От чего зависит яркость светодиода
В настоящее время на рынке присутствует большое количество светодиодов. Они различаются по форме, параметрам, габаритам и даже светодиоды в одном и том же корпусе, могут сильно отличаться по своим характеристикам.
В заявленных характеристиках светодиодов, часто можно встретить надпись : «Угол раскрытия луча и Угол половинной яркости».
1) Угол раскрытия луча — это телесный угол, в границах которого расположен световой поток.
2) Угол половинной яркости — это угол, при котором яркость источника света уменьшается в два раза.
Например в светодиоде OSRAM Golden Dragon — Угол раскрытия луча = 170 гр.
Основное назначяение светодиодов с подобным углом — это освещение помещений, витрин, тоннелей, салона авто, холодильных камер и т.д..Свет у таких типов светодиодов по максимуму заполняет всё пространство. Поэтому практически отсутствуют теневые (слепые зоны). В помещениях с такими зонами не комфортно работать. Из недостатков, может быть небольшая сила светового потока. Но в помещении это не так важно, как равномерное освещение всего пространства.
В светодиоде Samsung LH351B — Угол раскрытия луча = 120 гр.
Светодиоды с углом в 120 градусов на сегодняшний день очень популярны и на рынке их представлено большое разнообразие, так как они являются универсальными. Их устанавливают как в светильники помещений, уличные светильники, так и в фары автомобиля.Светодиоды с более меньшим углом, уже устанавливаются где нужен точечный и далеко светящий луч.
Так же набирают популярность оптические элементы (Линзы), с помощью которых, можно усилить световой поток, или добиться необходимых форм и угла источника света.
Световой поток измеряется в люменах, а сила света измеряется в люменах на стерадиан и названа канделой. Отношения между световым потоком, силой света и углом луча означают, что акцентом учета светодиода в более плотных лучах при уменьшающемся угле луча, увеличит силу света (то есть яркость) без увеличения светового потока. Поэтому при покупке светодиода для освещения – светодиод с 1000 милликандел и 45° углом обзора, даст столько же света, сколько и светодиод в 10000 милликандел с 12° углом обзора. Кроме того, нужно учитывать, что светодиод достаточно яркий, но эта яркость узконаправленная.
Яркость светодиодов принято измерять в милликанделах – 1 мкд = 0.001 канделы. Обычные светодиоды имеют яркость в диапозоне 20 – 50 мкд., а сверхяркие светодиоды могут достигать 20000 мкд и выше.
Основные физические величины фотометрии:
Для правильного выбора оборудования освещения необходимо учитывать следующие основополагающие характеристики:
- телесный угол источника
- световой поток источника
- Телесный угол
Является безразмерной величиной. Он представлен конусом, который образован частью пространства, исходящим из центра сферы. В его вершине расположен источник, испускающий свет.Наиболее характерно использование телесного угла для выбора различных конструкций светодиодных ламп.
Световой поток источника
Это количество энергии, которую излучает светильник в пространство телесного угла за определённое время. Единицей измерения является люмен.
Необходимо четко разделять мощность излучения, измеряемую в ваттах и световой поток.
Первая характеристика является чисто техническим параметром энергии источника, а вторая (поток) — учитывает особенности восприятия его значения организмом человека.
Свет представляет собой поток электромагнитных волн различной частоты. Человеческое зрение воспринимает их спектр не одинаково. Лучшей восприимчивостью обладает светло желтый фон на границе с зеленым.
С помощью этого критерия, измеряемого в люксах, оценивают степень освещения поверхности от попадающего на нее светового потока.
Расположение поверхности под прямым углом обеспечивает наилучшее освещение, а под косым — изменяется в зависимости от ее наклона. При удалении от источника освещение снижается обратно пропорционально квадрату расстояния.
Таким образом, при расчете проектов по освещению, необходимо учитывать, что различные типы источников света, потребляя одинаковую мощность, способны по-разному создавать поток и освещать рабочую поверхность.
От чего зависит яркость свечения светодиода. Параметры яркости свечения светодиодов
От чего зависит яркость свечения светодиода. Параметры яркости свечения светодиодов
Потребителей нередко интересует, в чем измеряется яркость светодиодной лампы и по каким цифрам и обозначениям на ее упаковочной коробке определяется данный параметр. На ней указываются:
- канделы (cd);
- люмены (лм или lm);
- две цифры потребляемой мощности (W и Watt);
- угол освещения;
- цветовая температура.
