ученым удавалось получить мизерный КПД только в 2%, то сейчас светодиоды в среднем выдают КПД 35-45%, хотя встречаются и настоящие рекордсмены, у которых КПД достигает фантастических 60%. Светодиоды могут работать на протяжении длительного времени. Приборы относятся к низковольтным, то есть безопасным для человека. Основное эстетическое достоинство светодиодов — свет, излучаемый им, «чистый», так как лежит в узком диапазоне спектра. У приборов есть несколько основных ТХ: мощность, сила потребляемого тока, цветовая температура и напряжение. О том, как определить напряжение и поговорим дальше.

Как определить напряжение питания светодиодов

Источник питания для светодиодов — основная комплектующая деталь, которая преобразует сетевое напряжение. Как известно светодиоды питаются током, но напряжение, которое подается в данном случае, значения не имеет. Это может быть как 12 В, так и 1000 В. Главное для светодиода — это ток. При его нехватке свет лампочек тускнеет, а при переизбытке они начинают нагреваться, и даже теплоотвод не всегда может справиться. Если простая лампа накаливания «самостоятельно» выбирает для себя ток, то светодиод сам выбирает напряжение. Если светодиод требует напряжение в 5 В, а блок питания подает ему, к примеру, 5 В, то высока вероятность того, что светодиод просто сгорит. Дело в том, что возникает «конфликт» между источником питания и светодиодом. Первый пытается честно выдать 5 В, а второй старается взять только положенные для себя 3 В. Светодиод может «просадить» напряжение до нужного, если блок питания слабенький, но чаще в этой схватке все же побеждает хаос и разрушение и светодиод перегорает.

Чтобы подобных проблем не возникло, необходимо стабилизировать ток. Самый простой вариант — резистор. Он подключается последовательно со светодиодами. Резистор помогает ослабить источник питания и заставить его выдавать светодиоду нужное напряжение. Если речь идет о мощных светодиодах, то слабенькому резистору с ними не справиться. В этой ситуации потребуется полноценный стабилизатор.

Расчет резистора провести довольно просто. Для вычислений необходимо знать напряжение питания, падение напряжения и ток. От значения напряжения питания отнимают падение напряжения, а получившуюся величину делят на ток. Теперь остается только выбрать резистор с ближайшим стандартным сопротивлением. Некоторые предпочитают вообще убирать из формулы падение напряжения, так как его точное значение не всегда известно, но ниже приведены два способа для определения этой величины.

Как узнать падение напряжения на светодиоде

Падение напряжения на светодиоде — это одна из его важных характеристик. С помощью падения напряжения можно узнать, на сколько вольт уменьшится напряжение во время прохождения через один светодиод, если соединение было последовательным. К примеру, если падение напряжения на светодиоде 2,3 вольта, а напряжение питания 24 вольт, то после первой лампочки остальным останется 24—2,3=21,7 вольт. После прохождения второго светодиода значение станет еще меньше: 21,7—2,3=19,4 вольт.

Подсчеты можно проводить до тех пор, пока полученное значение не будет меньше падения напряжения, то есть на следующий диод его уже не хватит. После проведения нехитрых подсчетов можно прийти к выводу, что запитать при таких условиях можно только 10 светодиодов, а 11-й сиротливо останется в сторонке. Если в ленте их больше, то на остальных уже не хватит. Падение напряжения можно измерить двумя способами: практическим и теоретическим.

Теоретический метод

Для теоретического метода определения падения напряжения в светодиоде необходимы таблицы. Изменения этой характеристики напрямую связаны с его цветом. Для изготовления светодиодов разных цветов используются разные полупроводниковые материалы. Здесь производители во мнении не сходятся, а единого стандарта нет, поэтому каждый делает из того, из чего считает нужным. Падение напряжения во многом определяется химическим составом полупроводника. Точных значений для светодиодов одного цвета нет, но существует определенный диапазон, в котором они варьируются. К примеру, для синих и белых 3—3,6 В, для красных 1,8—2В, для жёлтых и зелёных 2—2,4В. Эти данные можно посмотреть по даташиту.

У белых светодиодов показатель самый высокий, а в хвосте списке расположились красные. Хотя данные и приблизительные, этого обычно достаточно для проведения расчетов. Если светодиоды достались по наследству без документации, то можно поискать в интернете похожие, а после скачать документацию для них. Такой метод, к сожалению, совершенно ненадежен, так как под идентичными корпусами может скрываться разная начинка, соответственно и характеристики у нее будут другими.

Практический метод

В реальности проще это падение напряжения на светодиоде измерить вольтметром в схеме, чем выискивать в графиках и таблицах. Не нужно объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода. Если возникают трудности с идентификацией, то отличить их легко. Катод короче анода, что видно невооруженным глазом.

