6. Напряжение в точке. Полное, нормальное, касательное напряжения. Размерности напряжения.
Напряжение – мера распределения внутренних сил по сечению.
, где
— внутренняя сила, выявленная на площадке
.

Полное напряжение .

Нормальное напряжение – проекция вектора полного напряжения на нормаль обозначается через σ. , где Е – модуль упругости I рода, ε – линейная деформация. Нормальное напряжения вызывается только изменением длин волокон, направлением их действий, а угол поперечных и продольных волокон не искажается.
Касательное напряжение – составляющие напряжения в плоскости сечения.
, где
(для изотропного материала) – модуль сдвига (модуль упругости II рода), μ – коэффициент Пуассона (=0,3), γ – угол сдвига.
7. Закон Гука для одноосного напряжённого состояния в точке и закон Гука для чистого сдвига. Модули упругости первого и второго рода, их физический смысл, математический смысл и графическая интерпретация. Коэффициент Пуассона.

— закон Гука для одноосного напряжённого состояния в точке.
Е – коэффициент пропорциональности (модуль упругости I рода). Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и σ, т.е. в кГ/см 2 .

— закон Гука для сдвига.

G– модуль сдвига (модуль упругости II рода). Размерность модуляGтакая же, как и у модуля Е, т.е. кГ/см 2 ..

μ – коэффициент Пуассона (коэффициент пропорциональности). . Безразмерная величина, характеризующая свойства материала и определяющаяся экспериментально и лежит в интервале от 0,25 до 0,35 и не могут превышают 0,5 (для изотропного материала).
8. Центральное растяжение (сжатие) прямого бруса. Определение внутренних продольных сил методом сечений. Правило знаков для внутренних продольных сил. Привести примеры расчёта внутренних продольных сил.
Брус испытывает состояние центрального растяжения (сжатия) в том случае, если в его поперечных сечениях возникают центральные продольные силы Nz(т.е. внутренняя сила, линия действия которой направлена по осиz), а остальные 5 силовых факторов равны нулю (Qx=Qy=Mx=My=Mz=0).
Правило знаков для Nz: истинная растягивающая сила – «+», истинная сжимающая сила – «-».
9. Центральное растяжение (сжатие) прямого бруса. Постановка и решение задачи об определении напряжений в поперечных сечениях бруса. Три стороны задачи.
Центральное напряжение (сж.) прямого бруса см. в вопросе 8.
Постановка: Прямой брус из однородного материала, растянутый (сжатый) центральными продольными силами N. Определить напряжение, возникающее в поперечных сечениях бруса, деформации и перемещения поперечных сечений бруса в зависимости от координатzэтих сечений.

10. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов.
Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

.

При центральном растяжении (сж.) бруса в поперечном направлении в сечении возникает только нормальное напряжение σz, постоянное во всех точках поперечного сечения и равноеNz/F., гдеEF– жёсткость бруса при растяжении (сжатии). Чем больше жёсткость бруса, тем меньше деформируется бус при одной и той же силе. 1/(EF) – податливость бруса при растяжении (сжатии).
11. Центральное растяжение (сжатие) прямого бруса. Статически неопределимые системы. Раскрытие статической неопределимости. Влияние температурного и монтажного факторов. Привести примеры соответствующих расчётов.
Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

Если число линейно-независимых уравнений статики меньше числа неизвестных, входящих в систему этих уравнений, то задача по определению этих неизвестных становится статически неопределимой. (На сколько удлинится одна часть, на столько сожмётся вторая).

Нормальные условия — 20º С. .f(σ,ε,tº,t)=0 – функциональная зависимость между 4 параметрами.
12. Опытное изучение механических свойств материалов при растяжении (сжатии). Принцип Сен-Венана. Диаграмма растяжения образца. Разгрузка и повторное нагружение. Наклёп. Основные механические, прочностные и деформационные характеристики материала.
Механические свойства материалов вычисляют с помощью испытательных машин, которые бывают рычажными и гидравлическими. В рычажной машине усилие создаётся при помощи груза, действующего на образец через систему рычагов, а в гидравлической – с помощью гидравлического давления.
Принцип Сен-Венана: Характер распределения напряжения в поперечных сечениях достаточно удалённых (практически на расстояния, равные характерному поперечному размеру стержня) от места приложения нагрузок, продольных сил не зависит от способа приложения этих сил, если они имеют один и тот же статический эквивалент. Однако в зоне приложения нагрузок закон распределения напряжения может заметно отличаться от закона распределения в достаточно удалённых сечениях.
Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой Р и удлинением Δlобразец получит остаточное удлинение.
Если образец был нагружен на участке, на котором соблюдается закон Гука, а затем разгружен, то удлинение будет чисто упругим. При повторном нагружении пропадёт промежуточная разгрузка.
Наклёп (нагартовка) – явление повышения упругих свойств материала в результате предварительного пластического деформирования.
Предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука.
Предел упругости – наибольшее напряжение, до которого материал не получает остаточных деформаций.
Предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.
Предел прочности – максимальное напряжение, которое может выдержать образец, не разрушаясь.
13. Физический и условный пределы текучести материалов при испытании образцов на растяжение, предел прочности. Допускаемые напряжения при расчёте на прочность центрально растянутого (сжатого) бруса. Нормативный и фактический коэффициенты запаса прочности. Привести числовые примеры.
В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести принимается условно величина напряжения, при котором остаточная деформация εост=0,002 или 0,2%. В некоторых случаях устанавливается предел εост=0,5%.

