Как проверить проводит ли материал ток
17 лет успешной работы в сфере подготовки к ЕГЭ и ОГЭ!
2134 поступивших (100%) в лучшие вузы Москвы
Подготовка к ЕГЭ, ОГЭ и предметным Олимпиадам в Москве
Свяжитесь с нами
8 (495) 643-69-44
- home
- map
- Подготовиться к ОГЭ
- Подготовиться к ЕГЭ
- Подготовиться к олимпиадам
admin Пт, 2012-04-20 13:32
Испытание веществ на электрическую проводимость
Описание.
Электропроводность веществ можно проверить с помощью прибора. Если вещество проводит электрический ток – лампочка загорается. Насыпаем сахар в чашку Петри и подносим к электродам. Лампочка не горит, значит, сахар не проводит электрический ток. Щелочь – твердый гидроксид натрия, тоже не проводит ток. Возьмем поваренную соль – кристаллический хлорид натрия. Лампочка не горит. Все испытанные твердые вещества не проводят электрический ток. Электропроводны ли растворы этих веществ? Раствор гидроксида натрия электропроводен. Лампочка загорается. Лампочка горит и при испытании раствора поваренной соли. Электропроводен и раствор соляной кислоты. Жидкости, проводящие электрический ток, называются электролитами. Электропроводность электролитов обеспечивают ионы. Проверим, является ли электролитом дистиллированная вода. Лампочка не горит. Дистиллированная вода – очень слабый электролит. В растворе сахара нет подвижных заряженных частиц. Раствор сахара – ток в цепи не идет. Спирт как и сахар не является электролитом.
- Программа обучения по химии
- Рекомендуемая литература по химии
- Видео-эксперименты по химии
- Учебные материалы по химии
- Стоимость обучения по химии
- Программа подготовки по химии
- Литература по химии
- Видео-опыты по химии
- Материалы по химии
- Стоимость занятий по химии
Определение электропроводности предметов
В исследовательской работе выявляли определение электропроводности предметов. Проведен эксперимент.
Скачать:
Вложение | Размер |
---|---|
![]() |
27.5 КБ |
Предварительный просмотр:
Муниципальное общеобразовательное бюджетное учреждение
Средняя общеобразовательная школа №35
Научно-исследовательская работа на тему:
«Определение электропроводности предметов»
Ученик 1 «Г» класса
Введение
В современном мире существует много электроприборов, электрический ток используется повсюду. Почти с самого рождения детей учат правилам безопасности, чтобы уберечь себя от удара электрическим током.
Поэтому важно знать, что существуют материалы, которые проводят электрический ток, и те, которые его не проводят.
Данная исследовательская работа проведена для того, чтобы определить какие материалы являются проводниками, а какие — диэлектриками. Для этого собрано простое устройство, которое работает от батарейки. Поэтому его использование безопасно.
Целью данной работы является исследование электропроводности различных материалов.
Гипотеза : при небольшой помощи взрослых ребенок может создать безопасное устройство для определения электропроводности предметов.
Были поставлены следующие задачи :
- Выяснить, что такое электропроводность.
- Сделать устройство для определения электропроводности материалов.
- Среди предметов, используемых каждый день, найти проводники и изоляторы.
Для достижения цели работы и выполнения поставленных задач были применены следующие методы: изучение литературы, эксперимент, наблюдение, сравнение, анализ полученных данных.
Историческая справка о проблеме
Электропроводность – это способность материалов проводить электрический ток.
Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.
Проводники – это материалы, которые проводят электрический ток, а диэлектрики – это материалы, которые его не проводят. Предметы, изготовленные из диэлектриков, называют изоляторами.
В проводнике содержится достаточное количество свободных электрических зарядов, способных перемещаться под действием электрического поля.
Проводящими электрический ток веществами являются металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.
Металл – это самый лучший проводник электрического тока.
Диэлектрик не содержит внутри свободные электрические заряды. В изоляторах электрический ток невозможен.
Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.
В 17 веке после того как Уильям Гильберт установил, что многие тела обладают способностью электризоваться при их натирании, в науке считалось, что все тела по отношению к электризации делятся на два вида: на способные электризоваться при трении, и на тела, не электризующиеся при трении.
Только в первой половине 18 века было установлено, что некоторые тела обладают, кроме того, способностью распространять электричество. Первые опыты в этом направлении были проведены английским физиком Греем. В 1729 г. Грей открыл явление электрической проводимости. Он установил, что электричество способно передаваться от одних тел к другим по металлической проволоке. По шелковой же нити электричество не распространялось. Именно Грей разделил вещества на проводники и непроводники электричества. Только в 1739г. было окончательно установлено, что все тела следует делить на проводники и диэлектрики.
Впервые провел исследование проводимости диэлектриков Кулон. Он показал, что любой изолятор обладает малой, определенной для каждого вещества электропроводимостью. Одновременно с Кулоном исследованием электропроводимости веществ занимался Кавендиш. В его записках, относящихся к 1775 г., найдены уже сравнительные численные результаты. Так, например, Кавендиш установил, что железная проволока проводит ток лучше, чем дистиллированная вода. Интересно, что роль измерительного прибора при этом играло физиологическое ощущение тока.