Итоги: что делать, если напряжение светодиода упало

Падение напряжения может сильно колебаться даже у одинаковых светодиодов от одного производителя в рамках одной партии. Этот показатель меняется по мере изнашивания светодиода. Также эта характеристика зависит от температуры. Сильный нагрев сокращает срок службы светодиода, поэтому необходим хороший теплоотвод и стабилизатор.

Диод. Светодиод. Стабилитрон

Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю эту статью. Всем желающим добро пожаловать под кат.

Это вторая статья из цикла электроники. Рекомендую к прочтению также первую, которая повествует о том, что такое электрический ток и напряжение.

Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.

Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.

Рассмотрим свойства диода, самые очевидные:

  • От анода к катоду, такое направление называется прямым, диод пропускает ток.
  • От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
  • При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.

Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.

Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.

Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.

Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.

На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.

Как применять

Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.

Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.

Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.

Немного про другие характеристики

В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.

Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.

Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.

У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.

Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.

Что еще можно сделать

Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.

Например, схема защиты цифровых или аналоговых входов от перенапряжения:

Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.

Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.

Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.

Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.

Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из предыдущей статьи, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.

Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.

После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.

Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.

Светодиод

Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.

Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.

По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.

Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.

Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

Применение светодиода

Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.

Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.

На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.

Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.

В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.

С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

Что-то еще про светодиод

По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.

Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

Стабилитрон

В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.

Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.

Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.

Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между [Iст. min – Iст. max] с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.

При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.

Расчёт стабилитрона

Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).

Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.

Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.

Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.

На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.

Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.

В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.

Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.

Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.

Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.

  • Схемотехника
  • Физика
  • Электроника для начинающих

Что такое падение напряжения на светодиодной ленте?

Первичное входное напряжение для светодиодных лент составляет 12 В постоянного тока и 24 В постоянного тока соответственно. Они безопасны и удобны в работе. Но, мы часто слышим такое утверждение: светодиодная лента ярче на одном конце и тусклее на другом. Почему?

Ответ — падение напряжения. На самом деле, это вполне нормально для низковольтных систем освещения.
В этой статье мы поговорим о:

Содержание Спрятать

Какое падение напряжения на светодиодной ленте?

Падение напряжения на светодиодной ленте — это величина потери напряжения между источником питания и самими светодиодами.
Чем больше сопротивление в цепи, тем выше падение напряжения.

В цепи постоянного тока светодиодной ленты напряжение будет постепенно уменьшаться по мере прохождения через провод и саму ленту. Таким образом, удлинение провода или полосы приведет к тому, что одна сторона ваших полосовых огней будет ярче, чем другая сторона.

появление падения напряжения на светодиодной ленте

Почему происходит падение напряжения на светодиодной ленте?

Первая причина заключается в том, что провод любой длины имеет определенное электрическое сопротивление. Чем длиннее провод, тем больше сопротивление. Электрическое сопротивление вызывает падение напряжения, а падение напряжения заставляет ваши светодиоды тускнеть.

Вторая причина в том, что сама печатная плата имеет сопротивление. Сопротивление печатной платы будет потреблять часть напряжения и преобразовывать электрическую энергию в тепловую.

Сопротивление печатной платы связано с размером поперечного сечения (соответствует ширине платы печатной платы и толщине меди). Чем больше сечение печатной платы, тем меньше сопротивление; чем больше длина печатной платы, тем больше сопротивление.

Как найти падение напряжения?

Падение напряжения светодиода наиболее заметно на белой светодиодной ленте, поэтому вы можете включить белый свет на меняющей цвет светодиодной ленте, чтобы наблюдать падение напряжения.

Давайте посмотрим, сможем ли мы увидеть падение напряжения, запустив светодиодную ленту белого света на большие расстояния. На изображении ниже мы видим, что начало (позиция «1») чисто белое, а после прохождения дистанции (позиция «2») белый свет постепенно становится желтым, а в конце светодиодной полосы ( положение «3»), белый свет становится красным из-за снижения напряжения.

падение напряжения на светодиодной ленте rgb

(Напоминание: когда светодиодная лента свернута, она не должна гореть в течение длительного времени, что повредит светодиодную ленту.)

Напряжение светодиодной ленты связано со светодиодными чипами. Ниже приведены значения прямого напряжения, необходимые для нескольких приводов с цветными чипами.

  • Синий светодиодный чип: 3.0-3.2 В
  • Зеленый светодиодный чип: 3.0-3.2 В
  • Чип красного светодиода: 2.0-2.2 В

Примечание: Белый светодиод использует синий чип, а затем добавляет люминофоры на поверхность.

