Движение Равномерное и Прямолинейное
Для описания этого случая достаточно знать функциональную зависимость одной из трех координат от времени, например х = f(t).
В этом случае траектория движения совпадает с отрезком координатной оси, при этом v= дельта r/дельта t.
Для этого вида движения скорость есть величина постоянная. Следовательно, v x = дельта x/дельта t есть величина постоянная. Ускорение при равномерном движении равно нулю, поскольку равно нулю изменение скорости. Таким образом, уравнение движения будет иметь вид:
х = х 0 + v x t.
Этот вид движения отображается следующими графиками. Графики 1 и 2 отображают движение материальных точек при условии v l > v 2 , х0 = 0 (рис. 6). Графики 3 и 4 отображают движение материальных точек, у которых скорости направлены против оси х, при этом v 4 > v 3 , Х 0 = Х 1

Заметим, что по графику зависимости координаты от времени можно вычислить скорость движения:
например vx2=x1/t1, что равно значению тангенса угла а, образованного графиком х = f(t) и осью t. Чем больше угол наклона графика к оси времени, тем больше скорость движения точки. График зависимости скорости от времени может быть рассмотрен для двух случаев: v = f 1 (t) и v x = f 2 (t).
В первом случае график всегда имеет положительную ординату, во втором случае vх может быть меньше нуля (как всякая проекция вектора).
На рис. 7 движение 2 осуществляется с большей скоростью, чем движение 1. На рис. 8 движение 1 осуществляется с меньшей скоростью, чем движение 2, а движение 3 — с самой большей.
Следует отметить, что движение 2 и 3 при этом осуществлялось в направлении, обратном выбранному направлению оси Ох.

Укажем, как можно определить перемещение, если имеется график зависимости v х = f 1 (t) или v = f 2 (t).
Исходя из формулы и = дельта x/дельта t, получим: Ах = v*дельта t.
Как известно, для прямолинейного движения изменение координаты равно пройденному пути: Ах = s.
Для случая, изображенного на рис. 9, s = v 1 дельтаt 1 , что в геометрической интерпретации означает: перемещение численно равно площади, ограниченной осью ординат (Оv), осью абсцисс (Ot), графиком скорости (v) и ординатой времени (t1).
Что такое дельта n и дельта Т?
Неделю назад решал задачи по колебаниях, но теперь не могу вспомнить формулу, для того, чтобы проводить расчеты в програме. Заранее спс)
- Вопрос задан более трёх лет назад
- 23161 просмотр
2 комментария
Оценить 2 комментария
Как найти дельта s физика
В кинематике существуют три способа аналитического описания движения материальной точки в пространстве. Рассмотрим их, ограничившись случаем движения материальной точки на плоскости, что позволит нам при выборе системы отсчёта задавать лишь две координатные оси.
1. Векторный способ.
В этом способе положение материальной точки `A` задаётся с помощью так называемого радиус-вектора `vecr`, который представляет собой вектор, проведённый из точки `O`, соответствующей началу отсчёта выбранной системы координат, в интересующую нас точку `A` (рис. 1). В процессе движения материальной точки её радиус-вектор может изменяться как по модулю, так и по направлению, являясь функцией времени `vecr=vecr(t)`.
Геометрическое место концов радиус-вектора `vecr(t)` называют траекторией точки `A`.
В известном смысле траектория движения представляет собой след (явный или воображаемый), который «оставляет за собой» точка `A` после прохождения той или иной области пространства. Понятно, что геометрическая форма траектории зависит от выбора системы отсчёта, относительно которой ведётся наблюдение за движением точки.
Пусть в процессе движения по некоторой траектории в выбранной системе отсчёта за промежуток времени `Delta t` тело (точка `A`) переместилось из начального положения `1` с радиус-вектором `vec r_1` в конечное положение `2` с радиус-вектором `vec r_2` (рис. 2). Приращение `Deltavec r` радиус-вектора тела в таком случае равно: `Deltavec r = vec r_2- vec r_1`.
Вектор `Deltavec r`, соединяющий начальное и конечное положения тела, называют перемещением тела.
Отношение `Delta vec r//Delta t` называют средней скоростью (средним вектором скорости) `vec v_»cp»` тела за время `Delta t`:
`vecv_»cp»=(Deltavecr)/(Delta t)` (1)
Вектор `vecv_»cp»` коллинеарен и сонаправлен с вектором `Deltavec r`, так как отличается от последнего лишь скалярным неотрицательным множителем `1//Delta t`.
Предложенное определение средней скорости справедливо для любых значений `Delta t`, кроме `Delta t=0`. Однако ничто не мешает брать промежуток времени `Delta t` сколь угодно малым, но отличным от нуля.
Для точного описания движения вводят понятие мгновенной скорости, то есть скорости в конкретный момент времени `t` или в конкретной точке траектории. С этой целью промежуток времени `Delta t` устремляют к нулю. Вместе с ним будет стремиться к нулю и перемещение `Delta vec r`. При этом отношение `Deltavec r//Delta t` стремится к определённому значению, не зависящему от `Delta t`.
Величина, к которой стремится отношение `Deltavec r//Delta t` при стремлении `Delta t` к нулю, называется мгновенной скоростью`vec v`:
`vec v =(Delta vec r)/(Delta t)` при `Delta t -> 0`.
Теперь заметим, что чем меньше `Delta t`, тем ближе направление `Deltavec r` к направлению касательной к траектории в данной точке. Следовательно, вектор мгновенной скорости направлен по касательной к траектории в данной точке в сторону движения тела.