Именно по этим характеристикам можно узнать яркость светодиодов в лампе. В канделах обозначают силу света, или поверхностную плотность потока. За единицу здесь принято считать его интенсивность в процессе горения одной свечи.
Параметр мощности света в люменах принимает во внимание и силу, и длину воспринимаемой человеческим глазом волны, и угол освещения. От последнего, не менее важного показателя зависит площадь зоны освещения, схема расположения и количество требуемых ламп. Если сравнивать изделия с углами освещения в 60 и 30 градусов, то при одинаковых характеристиках можно наверняка сказать, что первое окажется раза в 3-4 эффективнее второго.
Яркость светодиода зависит от вида установленной в лампу линзы. Матовая даст более мягкий и рассеянный свет. При этом, угол освещения наверняка будет шире, а световые потоки слабее.
И, наконец, классификация по мощности. На самом деле, для уровня яркости светодиодных лампочек этот показатель определяющим не является. Его указывают для облегчения расчетов потребления электроэнергии и для понимания данного параметра большинством среднестатистических потребителей. Две цифры, к примеру измерение в ваттах 5,5W и 35 Watt, означают, что потребляемая мощность лампы составляет 5,5Вт, а светит она как обычная 35Вт-ная лампочка накаливания. Все достаточно просто, но следует понимать, что данное соотношение является довольно-таки приблизительным, и светодиоды повышенной яркости исключением не являются.
Светодиодные электроприборы относятся к энергосберегающим изделиям, а управление яркостью излучения помогает потребителю еще больше экономить на электричестве в бытовых и промышленных условиях.
Цветовая температура влияет на цветовой диапазон светодиода. Он может смещаться:
- по мере возрастного старения элементов;
- при изменении показателей подводимого тока.
Холодное сине-зеленое свечение присуще источникам света, имеющим высокую цветотемпературу. А теплый свет красно-желтых оттенков – низкую. Часто на этикетках указывают длину световой волны в доминирующих значениях. Ее смещение происходит в зависимости от цветовой температуры.
Мкд светодиод. ЯРКОСТЬ СВЕТОДИОДА
Что больше всего интересует потребителя при выборе светодиодов для ламп и других осветительных устройств – не ток потребления, не размеры и даже не срок службы, а яркость. Как известно яркость – обозначается буквой L, это световая величина, равная отношению светового потока d2 к геометрическому фактору ddAcos : L = d2/ddAcos. Где d — заполненный излучением телесный угол, dA — площадь участка, испускающего излучение, или угол между перпендикуляром к этому участку и направлением излучения. Другими словами яркость, это сотношение силы света I элемента поверхности к площади его проекции, перпендикулярной рассматриваемому направлению: формула L = dI/dA cos . Также яркость можно сформулировать и четез отношение освещённости Е в точке плоскости, перпендикулярной направлению на источник, к элементарному телесному углу, в котором заключён поток, создающий эту освещённость: формула L = dE/dcos. Яркость измеряют в канделлах на метр в минус второй степени: кд·м-2. Яркость, непосредственно связана со зрительными ощущениями, так как освещённость изображения предмета на сетчатке глаза пропорциональна яркостям этого предмета.
Что касается конкретно яркости светодиодов, то она представляет собой суммарную мощность, выделившуюся в виде света – излучающая энергия или излучающий поток, и измеряется она в ваттах. Но насколько ярким окажется объект, будет зависеть и от дополнительных факторов: сколько излучаемого потока выпущено в направлении наблюдателя и насколько чувствителен наблюдатель к длине волны света.
Здесь мы введём понятие стерадиан – телесный угол, твердых объёмных углов. Проще говоря конус с вершиной в источнике света. Если поток излучения источника – светодиода или лампы, одинаковый во всех направлениях, интенсивность излучения будет равна общему потоку излучения, разделенному на 12,57 стерадиан, пространственный угол полной сферы. В светодиодах, излучающий поток концентрируется в луче, а интенсивность излучения будет равна излучающему потоку, поделенному на пространственный угол луча. Ширина углов обычно обозначается в градусах, а интенсивность излучения обычно выражается в милливаттах на стерадиан мВт / ср., что вызывает необходимость перевода угла луча в стерадианы: sr = 2 π (1 – cos(θ/2)), где sr – телесный угол, в стерадианах, и θ – это угол луча.
Световой поток измеряется в люменах, а сила света измеряется в люменах на стерадиан и названная канделой. Отношения между световым потоком, силой света и углом луча означают, что акцентом учета светодиода в более плотных лучах при уменьшающемся угле луча, увеличит силу света (то есть яркость) без увеличения светового потока. Поэтому при покупке светодиода для освещения – светодиод с 1000 милликандел и 45° углом обзора, даст столько же света, как светодиод в 10000 милликандел с 12° углом обзора. Светодиод, как видим достаточно яркий, но эта яркость узконаправленная.
Яркость светодиодов принято измерять в милликанделах – 1 мкд = 0.001 канделы. Обычные советские светодиоды имеют яркость в диапозоне 20 – 50 мкд., а сверхяркие светодиоды могут достигать 20000 мкд и выше. Чтоб было ещё нагляднее замечу, что обычная лампа накаливания 100 Вт производит около 1500 люмен, и если свет будет излучаться одинаково во всех направлениях, она будет иметь яркость около 120 000 мкд. Но если луч будет узконаправленный в угле 20°, она будет иметь яркость окло 16 000 000 мкд. Так что светодиодам, даже сверхмощным всё ещё далеко до ламп в плане излучаемой яркости, но с каждым месяцем этот разрыв стремительно сокращается.
Какой элемент обязателен в схеме индикатора на светодиоде. Конденсаторный балласт
Конденсаторный балласт являет собой развитие идеи насчет включения сопротивления последовательно со светодиодом. В принципе, светодиод можно подключить в розетку прямо так:Встречновключенный диод необходим для того, чтобы не допустить пробоя светодиода в момент, когда сетевое напряжение сменит полярность – я уже упоминал, что светодиодов с допустимым обратным напряжением в сотни вольт не встречается. В принципе, вместо обратного диода можно поставить еще один светодиод.Номинал резистора в схеме выше рассчитан для тока светодиода около 10 – 15 мА. Поскольку напряжение сети гораздо больше падения на диодах, последнее можно не учитывать и считать прямо по закону Ома: 220/20000 ~ 11 мА. Можно подставить пиковое значение (311 В) и убедиться, что даже в предельном случае ток диода не превысит 20 мА. Все выходит замечательно, кроме того, что на резисторе будет рассеиваться мощность около 2.5 Вт, а на светодиоде – около 40 мВт. Таким образом, КПД системы составляет порядка 1.5% (в случае одного светодиода будет еще меньше).Идея рассматриваемого метода заключается в том, чтобы заменить резистор конденсатором, ведь известно, что в цепях переменного тока реактивные элементы обладают способностью ограничивать ток. Кстати, использовать дроссель тоже можно, более того, так делают в классических электромагнитных балластах для люминесцентных ламп.Считая по, легко получить, что в нашем случае требуется конденсатор емкостью 0.2 мкФ, либо катушка индуктивностью около 60 Гн. Здесь становится ясно, почему в подобных балластах светодиодных ламп никогда не встречаются дроссели – катушка такой индуктивности представляет собой серьезное и дорогое сооружение, а вот конденсатор на 0.2 мкФ добыть гораздо проще. Разумеется, он должен быть рассчитан на пиковое сетевое напряжение, причем лучше с запасом. На практике применяются конденсаторы с рабочим напряжением не менее 400 В. Немного дополнив схему, получаем то, что уже видели в предыдущей статье.
«Микрофарад» сокращется именно как «мкФ». Я останавливаюсь на этом потому, что достаточно часто вижу людей, пишущих в этом контексте «мФ», в то время как последнее — сокращение от «миллифарад», то есть 1000 мкФ. По-английски «микрофарад», опять же, пишется отнюдь не как «mkF», но, напротив, «uF». Это потому, что буква «u» напоминает букву «μ» с оторванным хвостиком.
Кроме того, «Фарад» — мужского рода , так как назван в честь великого физика-мужчины. Так что, «четыре микрофарада», но не «четыре микрофарады»!
Как я уже говорил, преимущество у такого балласта только одно – простота и дешевизна. Подобно балласту с резистором, здесь обеспечивается не слишком хорошая стабилизация тока, и, что еще хуже, присутствует значительная реактивная составляющая, что не особо хорошо для сети (особенно при заметных мощностях). Кроме того, при увеличении желаемого тока будет расти необходимая емкость конденсатора. Например, если мы хотим включить одноваттный светодиод, работающий при токе 350 мА, нам потребуется конденсатор емкостью около 5 мкФ, рассчитанный на напряжение 400 В. Это уже дороже, больше по габаритам и сложнее в конструкционном плане. С подавлением пульсаций здесь тоже все непросто. В целом можно сказать, что конденсаторный балласт простителен только для небольших ламп-маячков, не более того.
Как измерить яркость светодиода. Светоотдача, угол свечения и мощность светодиодов
Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода – направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.
Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.
Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:
При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной – 35-40 лм/Вт, светодиодной – 130-140 лм/Вт.
Яркость свечения светодиода
Многие покупатели задают вопрос — что означают все эти характеристики светодиодов, указанные на упаковках и в спецификациях? Ватты, люмены, длина волны, свечи, канделы, мили канделы — это лишь немногая часть терминов, которые используются для определения яркости света. Вот несколько параметров, которые необходимо знать для бытового определения яркости, не вдаваясь в подробности фотометрии:
Сила света (luminous intensity, обычно измеряемая в канделах -cd или миликанделах mcd). Яркость одной канделы примерно равна яркости одной обычной свечи. Миликандела (или мкд) одна тысячная канделы, отсюда приставка «мили». 1000 миликандел = 1 кандела.
Поскольку свет распределяется неравномерно, угол освещения (viewing angle) является очень важным параметром для светодиодов. Восприятие освещенности зависит от местоположения смотрящего, поэтому необходимо определить какую часть комнаты необходимо осветить и определить необходимое количество и расположение ламп. Этот параметр зависит, в том числе, от типа линзы. Рассеивающая (матовая) линза будет формировать более широкий угол освещения, но такой свет может восприниматься более тусклым, чем от светодиода с прозрачной линзой.
Другой важный параметр — световой поток (Luminous flux) или «мощность» света в потоке, который можно определить, если известна сила света и угол освещения. Световой поток — это показатель «мощности» света, с учетом длины волны, которая воспринимается человеком. Световой поток измеряется в люменах.
Нетрудно заметить, что угол освещения очень сильно влияет на световой поток. Светодиодная 5000 мкд лампа с углом освещения в 60 градусов в четыре раза мощнее чем аналогичная с углом освещения в 30 градусов.
Потребляемая мощность в ваттах — это параметр, который не так давно был для нас единственным для определения яркости лампы накаливания, но для светодиодных ламп этот параметр не является определяющим. Технология производства развивается и у светодиодов одинаковой яркости может быть разное потребление энергии. Но для упрощения восприятия производители указывают на упаковке ламп бытового применения аналог лампы накаливания/ галогенной лампы по энергопотреблению. Этим значениям в большинстве случаев можно доверять, если вы приобретаете лампы известных производителей, таких как Philips, Cree, Osram.
Для ориентира, приведем следующее сравнение различных ламп General Electric:
сравнение эффективности ламп освещения General Electric
Яркость светодиода. Что это и в чем она измеряется?
Яркостью свечения – это показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади. Или – освещенность в точке, перпендикулярной источнику, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м -2 ). В светодиодных лампах яркость – это сила или мощность света и измеряется она в Ваттах.
Сила тока на светодиоде во время работы зависит от напряжения. При незначительном увеличении вольтажа электроток многократно повышается, провоцируя увеличение яркости свечения. Не стоит забывать о том, что этот параметр можно контролировать, если включить в схему аналоговый или широко-импульсный модулятор, обеспечивающий функцию диммирования.
Также необходимо учитывать, что направленность луча светодиода определяет конструкция осветительного прибора, а параметры оптических свойств зависят от некоторых нюансов: тип линз, наличие рассеивателей и люминофоров. Однако, независимо от устройства интенсивность свечения можно регулировать минимальными изменениями тока.