Английский физико-химик Гемфри Дэви в 1821 г. установил, что проводимость металлических проводников уменьшается при их нагревании. Таким образом была впервые установлена зависимость проводимости от температуры.
Так же исследования электропроводимости провел Фарадей в 1833 г. Он показал, что все вещества в большей или меньшей степени проводят ток, поэтому абсолютной изоляции не существует. В результате многочисленных опытов Фарадей установил, что проводимость диэлектриков растет при нагревании, а при переходе через точку плавления все твердые диэлектрики становятся проводниками.
Английский ученый Гаррис в 1834 г. показал, что проводимость воздуха не изменяется при нагревании.
Изучение проводимости металлов стало важной технической проблемой в связи с развитием мировой системы телеграфной связи. Естественно возник вопрос об увеличении проводимости металлов. Физическая теория не давала ответа на этот вопрос, ибо был неизвестен механизм электропроводимости. В конце XIX в., после открытия электрона, начала развиваться электронная теория проводимости. Начало теории дал в 1900 г. немецкий физик Пауль Друде.
Эксперименты
Для определения электропроводности материалов я решил сделать робота из картона, проволоки и светодиода. Внутри робота будет спрятана батарейка, подключенная к светодиоду и антенкам из проволоки.
Для сборки корпуса робота я распечатал на картоне шаблоны из интернета и вырезал их (см. Приложение 1).
Затем приступил к сборке. В голове робота я сделал несколько отверстий и вставил туда светодиод и антенны из проволоки. Закрепил их при помощи клеевого пистолета (см. Приложение 2).
Для соединения батарейки, антенн и светодиода проводами я хотел использовать изоленту, но у меня не получилось надежное соединение, поэтому я попросил папу помочь мне с паяльником.
В результате мы соединили светодиод с батарейкой и с одной из антенн, вторая антенна была присоединена к батарейке (см. Приложение 3). Получилась электрическая цепь.
Затем я закончил сборку робота, спрятав внутри него батарейку и провода (см. Приложение 4).
Далее я приступил к исследованию электропроводности материалов. Что бы определить является предмет проводником или изолятором, я использовал антенны робота.
Если антеннами касаться предмета, проводящего электрический ток, электрическая цепь замыкается и светодиод загорается. Ток течет через светодиод, затем по проводу к проводнику, а от проводника – по другому проводу к батарейке.
Если антенны дотрагиваются до изолятора, то замкнутой цепи не получается, ток не течет, и светодиод не загорается.
Для исследования я использовал разные предметы, применяемые в обычной жизни: металлическую линейку, ножницы, карандаш, ручку, пластмассовую линейку и иглу для шитья.
Когда антенн касались ножницы, металлическая линейка и игла, светодиод загорался, электрическая цепь замыкалась. Значит эти предметы являются проводниками электрического тока. Когда для эксперимента я использовал карандаш, ручку и пластмассовую линейку, светодиод не загорался. Значит эти предметы являются изоляторами (см. Приложение 5).
Заключение
В ходе исследования была достигнута цель работы, подтверждена гипотеза и выполнены поставленный задачи.
При небольшой помощи взрослого, я собрал робота, позволяющего безопасно определить электропроводность материалов.
На доступных предметах я провел эксперимент и выяснил какие предметы, используемые в обычной жизни, являются проводниками электрического тока, а какие – изоляторами.
Используемая литература
- «Класс!ная физика». Проводники и диэлектрики. Электрический ток в металлах и электролитах. Web: http://class-fizika.ru/8_21.html
- Вся физика. Научно-образовательный проект. Проводники и диэлектрики. Web: http://sfiz.ru/materials/elektrodin/51
- К истории изучения электрической проводимости веществ. Web: http://www.eduspb.com/node/1853
- Электропроводность. Проводники и изоляторы. http://energetika.in.ua/ru/books/book-2/part-3/section-5/5-2
- Робот из бумаги. Web: http://www.prorobot.ru/myrobot/roboti_is_bumagi.php
Методы и приборы для проверки изоляции кабелей и электрооборудования
Надежность работы электрооборудования и электрических сетей во многом зависит от качества изоляции. Чтобы оценить состояние изоляции проводят измерение ряда параметров, в числе которых электрическое сопротивление, электрическая прочность, коэффициент абсорбции. В соответствие с отраслевыми нормами подобные измерения выполняют квалифицированные специалисты электролабораторий, обладающие соответствующими лицензиями и сертификатами. Для измерений используется оборудование из перечня рекомендованных средств измерений Минэнерго и Ростехнадзора.
Качество изоляции контролируется на заводе-изготовителе и в процессе технического обслуживания. Своевременное обслуживание в требуемом объеме и сроках позволяет снизить риск аварийных ситуаций и экономических потерь.
Методы контроля качества изоляции проводов и электрооборудования
Пример протокола проверки сопротивления изоляции кабелей, проводов
Рассмотрим основные методы контроля качества изоляции проводов и электрооборудования. Параметры, характеризующие качество изоляции:
- коэффициент абсорбции (R60/R15 – отношение сопротивлений, рассчитанных через 60 и 15 секунд после подачи напряжения);
- тангенс угла диэлектрических потерь (tg δ=P/Q – отношение активной и реактивной мощности);
- электрическая прочность при подаче повышенного напряжения 3-35 кВ;
- температура поверхностных или внутренних слоев изоляции.
Коэффициент абсорбции
При измерениях сопротивления или коэффициента абсорбции о состоянии изоляционного материала судят по разнице показателей сопротивления однотипных элементов или изменению параметров за определенный промежуток времени. Чем коэффициент абсорбции выше, тем лучше.
Контрольные измерения на кабельном вводе
Тангенс угла потерь
Данные измерения тангенса угла диэлектрических потерь используются при обобщенном анализе состояния гигроскопичной изоляции (картон, бакелит). Измерение проводится при помощи высоковольтных мостов с рабочим напряжением около 10 кВ. Результаты таких измерений зависят от температуры материалов и характеризуют, в основном, уровень увлажненности, загрязненность или наличие воздушных прослоек.
Электрическая прочность изоляции
Испытание изоляции на пробой позволяют определить её способность выдерживать перенапряжения. Электрическая прочность проверяется при подаче повышенного испытательного напряжения:
- постоянного выпрямленного;
- промышленной частоты 50 Гц в течение 1 мин;
- импульсного (длительность 1,5-50 мкс с интервалом не менее 1 мин).
Параметры переменного напряжения от 3 кВ для испытания нового электрооборудования на заводе-изготовителе определяются ГОСТом 1516.2-97, при техническом обслуживании в процессе эксплуатации используются напряжения на 10…15% ниже заводских нормативов.
Для проверки электрической прочности изоляции используют два метода: электрический (подача испытательного напряжения) или акустический (мониторинг звуковых сигналов пробоя изоляции).
Обследование температуры поверхности изоляции проводится при помощи тепловизоров. Самый точный результат метод дает при максимальной рабочей нагрузке электрооборудования.
Тепловизионное обследование кабельных линий
Приборы для контроля качества изоляции
Выбор приборов для контроля качества изоляции зависит от типа обследуемого электрооборудования, кабелей, метода и условий проведения испытаний. При выборе измерителей следует обратить внимание на следующие факторы:
- допустимый измерительный диапазон контрольно-измерительного прибора, категория электробезопасности (CAT I…IV);
- параметры исследуемой электросистемы (постоянное/переменное напряжение на входе/выходе, ток нагрузки, частота, мощность), возможность отключения электроснабжения оборудования при проведении исследований;
- свойства материала изоляции (тепловые, диэлектрические);
- параметры окружающей среды (уровень влажности, температура);
- возможность доступа к тестируемому оборудованию (контакт, дистанционно).
Универсальные измерители электрических параметров – мультиметры, мегаомметры. Для бытовых, офисных и промышленных низковольтных электрических установок и проводов достаточно измерителей CAT I, II, для высоковольтных линий электропередач или распределительных ячеек – не ниже CAT III (1000 В).
Для проверки изоляции кабелей и электрооборудования постоянным/переменным повышенным напряжением применяют установки T99/1, T26/1, MMG5/10, HPG 50/70 с приборами для преобразования дефектов (прожига). Для дистанционного обнаружения дефектов подземных кабельных жил и оценки расстояния до неисправности пользуются популярностью генераторы ударных импульсов RSP 3, PWG 2000 и рефлектометры СТЭЛЛ РЕЙС-205, СТЭЛЛ РЕЙС-305, СТЭЛЛ РЕЙС-405.
Рефлектометр СТЭЛЛ-РЭЙС 405 для проверки кабелей
Бесспорные преимущества тепловизоров линнейки Testo 868/871/872/882/885 – это компактность, мобильность, простота в использовании. Тепловизоры Fluke TiX500/580 обладают точностью 0,025 °С и расширенным диапазон измерений до +400 °С.
Выводы
Контроль сопротивления изоляции
Современные приборы позволяют оценивать качество изоляции разнообразного оборудования и кабелей с высокой точностью и в различных условиях. Затраты на проведение испытаний специализированными сервисными организациями или ведомственными службами компенсируются сокращения расходов на простой и ремонт электрооборудования, а также на компенсации потребителям в случае аварийных перебоев в снабжении электроэнергией.
Если вам нужна профессиональная консультация по проверке изоляции кабелей и электрооборудовани, просто отправьте нам сообщение!
Замер сопротивления изоляции. Проверка и измерение сопротивления изоляции кабеля, провода
Электротехническая лаборатория ГК Эколайф производит замеры сопротивления изоляции кабелей. По результатам измерения сопротивления изоляции кабелей, проводов, шнуров и других проводников составляется протокол в технический отчет ЭТЛ.
Выезд инженера для расчета стоимости работ производится бесплатно
Стоимость услуг электролаборатории, прайс, цены на измерения
В таблице даны ориентировочные цены на электроизмерения, итоговую сумму уточните у специалиста.
№ | Наименование работ | Ед.изм. | Цена, руб |
Электротехнические замеры (лаборатория) | |||
1 | Визуальный осмотр | — | от 1500 |
2 | Металлосвязь (проверка цепи между заземлителями и заземленными элементами) | шт. | от 35 |
3 | Замер сопротивления изоляции (3-жильная линия) | шт. | от 110 |
4 | Замер сопротивления изоляции (5-жильная линия) | шт. | от 140 |
5 | Полное сопротивление «петля фаза-ноль» | шт. | от 80 |
6 | Прогрузка автомата (до 50А, 3х фазный) | шт. | от 100 |
7 | Прогрузка автомата (от 50А до 200 А, 3х фазный) | шт. | от 220 |
8 | Проверка устройства защитного отключения (УЗО) | шт. | от 100 |
9 | АВР (автоматическое включение резерва) | шт. | от 100 |
10 | Контур заземления (измерение сопротивления заземляющих устройств) | шт. | от 700 |
11 | Молниезащита (контур заземления) | шт. | от 100 |
Минимальный выезд специалиста: 3500 рублей в пределах МКАД и 5000 рублей в МО.
Стоимость услуг электролаборатории в прайс-листе указана без учета НДС 18%
Почему выгодно заказать замер сопротивления изоляции в ГК Эколайф
КАЧЕСТВО И ГАРАНТИИ Мы гарантируем качество своих услуг. Мы работаем только с самыми надежными поставщиками материалов. Мы полностью отвечаем за качество нашей работы и используемых материалов, поэтому предоставляем гарантию на все виды производимых работ. Нашу добросовестность подтверждают отзывы и рекомендации наших клиентов и партнеров, а также строгая отчетность по выполненным работам. |
|
ПРОФЕССИОНАЛИЗМ Мы тщательно подходим к подбору квалифицированного персонала. Все сотрудники компании — граждане РФ, профессиональные мастера с большим опытом работы. Мы не используем дешевую рабочую силу, а также плохих и недобросовестных работников. Вежливый и опрятный персонал без вредных привычек – наша визитная карточка. |
|
ОБЯЗАТЕЛЬНОСТЬ И СРОКИ Мы выполняем работы слаженно и быстро, строго придерживаясь технологии, установленных планов и сроков исполнения. Высокая скорость работ без потери качества и по разумной цене – именно то, что ждут от нас наши клиенты. |
|
НАДЕЖНОСТЬ И ПРОЗРАЧНОСТЬ Мы придерживаемся принципа открытости в наших взаимоотношениях с клиентами и партнерами. Вы всегда будете в курсе, на каком этапе идет работа. Компания Эколайф заключает договор со всеми своими клиентами, в котором четко прописывает все права и обязанности каждой из сторон, что позволяет избежать любых недопониманий между исполнителем и заказчиком. В смете будет детально описано, сколько и за что вам придется заплатить — полный список всех работ и материалов, а также график платежей. |
|
ЦЕНА И ВЫГОДА У нас вы получаете достойный уровень обслуживания не переплачивая. Все цены на услуги полностью соответствуют их качеству, ноль процентов переплат, все честно! Мы полностью расписываем весь спектр проводимых работ и их стоимость по смете. Мы производим расчет сметы на услуги сразу же после получения необходимой информации. Выезд замерщика и консультации бесплатно. |
|
УДОБСТВО И СЕРВИС Персональное внимание, безупречный сервис и приятное общение с нашими сотрудниками. Ответим на ваши вопросы и поможем вам избежать ошибок при выборе кондиционера и его установке. Чистота и аккуратность – наш стиль работы. |
Группа компаний Эколайф — это команда опытных и лицензированных специалистов по монтажу и обслуживанию всех видов инженерных систем с последующим оформлением всего пакета документов.
• 5 лет на рынке Москвы и Московской области
• 7 профильных лицензий и сертификатов
• 40 работников, 4 служебных автомобиля и 3 рабочие бригады для оперативного выполнения заказов
• Профессиональное европейское оборудование
• Снизим ваши расходы на 20%. Цены на наши услуги ниже средних по рынку без потери в качестве работ и обслуживании.
Гарантия качества
Компания Эколайф гарантирует высокое качество услуг электротехнической лаборатории.
Мы работаем с объектами
* Производственные предприятия, фабрики, торговые центры
* Рестораны, кафе, и все места организации общественного питания
* Многоэтажные и частные жилые дома, офисные комплексы
* Поликлиники, больницы, школы, учебные заведения
* Аэропорты, вокзалы и все государственные учреждения.
Кабельная изоляция
Вот уже прошло полтора столетия после запуска первого кабельного завода. И до сих пор кабель является единственным способом передачи электроэнергии. А в случае с информационными системами, кабельное соединение по сей день является самым простым и самым надёжным. И никакие «воздушные» способы передачи информации не могут конкурировать с кабельными в части стабильности.
Конечно, в те далёкие времена, когда это производство только зарождалось, кабели мало чем напоминали современные. Сходство было принципиальное: наличие токопроводящей жилы и изоляции. Но изоляция была в основном тканевой (хлопчатобумажной или шёлковой). И, конечно же, ещё не было никакой системы проверки качества изготавливаемой продукции, кроме визуальной, и никаких приборов для измерения различных свойств кабеля тоже не было.
В современном мире к кабельно-проводниковой продукции относятся очень серьёзно. Существует множество требований, которым должны соответствовать кабели. И эти требования, конечно же, касаются не только пропускной способности, но и изоляции. Главным требованием к изолирующему слою кабеля является защита человека от повреждений электрическим током. Поэтому, самым популярным тестом любого кабеля является замер сопротивления изоляции. О нём-то мы и поговорим.