max|σz|=[σ].,n>1(!) – нормативный коэффициент запаса прочности.

— фактический коэффициент запаса прочности.n>1(!).
14. Центральное растяжение (сжатие) прямого бруса. Расчёты на прочность и жёсткость. Условие прочности. Условие жёсткости. Три типа задач при расчёте на прочность.
Центральное напряжение (сж.) прямого бруса см. в вопросе 8.
15.Обобщённый закон Гука для трёхосного напряжённого состояния в точке. Относительная объёмная деформация. Коэффициент Пуассона и его предельные значения для однородного изотропного материала.
,
,
. Сложив эти уравнения, получим выражение объёмной деформации:
. Это выражение позволяет определить предельное значение коэффициента Пуассона для любого изотропного материала. Рассмотрим случай, когда σx=σy=σz=р. В этом случае:
. При положительном р величина θ должна быть также положительной, при отрицательном р изменение объёма будет отрицательным. Это возможно только в том случае, когда μ≤1/2. Следовательно, значение коэффициента Пуассона для изотропного материала не может превышать 0,5.
16. Соотношение между тремя упругими постоянными для изотропного материала (без вывода формулы).
,
,
.
17. Исследование напряжённо-деформированного состояния в точках центрально-растянутого (сжатого) прямого бруса. Закон парности касательных напряжений.
,
.

— закон парности касательных напряжений.
18. Центральное растяжение (сжатие) бруса из линейно-упругого материала. Потенциальная энергия упругой деформации бруса и её связь с работой внешних продольных сил, приложенных к брусу.
А=U+K. (В результате работы накапливается потенциальная энергия деформированного телаU, кроме того, работа идёт на совершение скорости массе тела, т.е. преобразуется в кинетическую энергию).
Если центральное растяжение (сжатие) бруса из линейно-упругого материала производится очень медленно, то скорость перемещения центра масс тела будет весьма малой. Такой процесс нагружения называется статическим. Тело в любой момент находится в состоянии равновесия. В этом случае А=U, и работа внешних сил целиком преобразуется в потенциальную энергию деформации.
,
,
.
Напряжение в точке тела
Напряженное состояние в точке тела является ключевым понятием в сопромате. Необходимость введения понятия напряжения в точке для суждения об интенсивности внутренних сил в некоторой точке сечения стержня вызвана неравномерным распределением внутренних сил по длине и поперечному сечению в общем случае нагружения.
Напряжение в точке тела K (обозначено буквой p) – это интенсивность внутренней силы , возникающей на бесконечно малой площадке в окрестности данной точки (рис. 1.4, а).
В количественном выражении .
Понятие о напряжении в точке твердого тела в некотором смысле напоминает понятие о давлении, действующем, например, внутри жидкости. Однако давление в точке жидкости одинаково во всех направлениях. Если проведем через точку K тела другое сечение, иной будет внутренняя сила. Следовательно, иным будет и напряжение, хотя оно возникает в той же самой точке K.
Напряжение в точке тела в разных направлениях (на разных площадках, проходящих через данную точку тела) может быть различным (в частности, оно может возникать только в одном направлении).
Понятие о напряжении в точке деформируемого твердого тела ввел в 1822 г. французский ученый Огюстен Луи Коши.
Основную роль в расчетах прочности играет не полное напряжение p, а его проекции на оси координат x, y и z: нормальное напряжение ( – сигма), направленное по перпендикуляру к площадке (параллельно оси z), и касательные напряжения ( – тау), лежащие в плоскости сечения и направленные, соответственно, вдоль осей x и y (рис. 1.4, б). Первый индекс у касательных напряжений характеризует нормаль к площадке z, на которой они возникают.
Между полным (), нормальным () и касательными напряжениями ( и ) существует зависимость:
Касательные напряжения служат мерой тенденции одной части сечения смещаться (или скользить) относительно другой его части.
Единицы нормальных и касательных напряжений в СИ – паскаль (Па). Один паскаль – это напряжение, при котором на площадке в один квадратный метр возникает внутренняя сила, равная одному ньютону (то есть равная, приблизительно, весу одного яблока). Как мы увидим в дальнейшем, эта единица напряжения мизерно мала. В сопромате чаще используются другие единицы:
1 МПа = 106 Па; 1 кН/см2 = 107 Па.
В технической системе единиц напряжения измеряются в килограммах силы на миллиметр (сантиметр) в квадрате (кгс/мм2 или кгс/см2) . Следует запомнить, что 1 кН/см2 » 1 кгс/мм2.
Определить напряжение в точке А относительно общей шины этих напряжений (общего корпуса)