Управляющее напряжение синих чипов больше, чем у зеленых и красных чипов. Поэтому, когда напряжение белой светодиодной ленты падает, а текущее напряжение не может соответствовать напряжению, требуемому синими чипами, световая полоса будет отображать желтый (зеленый и красный смешанный цвет) и красный, потому что они ниже, чем напряжение, требуемое для белый свет.

Все ли светодиодные ленты имеют падение напряжения?

По сути, все низковольтные светодиодные ленты, такие как 5 В постоянного тока, 12 В постоянного тока и 24 В постоянного тока, будут иметь проблемы с падением напряжения. Потому что при одинаковой потребляемой мощности чем ниже напряжение, тем больше ток. По закону Ома напряжение равно сопротивлению, умноженному на силу тока. Сопротивление проводника постоянно. Чем больше ток, тем больше падение напряжения. Это также причина, по которой люди используют высокое напряжение для передачи электричества!

провод передачи высокого напряжения

Светодиодные ленты высокого напряжения, такие как 110 В переменного тока, 220 В переменного тока и 230 В переменного тока, обычно не имеют проблемы с падением напряжения. Для подачи питания с одного конца максимальное расстояние работы высоковольтных светодиодных лент может достигать 50 метров. По мощности, равной напряжению, умноженному на ток, напряжение высоковольтной светодиодной ленты составляет 110 В или 220 В, поэтому ток высоковольтной светодиодной ленты очень мал, поэтому падение напряжения также невелико.

светодиодная лента постоянного тока, как правило, 24 В постоянного тока, не будет проблем с падением напряжения. Поскольку светодиодные ленты постоянного тока имеют ИС, эти ИС могут поддерживать постоянный ток, протекающий через светодиоды. Пока ток через светодиод постоянен, яркость светодиода также постоянна.

Фактически, напряжение светодиода постоянного тока также уменьшится. Например, напряжение на конце светодиодной ленты постоянного тока также будет ниже 24 В. В нормальных условиях падение напряжения вызывает падение тока через светодиод, что приводит к снижению яркости. Однако, поскольку на светодиодных лентах постоянного тока есть ИС, эти ИС могут поддерживать постоянный ток, проходящий через светодиоды, который должен находиться в определенном диапазоне напряжений (например, 24–19 В).

Опасно ли падение напряжения на светодиодной ленте?

Падение напряжения на светодиодной ленте обычно не вредно для светодиодов, поскольку это форма, при которой подаваемое на них напряжение меньше, чем ожидалось изначально.

Однако падение напряжения обычно представляет собой преобразование электрической энергии в тепловую энергию резистора, который выделяет много тепла. Это может вызвать проблемы, если ваша светодиодная лента установлена ​​в теплочувствительных материалах или рядом с ними. Клеи и светодиоды 3M также в некоторой степени чувствительны к температуре, поэтому чрезмерные перепады напряжения могут быть проблемой.

Какие факторы будут влиять на падение напряжения?

По закону Ома напряжение равно произведению силы тока на сопротивление.

Сопротивление провода определяется его длиной и сечением провода. Сопротивление печатной платы светодиодной ленты определяется длиной и толщиной меди в печатной плате.

Итак, степень падения напряжения светодиодных лент можно определить по основным факторам: суммарному току светодиодной ленты, длине и диаметру провода, длине светодиодной ленты и толщине меди печатной платы.

Суммарный ток светодиодной ленты

Благодаря спецификации светодиодной ленты мы можем узнать мощность светодиодной ленты длиной 1 метр, чтобы мы могли рассчитать общую мощность светодиодной ленты.

Суммарный ток светодиодной ленты равен полной мощности, деленной на напряжение.

Таким образом, чем больше общая мощность, тем больше общий ток и, следовательно, тем сильнее падение напряжения. Поэтому падение напряжения у светодиодных лент большой мощности более серьезное, чем у светодиодных лент малой мощности.

В качестве альтернативы, чем ниже напряжение, тем выше ток и тем сильнее падение напряжения. Поэтому падение напряжения у светодиодной ленты 12 В более серьезное, чем у ленты 24 В.

Длина и диаметр проволоки

Сопротивление провода в основном определяется материалом проводника, длиной проводника и поперечным сечением проводника.

Сопротивление провода в основном определяется материалом проводника, длиной проводника и поперечным сечением проводника. Чем длиннее провод, тем больше сопротивление, а чем меньше сечение, тем больше сопротивление.

Вы можете проверить Инструмент расчета сопротивления проводов для упрощения расчетов.

провод

Длина и толщина меди в печатной плате

Печатные платы похожи на провода, они оба являются проводниками и сами имеют сопротивление. Проводящим материалом в печатной плате является медь. Чем длиннее печатная плата, тем больше сопротивление; чем больше сечение меди внутри печатной платы, тем меньше сопротивление.
Вы можете проверить Инструмент расчета сопротивления печатной платы сделать вычисления более легкими.