Замер сопротивления изоляции – необходимость
Самая главная причина повышенного внимания к кабельно-проводниковой продукции такова: мы полностью зависим от электричества. Всё в нашей жизни – от детских игрушек и компьютеров, до работы заводов и фабрик – продолжает свою деятельность благодаря электричеству. А так как для передачи электроэнергии другого способа, кроме проводов, нет, то их стабильная и безотказная работа – задача первостепенной важности.
И если сравнить требования непосредственно к токопроводящим жилам с требованиями к изоляции, то последних окажется на порядок больше. По большому счёту, у проводника задач всего две: передать электроэнергию, и по пути не «растерять» её. У кабельной изоляции задач, конечно больше.
Во-первых, изоляция защищает жилы от механических повреждений, а так же от воздействия окружающей среды, ведь кабели прокладываются и в воде, и в земле и штробах стен. Безусловно, для таких особенных способов прокладки правилами устанавливаются дополнительные требования защиты кабелей и проводов от повреждений (лотки, трубы и прочее). Но и сам кабель и его изоляция должны быть устойчивыми к воздействию извне. Поэтому на рынке существуют кабели с многослойной и разнокомпонентной изоляцией, а также бронированные провода.
Во-вторых, изоляция должна являться непреодолимым барьером для проводников внутри самого кабеля. Ни для кого не секрет, что замыкание токопроводящих жил не приведёт ни к чему хорошему. А так как большинство кабелей несёт в себе и фазную и нулевую нагрузку, изоляция между ними должна быть особенно надёжной.
В третьих, как мы уже обозначили выше, изоляция защищает человека от повреждения электрическим током. Конечно же, это не значит, что при работе с изолированными кабелями электрики могут работать голыми руками. Нет! В этом случае кабельная изоляция рассчитана в первую очередь на упразднение случайных соприкосновений. От таких случайностей кабель защищается изоляцией, а человек – резиновыми перчатками и ковриком, «правильным» инструментом, защитными очками, и так далее, в соответствии с Межотраслевыми Правилами по технике безопасности.
Ещё одно немаловажно требование, касающееся долговечности работы кабеля. Это, безусловно, тоже задача изоляции. В первую очередь здесь подразумевается сохранение герметичности токоведущих жил. Попадание на них, например, воды очень быстро вызовет коррозию и негативным образом скажется на работе кабеля в целом. Для обеспечения этого требования используют промасленную бумажную изоляцию.
Продолжать этот список можно ещё достаточно долго. Существует невероятное множество кабелей, проводов, шнуров с самой различной изоляцией, разработанной под определённые требования. Отметим лишь, что какой бы ни была изоляция, она должна оставаться в меру гибкой, чтобы не сломаться во время производства, упаковки, транспортировки и монтажа.
Периодичность проведения замеров сопротивления изоляции
Ещё одна причина, по которой замер сопротивления изоляции кабелей настолько популярен, – это необходимость постоянного его проведения. Дело в том, что кабельная изоляция со временем теряет свои свойства. Несмотря на то, что её изготавливают из материалов, которые способны прослужить надёжной защитой в течение многих лет, время от времени проверять её состояние всё же необходимо. Вдобавок к этому, в процессе эксплуатации токовая нагрузка на кабель может увеличиваться, потому что количество энергопотребителей растёт каждый день.
Если рассмотреть в качестве примера жилые дома, которые были построены несколько десятилетий назад, то нетрудно догадаться, что сегодня количество электроприборов в квартирах несравнимо больше. А на момент строительства электрическая проводка внутри здания, равно как и сечение вводного кабеля, не были рассчитаны на такие нагрузки. Результат – повышенная нагрузка на кабель, нагрев кабеля, преждевременный износ и неизбежная его замена.
Чтобы избежать этих неприятностей, за состоянием кабелей и кабельной изоляции необходимо постоянно следить. По сути, это техническое обслуживание электропроводки, в которое входит проведение комплекса измерений пропускной способности кабеля и замер сопротивления изоляции.
1. Производство.
До того, как кабель обретёт своё место (будет проложен и смонтирован), его уже неоднократно проверяли и измеряли его технические свойства.
Как правило, современные линии для производства кабельно-проводниковой продукции – это линии полного цикла. То есть, на входе происходит загрузка всех необходимых материалов, а на выходе – бухта кабеля или готовый к транспортировке барабан. Но прежде чем отправить готовую продукцию на склад или продать её, необходимо убедиться, что кабель соответствует всем требованиям. Для этого электротехническая лаборатория проводит комплекс измерений, среди которых в обязательном порядке замер сопротивления изоляции. Если барабан с кабелем или бухта не проходит тесты, значит, где-то был нарушен технологический процесс, и произведённый кабель не подлежит эксплуатации.
2. Монтаж.
Во время производства электромонтажных работ кабельную изоляцию так же необходимо проверить на их целостность и готовность к прокладке. Испытание изоляции производится в обязательном порядке, при чём, как до монтажа кабеля, так и после него. Нужно отметить, что проверка состояния кабельной изоляции должна проводиться до и после каждой операции с кабелем.
Доставили барабан с кабелем на строительную площадку – произвели замер.
Если кабель на барабане необходимо прогреть, то после него нужно произвести замер.
Размотали кабель перед прокладкой – произвели замер.
Проложили кабель от источника до потребителя – произвели замер.
Только после проведения замеров сопротивления изоляции на всех этапах монтажа с положительным результатом может быть дано разрешение на подачу электроэнергии.
3. Эксплуатация.
Как мы уже писали выше, в период эксплуатации любой энергосистемы, следить за состоянием кабелей – первоочередная задача. Кабельная изоляция со временем рассыхается и теряет свои изолирующие свойства. Помимо этого, от чрезмерных нагрузок кабели могут нагреваться, что так же негативным образом сказывается на изоляции. В зданиях новой постройки на кабель может оказать отрицательно влияние такое явление как усадка. Да и вообще, кабели очень часто подвергаются воздействию, которое не лучшим образом сказывается на их работоспособности: почва, вода, морской воздух, грызуны, в конце концов! Поэтому очень важно постоянно следить за изоляцией кабельных трасс. Для кабельных линий общего назначения такие проверки должны проводиться не реже одного раза в три года, а для кабелей, находящихся в агрессивной или опасной среде – не реже одного раза в год.
Оборудование для проверки изоляции кабелей
Наверное, все в школе, на уроках физики, видели и пробовали работать такими приборами амперметр, вольтметр и омметр. Первый – для измерения силы тока, второй – для измерения напряжения, а третий измерял сопротивление проводника.
В случае с изоляцией тоже используют омметр. Но так как изоляция должна выдерживать повышенную токовую нагрузку, то её сопротивление измеряется в мегаоммах. Отсюда и название измерительного прибора – мегаомметр (или мегометр).
Сегодня на рынке существует три разновидности этого прибора.
1. Мегаомметры, произведённые до 2000-х годов (аналоговые). Они представляют собой коробку, размером, приблизительно, с двухлитровый тетрапак, с подключаемыми клеммниками и крутящейся ручкой. Основная составляющая такого прибора – это динамо-машина, После подключения прибора к кабелям, с помощью кручения ручки, динамо-машина нагнетает необходимый уровень избыточного напряжения при постоянном токе в проводниках.
Несмотря на то, что такие приборы имеют достаточно большую массу и габариты, они до сих пор пользуются популярностью и стоят на вооружении многих электротехнических лабораторий.
2. Современные мегаомметры (цифровые) – измерительные приборы, в которых устранены самые главные недостатки предшественников: излишняя масса и большие габариты. По своей массе и размерам их можно сравнить с обычным блокнотом, формата А5. Очень часто такие приборы оснащают прорезиненным корпусом, поэтому их очень удобно держать в руке. Более того, никаких «ручек-крутилок» на современных мегаомметрах нет, и процесс измерения сопротивления изоляции кабелей максимально автоматизирован. Источником тока в них являются гальванические элементы или аккумуляторные батареи. Более того, так как прибор цифровой, его оснащают многими полезными функциями: автоматическое выставление нужных параметров тока для различных категорий энергопотребителей, возможностью запоминания и сохранения результатов измерений и прочими.
3. В последние годы очень популярными стали измерительные комплексы – мультиметры. То есть, в одном корпусе заключены несколько приборов, например, в паре с мегаомметром может работать и вольтметр. Для техников, постоянно производящих замеры, такое техническое решение является очень важным. При этом, ни размеры ни масса такого прибора не мешают носить его в кармане спецодежды.
Ну и конечно, нельзя не упомянуть, что любой измерительный прибор должен проходит ежегодную поверку. Такую проверку осуществляют специализированные метрологические и испытательные центры. Результатом поверки является заключение о состоянии измерительного прибора и специальная голографическая наклейка на корпусе, с указанием даты последней поверки.
Для проведения только лишь одного измерения, наряду с мегаомметром в электротехнической лаборатории используется ещё ряд вспомогательных приборов и приспособлений. Все они должны так же проходить поверку и иметь сопутствующую разрешительную документацию.
Суть, нормы и технология измерения сопротивления изоляции
Итак, мы добрались до самого главного – технологической части производства работ. И прежде, чем приступить к описанию тонкостей замеров сопротивления изоляции различных кабелей, необходимо объяснить физическую суть этого процесса.
На тех же уроках физики в школе нам объясняли, что в природе существуют материалы, которые по своим физическим свойствам могут быть либо проводниками электричества, либо полупроводниками, либо диэлектриками. Первые проводят электрический ток, при чём, делают это очень хорошо и с минимальными потерями. Вторые тоже проводят электрический ток, но делают это менее охотно. Последний тип материалов не проводит электричество вовсе. Эти свойства материалам придаёт такой параметр, как сопротивление. Зависимость токопроводящей способности материалов и их сопротивления обратно пропорциональны. То есть, чем меньше сопротивление у материала, тем лучше он проводит электричество, и наоборот.
Теперь вернёмся к нашим баранам, а точнее – к кабельной изоляции. Понятно, что жилы кабеля изготавливают из проводников, которые способны передавать электрический ток очень хорошо, с минимальными потерями даже на большие расстояния. Так же понятно, что изоляцию токопроводящих жил (и кабеля в целом) делают из диэлектрических материалов. Таким образом, изолированные жилы кабеля никогда не пересекутся, а, следовательно, не будет утечки электроэнергии и короткого замыкания. Вроде, всё логично и понятно.
Но, если жилы кабелей полностью изолированы друг от друга и никак не взаимодействуют между собой, то каким образом и за счёт чего производится измерение сопротивления изоляции? Какой параметр измеряет мегаомметр, если при измерениях все жилы кабеля разведены и никак не соприкасаются друг с другом? Так и напряжение, вырабатываемые мегаомметром, постоянные, следовательно, никаких наводок друг на друга кабели не испытывают.
Чтобы ответить на этот вопрос нужно помнить, что любая диэлектрическая основа изоляции со временем теряет свои свойства.
И процесс этот ускоряется из-за того, что изоляционный материал находится в постоянном контакте с металлической основой кабеля, находящейся под напряжением. Помимо этого, износ оболочки происходит по многим причинам. Например, резиновая изоляция больше других подвержена высыханию, и, как следствие, она не просто становится более жёсткой и хрупкой, она становится тонкой. Пластиковая изоляция тоже не вечна и со временем приходит в негодность. А если кабель находится в агрессивной или опасной среде, то его защитный ресурс может закончиться спустя всего несколько лет.
И что же происходит с электрическим током, который пропускают по жилам с плохим защитным слоем? Изоляция начинает его пропускать, и токоведущие жилы кабеля начинают между собой взаимодействовать. Конечно, в таких малых дозах это взаимодействие невозможно увидеть человеческим глазом, но мегаомметр эти изменения, безусловно, улавливает. Если сказать проще, то изоляционный слой со временем переходит из состояния диэлектрика в полупроводник. И до тех пор, пока этот переход остаётся в пределах допустимых значений, кабель допускается эксплуатировать.
Помимо этого, утечка электрического тока может проходить через микротрещины кабельной изоляции, и тоже до того момента, пока эта утечка остаётся в допустимых пределах. А если изоляция не герметична, то внутрь кабеля могут попадать влага и пыль, делая процесс износа изоляции более стремительным и неизбежным.
Когда кабель абсолютно новый, то результат замера сопротивления изоляции будет стремиться к бесконечности, ведь утечки тока нет, и токопроводящие жилы кабеля никак между собой не взаимодействуют. Но по мере «старения» изоляции, результаты замеров будут всё хуже и хуже. Когда кабель совсем старый, то во время замера может произойти даже короткое замыкание. Поэтому опытные техники никогда не подают на испытуемый кабель полную нагрузку, а делают это постепенно, как написано в МЭК 364-6-61.
В целом, говоря о нормативных документах в области электроизмерений, нужно отметить, что помимо внушительного списка различных правил и регламентов проведения замеров, у каждой электротехнической лаборатории должны быть методики и инструкции собственной разработки, предназначенные для техников и инженеров КИПиА, непосредственно производящих замеры. Эти документы разрабатываются на этапе образования лаборатории, утверждаются в Ростехнадзоре, и служат исключительно для внутреннего пользования в каждой электротехнической лаборатории. Мы разберём основные принципы и этапы проведения замеров изоляции кабелей.
Подготовительные работы
Любая работа в сфере строительства начинается с изучения эксплуатационной документации и объекта в целом. Техники должны тщательно изучить однолинейные схемы расключения шкафов и поэтажные планы разводки кабелей. Более того, так как величина сопротивления диэлектрической части кабеля не является постоянной, и зависит от нескольких факторов (например, температура окружающей среды, сроки эксплуатации кабелей и т.п.), специалистам необходимо так же детально изучить объект испытаний. Всё это необходимо для боле точных конечных результатов проверки.
Любые испытания кабельной продукции связаны с подачей на проводники электроэнергии. В связи с этим, нужно защитить от поражения людей и электроприборы. Первым делом, объект полностью обесточивается. Далее необходимо отсоединить автоматы, УЗО, защитные вставки и прочие устройства.
Процесс защиты энергопотребителей (лампы, электрооборудованияие и т.п.) заключается в отключении их от сети. Работа достаточно простая, но ёмкая по времени и трудозатратам. После отсоединения проводников от энергопотребителей следует завершить процесс заземлением всех кабелей, которые планируется испытывать. Это следует делать в обязательном порядке, так как кабели могут сохранять остаточный электрический заряд.
Защиту от поражения людей осуществляют путём огораживания мест проведения испытаний и установкой предупреждающих знаков и табличек. При необходимости, перед местом выполнения измерительных работ можно выставить охрану.
Замер сопротивления изоляции двухжильных кабелей
Самым простым, понятным и наглядным примером проведения замера сопротивления изоляции является кабель, состоящий из двух жил – пары. Щупы мегаомметра закрепляют на каждой жиле и подают напряжение. Уровень сопротивления изоляции для всех кабелей, проводов и шнуров, рассчитанных на рабочую нагрузку до 220В, должен быть не менее 0,5 МОм. Если кабель состоит из нескольких пар (например, магистральный телефонный кабель), то замеры нужно проводить как между жилами каждой пары, так и между жилами разных пар.
Замер сопротивления изоляции трёхжильных кабелей
В данном случае речь идёт о силовых и некоторых контрольных кабелях. Замер сопротивления изоляции здесь производится по кругу, парами. Сначала между жилами «фаза» – «ноль», затем «ноль» – «земля», и, наконец, «земля» – «фаза». Так как все жилы должны иметь одинаковую изоляцию, то и показания мегаомметра должны быть одинаковыми. Изоляция силовых трёхжильных кабелей, рассчитанных на рабочее напряжение до 1000В, должна иметь сопротивление не менее 0,5 МОм. А если замер производится на контрольном кабеле, то его сопротивление изоляции не должно быть меньше 1 МОм.
Замер сопротивления изоляции многожильных кабелей
Замер сопротивления изоляции у многожильных кабелей имеет ту же структуру что и у парных. Например, чтобы измерить сопротивление изоляции у четырёхжильного кабеля (три «фазы» и «ноль») необходимо сделать шесть замеров. Пятижильный кабель – десять замеров.
Силовые кабели, рассчитанные на номинальную рабочую нагрузку свыше 1000В, должны иметь изоляцию, сопротивление которой не может быть менее 10 МОм.
В заключение этого раздела необходимо так же обратить внимание на испытательное напряжение, которое, безусловно, отличается от номинального.
1. Если кабель рассчитан на повседневную работу под напряжением до 100 В, то максимальное напряжение, при котором производится замер сопротивления изоляции, 100 В;
2. Если кабель работает под напряжением от 100 до 500 В, то замер сопротивления изоляции производится под напряжением от 250 до 1000 В;
3. Кабельные линии, рассчитанные на номинальную нагрузку от 500 до 1000 В необходимо испытывать напряжением от 500 до 1000 В;
4. Ну а если в номинальное рабочее напряжение кабеля превышает 1000 В, то замер сопротивления производится нагрузкой 2500 В.
Итоги проведения измерений: технические отчёты, протоколы, акты
Чтобы измерения не остались в памяти людей, которые их проводили или в памяти цифрового мегаомметра, их результаты заносят в специальный документ – протокол. Сам по себе протокол может состоять как из одного вида испытаний, так и являться сборным документом после комплекса измерений. Изначально форма протокола разрабатывается каждой лабораторией самостоятельно и утверждается в органах Ростехнадзора вместе с методиками и инструкциями.
Протоколы объединяются в технический отчёт, помещаются в папку, снабжаются титульным листом и перечнем замеров, которые были проведены на объекте. Также электротехнические лаборатории комплектуют папку с техническим отчётом прочими необходимыми документами: Свидетельством ЭТЛ, паспортами и свидетельствами о поверке приборов, документами на специалистов, проводивших замеры, и т.п. Документация составляется таким образом, чтобы у надзорных органов при проверке не возникло дополнительных вопросов о проделанной на объекте работе.
Если замеры проводились в рамках строительства или реконструкции объекта, то технический отчёт в обязательном порядке включается в состав исполнительной документации. А если испытания кабельной системы были плановыми, то технический отчёт передаётся заказчику.
Сами протоколы представляют собой сводную таблицу, в которой отражаются абсолютно все результаты испытаний замеров сопротивления изоляции каждого проверенного кабеля. Это наиболее удобная и компактная форма записи большого количества информации. В шапке каждого протокола указывается наименование замера, дата проведения, а так же наименование компании и присвоенный номер электротехнической лаборатории. На последней странице каждого протокола, помимо подписей ответственных за проведение замера лиц, указывается наименование измерительного прибора и дата проведения последней поверки.
Передвижная электротехническая лаборатория: особенности испытания кабелей
Любая передвижная электротехническая лаборатория, конечно же, может проводить замер сопротивления изоляции кабелей. Более того, если на борту передвижной ЭТЛ будет генератор электрического тока, то лаборатория сможет проверять сопротивление изоляции даже у кабелей, рассчитанных на очень высокое рабочее напряжение.
Особенность проведения таких работ заключается в том, что передвижная лаборатория работает за пределами зданий, следовательно, имеет дела с магистральными кабелями, которые могут тянуться от одной подстанции до другой на расстояние в несколько десятков километров. Следовательно, чтобы провести даже подготовительные работы, нужно потратить какое-то время.
Расстояние – это самая главная особенность проведения испытаний магистральных кабелей. Например, если результаты испытаний внутри здания не соответствуют нормативным показателям, кабельная трасса дробится на мелкие участки по кабельным соединениям, и каждый участок проверяется индивидуально. Таким образом, можно выявить участок кабеля, на котором изоляция не соответствует значениям установленных стандартов, и заменить его, при этом материальные и трудовые затраты будут минимальными. Если же подобный дефект изоляции выявится на магистральном кабеле, то для его устранение потребуется в разы больше затрат. Но это уже тема для следующей статьи.
Контроль сопротивления изоляции
Итак, нужно подвести итог всему вышесказанному. Прежде всего, стоит оговориться, что методика замера сопротивления изоляции не так проста и однозначна, как было описано выше. Все тонкости данной работы, безусловно, очень хорошо известны профессионалам, ежедневно подвергая изоляцию кабельных линий испытаниям. И доверять такую ответственную работу стоит только истинным гуру в этой области, которые не оставят без внимания ни одной детали.
Нужно помнить, что надёжная и стабильная работа любой энергосистемы напрямую зависит от технического состояния кабельной системы, входящей в её состав. Следовательно, чтобы работали заводы, чтобы улицы ночью освещались фонарями, чтобы в Новогоднюю ночь дети радовались огням на новогодних ёлках, чтобы в каждом доме горел свет и (что ещё важнее. ) работал интернет, нужно содержать все составляющие этой огромной системы в надлежащем состоянии.