варианты ответа:
0V
-3V
-7V
+5V
Лучший ответ
Остальные ответы
Общая точка не обозначена! От какого конца измеряем?
Левый стабилитрон в прямом направлении работает как диод.
Стабилизирует только правый +5В относительно -12В.
Где общая шина?
Относительно общей шины +12В покажет -7В
Относительно общей шины -12В покажет +5В
Если бы ещё знать откуда 8В взяли? В сумме (8+5) 13В))
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Напряженное состояние в точке деформируемого тела
Теория напряженного состояния в окрестности точки деформируемого тела рассматривает совокупность напряжений, действующих по площадкам, проведенным через исследуемую точку.
На площадках общего положения действуют нормальные и касательные напряжения (рис. 1).
Правило знаков для этих напряжений в сопротивлении материалов принимается следующим: положительные нормальные напряжения направлены от сечения, а положительные касательные напряжения стремятся повернуть элемент по направлению хода часовой стрелки.
Площадки, на которых отсутствуют касательные напряжения, называются главными площадками, а нормальные напряжения, действующие по этим площадкам, — главными напряжениями.

В любой точке деформируемого тела можно выделить три взаимно перпендикулярные главные площадки, по которым действуют главные напряжения σ1, σ2 и σ3, причем σ1 ≥ σ2 ≥ σ3.

Если два главных напряжения из трех равны нулю, то такое напряженное состояние называется линейным или одноосным. Оно соответствует центральному (осевому) растяжению или сжатию и рассмотрено в предыдущем разделе.
Если одно из трех главных напряжений равно нулю, то такое напряженное состояние называется плоским или двуосным. Пример плоского напряженного состояния показан на рис. 2.
Одноименные напряжения на параллельных гранях бесконечно малого элемента численно равны друг другу. При плоском напряженном состоянии две противоположные грани всегда свободны от напряжений (на рис. 2 это фасадная и тыльная грани).
По закону парности касательных напряжений касательные напряжения на взаимно перпендикулярных площадках равны по величине и противоположны по знаку, т.е.
τxy=-τyx.

При повороте прямоугольного элемента на угол α напряжения на его гранях изменяются и вычисляются по формулам:
По закону парности касательных напряжений τα= -τβ.

Величины σ связаны законом суммы нормальных напряжений
т.е. сумма величин нормальных напряжений, действующих по взаимно перпендикулярным площадкам, есть величина постоянная.
При некотором угле α0 касательные напряжения равны нулю, нормальные напряжения по данной площадке в данной точке максимальны (σmax), а на перпендикулярной площадке – минимальны (σmin).
Положение главных площадок определяется по формуле
Значения главных напряжений вычисляются по выражению
Наибольшие касательные напряжения действуют на площадках, наклонных к главным под углом 45 0 и рассчитываются по формулам:
Нормальные напряжения на этих площадках можно найти по формуле
Относительные линейные и угловые деформации ребер элемента можно вычислить на основании обобщенного закона Гука. Для плоского напряженного состояния
где
— модуль сдвига материала. Для стали G=80ГПа.
Относительное изменение объема материала в окрестностях исследуемой точки определяется по формуле
Удельная потенциальная энергия для плоского напряженного состояния
Напряженное состояние называется объемным или трехосным (рис. 3), если

Относительное изменение объема
где K – модуль объемной деформации
Удельная потенциальная энергия упругой деформации:
— полная
— изменения объема
— изменения формы
Относительные деформации и напряжения связаны обобщенным законом Гука: 
Теории прочности
Для проверки прочности материала при плоском и объемном напряженном состояниях используются гипотезы (теории) прочности.
Каждая гипотеза прочности высказывает свое предположение о том, какой фактор вызывает появление опасного (предельного) состояния.

В зависимости от принятой гипотезы определяют эквивалентное напряжение σэкв и сравнивают его с допустимым напряжением на растяжение [σ], то есть условие прочности записывается следующим образом:
Приведем зависимости для вычисления эквивалентных напряжений по трем гипотезам прочности, наиболее широко применяемым в современной расчетной практике.
Гипотеза наибольших касательных напряжений (III теория прочности)
Четвертая (энергетическая) гипотеза прочности
Гипотеза прочности Мора
где коэффициент k представляет собой отношение предельных напряжений при одноосном растяжении и сжатии. Можно принять
III и IV гипотезы применяют для оценки прочности пластичных материалов, а гипотезу Мора – как для пластичных, так и для хрупких.