В дальнейшем там, где это не повлечёт недоразумений, мы будем опускать прилагательное «мгновенная» и говорить просто о скорости `vec v` тела (материальной точки).
Движение тела принято характеризовать также ускорением, по которому судят об изменении скорости в процессе движения. Его определяют через отношение приращения вектора скорости `Delta vec v` тела к промежутку времени `Delta t`, в течение которого это приращение произошло.
Ускорением `veca` тела называется величина, к которой стремится отношение `Delta vec v//Delta t` при стремлении к нулю знаменателя `Delta t`:
`vec a =(Delta vec v)/(Delta t)` при `Delta t -> 0` (2)
При уменьшении `Delta t` ориентация вектора`Delta vec v` будет приближаться к определённому направлению, которое принимается за направление вектора ускорения `vec a`. Заметим, что ускорение направлено в сторону малого приращения скорости, а не в сторону самой скорости!
Напомним, что в системе СИ единицами длины, скорости и ускорения являются соответственно метр (м), метр в секунду (`»м»//»с»`) и метр на секунду в квадрате ( `»м»//»с»^2`).
2. Координатный способ.
В этом способе положение материальной точки `A` на плоскости в произвольный момент времени `t` определяется двумя координатами `x` и `y`, которые представляют собой проекции радиус-вектора $$ \overrightarrow$$тела на оси `Ox` и `Oy` соответственно (рис. 3). При движении тела его координаты изменяются со временем, т. е. являются функциями `t`: $$ x=x\left(t\right)$$ и $$ y=y\left(t\right)$$. Если эти функции известны, то они определяют положение тела на плоскости в любой момент времени. В свою очередь, вектор скорости $$ \overrightarrow$$ можно спроецировать на оси координат и определить таким образом скорости $$ _$$ и $$ _$$ изменения координат тела (рис. 4). В самом деле $$ _$$ и $$ _$$ будут равны значениям, к которым стремятся соответственно отношения `Delta x//Delta t` и `Delta y//Delta t` при стремлении к нулю промежутка времени `Delta t`.
3. Естественный (или траекторный) способ.
Этот способ применяют тогда, когда траектория материальной точки известна заранее. На заданной траектории `LM` (рис. 5) выбирают начало отсчёта – неподвижную точку `O`, а положение движущейся материальной точки `A` определяют при помощи так называемой дуговой координаты `l`, которая представляет собой расстояние вдоль траектории от выбранного начала отсчёта `O` до точки `A`. При этом положительное направление отсчёта координаты `l` выбирают произвольно, по соображениям удобства, например так, как показано стрелкой на рис. 5.
Движение тела определено, если известны его траектория, начало отсчёта `O`, положительное направление отсчёта дуговой координаты `l` и зависимость $$ l\left(t\right)$$.
Следующие два важных механических понятия – это пройденный путь и средняя путевая скорость.
По определению, путь `Delta S` — это длина участка траектории, пройденного телом за промежуток времени `Delta t`.
Ясно, что пройденный путь – величина скалярная и неотрицательная, а потому его нельзя сравнивать с перемещением `Delta vec r`, представляющим собой вектор. Сравнивать можно только путь `Delta S` и модуль перемещения `
|Delta vecr|`. Очевидно, что `Delta S >=|Deltavec r|`.
Средней путевой скоростью `v_»cp»` тела называют отношение пути `Delta S` к промежутку времени `Delta t`, в течение которого этот путь был пройден:
`v_»cp»=(Delta S)/(Delta t)` (3)
Определённая ранее средняя скорость `v_»cp»` (см. формулу (1)) и средняя путевая скорость отличаются друг от друга так же, как `Deltavec r` отличается от `Delta S`, но при этом важно понимать, что обе средние скорости имеют смысл только тогда, когда указан промежуток времени усреднения `Delta t`. Само слово «средняя» означает усреднение по времени.
Городской троллейбус утром вышел на маршрут, а через 8часов, проехав в общей сложности `72` км, возвратился в парк и занял своё обычное место на стоянке. Какова средняя скорость `vec v_»cp»` и средняя путевая скорость `v_»cp»` троллейбуса?
Поскольку начальное и конечное положения троллейбуса совпадают, то его перемещение `Delta vecr` равно нулю: `Deltavecr=0`, следовательно, `vecv_»ср»=Deltavecr//Deltat=0` и `|vecv_»ср»|=0`. Но средняя путевая скорость троллейбуса не равна нулю:
`v_»cp»=(Delta S)/(Delta t)=(72 «км»)/(8 «ч»)=9 «км»//»ч»`.
Как найти дельта s физика
По двум параллельным хорошо проводящим рельсам, находящимся в одной горизонтальной плоскости и в однородном вертикальном магнитном поле с индукцией B могут скользить без трения две перемычки Расстояние между рельсами L. Перемычка 1 имеет массу m и сопротивление R, у перемычки 2 масса и сопротивление 4R. Вначале перемычки покоились. Затем перемычке 1 сообщили скорость V0 и она стала удаляться от второй перемычки. Индуктивность контура из перемычек и рельсов не учитывать.
1) Найдите ускорение перемычки 2 в начальный момент.
2) Найдите скорость каждой перемычки через продолжительный промежуток времени.
3) На сколько увеличилось расстояние между перемычками через продолжительный промежуток времени?
1) Начальный ток Ускорение второй перемычки
2) Суммарная сила на перемычки равна нулю. Поэтому следовательно,
3) Пусть в произвольный момент V1 и скорости перемычек, S1 и S2 — их пути, ток. Тогда
Надо найти С учетом находим