параллельное подключение светодиодных лент

Блок питания на обоих концах светодиодной ленты

Рекомендуемая максимальная длина светодиодных лент на рынке составляет 5 метров. Если вам необходимо установить 10-метровую светодиодную ленту, вы можете подключить оба конца светодиодной ленты к блоку питания.

светодиодная лента освещает оба торцевых соединения

Используйте несколько источников питания

Использование нескольких блоков питания вместо одного — отличная идея для повышения яркости. Это требует стратегического планирования, чтобы вы не оказались слишком далеко от источника энергии.

светодиодные ленты с несколькими драйверами

Используйте светодиодную ленту высокого напряжения 48 В или 36 В постоянного тока.

Используйте светодиодные ленты с более высоким входным напряжением, чтобы избежать проблем с падением напряжения.

Например, используйте 48 В, 36 В и 24 В вместо 12 В и 5 В.

Поскольку более высокое напряжение означает более низкий ток, более низкое падение напряжения.

48v светодиодная лента

Используйте светодиодные ленты с толстой медной платой.

Медь является наиболее часто используемым материалом в электропроводке. Это потому, что он хорошо проводит электричество и относительно недорог по сравнению с серебром.

Толщина меди обычно измеряется в унциях. Чем толще медный провод, тем больший ток протекает.

Мы рекомендуем использовать 2oz. или 3 унции. для мощных светодиодных лент, чтобы избежать перепадов напряжения.

Чем толще медный провод, тем меньше внутреннее сопротивление.

Следовательно, медный провод будет нести большую энергоэффективность.

Кроме того, он лучше рассеивает тепло.

печатная плата со светодиодной лентой

Используйте провод большого сечения

Иногда место установки светодиодной ленты находится на большом расстоянии от источника питания светодиодов. Затем мы должны рассмотреть, какой размер провода нам нужно использовать для соединения светодиодной ленты и блока питания. Конечно, чем больше сечение провода, тем лучше. Нам нужно знать, какое падение напряжения мы можем принять, и знать, какая длина провода вызывает падение напряжения.

Вы можете определить размер проволоки, выполнив следующие действия:

Шаг 1. Рассчитайте мощность

Вы можете проверить мощность на метр на этикетке упаковки светодиодной ленты, поэтому общая мощность — это мощность на метр, умноженная на общее количество метров. Затем разделите общую мощность на напряжение, чтобы получить общий ток.

Шаг 2. Измерьте расстояние между светодиодной лентой и драйвером

Измерьте расстояние между светодиодной лентой и блоком питания светодиода. Это напрямую влияет на размер провода.

Шаг 3. Выберите провод нужного размера

Вы можете рассчитать падение напряжения на проводе с помощью Калькулятор падения напряжения.

Вы можете попробовать изменить различные диаметры проводов в калькуляторе, чтобы увидеть падение напряжения, соответствующее разным диаметрам проводов.

Таким образом, найдите провод нужного сечения (с падением напряжения можно смириться).

Используйте сверхдлинную светодиодную ленту постоянного тока

сверхдлинная светодиодная лента с постоянным током (CC) может достигать 50 метров, 30 метров, 20 метров и 15 метров на барабан, и его нужно подключать к источнику питания только на одном конце, а яркость начала и конца одинакова.

Добавляя в схему компоненты ИС постоянного тока, сверхдлинная светодиодная лента постоянного тока может гарантировать, что ток через светодиод может поддерживаться постоянным в пределах определенного диапазона напряжения (например, 24–19 В), так что яркость светодиода последовательный.

Схема светодиодной ленты постоянного напряжения Принципиальная схема сверхдлинной светодиодной ленты постоянного тока

Заключение

Проблема падения напряжения может быть решена, но это будет стоить вам времени или денег. Если вы хотите сэкономить деньги, вы можете подключить светодиодные ленты параллельно к источнику питания или подключить оба конца светодиодных лент к источнику питания. Если вам нужно сэкономить время, вы можете выбрать светодиодные ленты с более толстой медной печатной платой или сверхдлинные светодиодные ленты постоянного тока. Однако иногда время – деньги.

LEDYi производит высококачественные Светодиодные ленты и светодиодные неоновые ленты. Все наши продукты проходят через высокотехнологичные лаборатории, чтобы гарантировать высочайшее качество. Кроме того, мы предлагаем настраиваемые параметры наших светодиодных лент и неоновых лент. Итак, для светодиодной ленты премиум-класса и светодиодной неоновой ленты, связаться с LEDYi Как можно скорее!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *