Резистор
Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.
Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).
Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.
На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.
Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом). Про множители и приставки «кило», «мега» можете почитать здесь.
Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.
Основные параметры резисторов.
- Номинальное сопротивление. Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.
- Рассеиваемая мощность. Более подробно о мощности резистора я уже писал здесь. При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности. На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора. К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах. Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.
- Допуск. При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.
Первые три параметра основные, их надо знать!
Перечислим их ещё раз:
- Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм. )
- Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт. )
- Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).
Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.
В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2. 3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.
Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.
Таблица цветового кодирования.
Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.
Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.
На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.
Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?
Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.
Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).
В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.
SMD резисторы — виды, параметры и характеристики
Резистор – это элемент, обладающий каким-либо сопротивлением, применяется в электронике и электротехнике для ограничения тока или получения необходимых напряжений (например, использование резистивного делителя). SMD-резисторы – это резисторы для поверхностного монтажа, иначе говоря – монтажа на поверхность печатной платы.
Основные характеристики для резисторов – это номинальное сопротивление, измеряется в Омах и зависит от толщины, длины и материалов резистивного слоя, а также рассеиваемая мощность.
Электронные компоненты для поверхностного монтажа отличаются малыми габаритами за счет того, что у них либо отсутствуют выводы для подключения в классическом понимании. У элементов для объемного монтажа есть длинные выводы.
Ранее при сборке РЭА ими соединяли компоненты цепи между собой (навесной монтаж) или продевали их через печатную плату в соответствующие отверстия. Конструктивно выводы или контакты у них выполнены в вид металлизированных площадок на корпусе элементов. В случае же микросхем и транзисторов поверхностного монтажа у элементов присутствуют короткие жесткие «ножки».
Одной из основных характеристик SMD-резисторов является и типоразмер. Это величина длины и ширины корпуса, по этим параметрам подбирают элементы, соответствующие разводке платы. Обычно размеры в документации пишутся сокращенно четырёхзначным числом, где первые две цифры указывают длину элемента в мм, а вторая пара символов – ширину в мм. Однако, фактически, размеры могут отличаться от маркировки в зависимости от типов и серии элементов.
Типовые размеры SMD-резисторов и их параметры
Рисунок 1 — обозначения для расшифровки типоразмеров.
1. SMD-резисторы 0201:
L=0.6 мм; W=0.3 мм; H=0.23 мм; L1=0.13 м.
- Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
- Допустимое отклонение от номинала: 1% (F); 5% (J)
- Номинальная мощность: 0,05 Вт
- Рабочее напряжение: 15 В
- Максимально допустимое напряжение: 50 В
- Рабочий диапазон температур: –55 — +125 °С
2. SMD-резисторы 0402:
L=1.0 мм; W=0.5 мм; H=0.35 мм; L1=0.25 мм.
- Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
- Допустимое отклонение от номинала: 1% (F); 5% (J)
- Номинальная мощность: 0,062 Вт
- Рабочее напряжение: 50 В
- Максимально допустимое напряжение: 100 В
- Рабочий диапазон температур: –55 — +125 °С
3. SMD-резисторы 0603:
L=1.6 мм; W=0.8 мм; H=0.45 мм; L1=0.3 мм.
- Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
- Допустимое отклонение от номинала: 1% (F); 5% (J)
- Номинальная мощность: 0,1 Вт
- Рабочее напряжение: 50 В
- Максимально допустимое напряжение: 100 В
- Рабочий диапазон температур: –55 — +125 °С
4. SMD-резисторы 0805:
L=2.0 мм; W=1.2 мм; H=0.4 мм; L1=0.4 мм.
- Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
- Допустимое отклонение от номинала: 1% (F); 5% (J)
- Номинальная мощность: 0,125 Вт
- Рабочее напряжение: 150 В
- Максимально допустимое напряжение: 200 В
- Рабочий диапазон температур: –55 — +125 °С
5. SMD-резисторы 1206:
L=3.2 мм; W=1.6 мм; H=0.5 мм; L1=0.5 мм.
- Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
- Допустимое отклонение от номинала: 1% (F); 5% (J)
- Номинальная мощность: 0,25 Вт
- Рабочее напряжение: 200 В
- Максимально допустимое напряжение: 400 В
- Рабочий диапазон температур: –55 — +125 °С
6. SMD-резисторы 2010:
L=5.0 мм; W=2.5 мм; H=0.55 мм; L1=0.5 мм.
- Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
- Допустимое отклонение от номинала: 1% (F); 5% (J)
- Номинальная мощность: 0,75 Вт
- Рабочее напряжение: 200 В
- Максимально допустимое напряжение: 400 В
- Рабочий диапазон температур: –55 — +125 °С
7. SMD-резисторы 2512:
L=6.35 мм; W=3.2 мм; H=0.55 мм; L1=0.5 мм.
- Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм
- Допустимое отклонение от номинала: 1% (F); 5% (J)
- Номинальная мощность: 1 Вт
- Рабочее напряжение: 200 В
- Максимально допустимое напряжение: 400 В
- Рабочий диапазон температур: –55 — +125 °С
Как вы можете видеть, с увеличением размеров чип-резистора увеличивается и номинальная рассеиваемая мощность в таблице ниже нагляднее приведена эта зависимость, а также геометрические размеры резисторов других типов:
Таблица 1 – Маркировка SMD-резисторов
В зависимости от размеров может применяться один из трёх видов маркировки номинала резистора. Выделяют три вида маркировки:
1. С помощью 3-х цифр. При этом первые две обозначают количество ом, а последняя количество нулей. Так маркируют резисторы из ряда Е-24, c отклонением от номинала (допуском) в 1 или 5%. Типоразмер резисторов с такой маркировкой — 0603, 0805 и 1206. Пример такой маркировки: 101 = 100 = 100 Ом
Рисунок 2 – изображение SMD-резистора с номиналом в 10 000 Ом, он же 10 кОм.
2. С помощью 4-х символов. В этом случае 3 первых цифры обозначают количество Ом, а последняя – количество нулей. Так описываются резисторы из ряда Е-96 типоразмеров 0805, 1206. Если в маркировке присутствует буква R – она играет роль запятой, отделяющей целые от долей. Таким образом маркировка 4402 расшифровывается как 44 000 Ом или 44 кОм.
Рисунок 3 – изображение SMD-резистора с номиналом в 44 кОма
3. Маркировка комбинацией из 3 символов – цифр и букв. При этом 2 первых знака – это цифры, обозначают закодированное значение сопротивления в Омах. Третий символ – это множитель. Таким способом маркируются резисторы типоразмера 0603 из ряда сопротивлений Е-96, с допуском 1%. Перевод букв во множитель выполняется по ряду: S=10^-2; R=10^-1; B=10; C=10^2; D=10^3; E=104; F=10^5.
Расшифровка кодов (первых двух символов) ведется по таблице, изображенной ниже.
Таблица 2 – расшифровка кодов маркировки SMD-резисторов
Рисунок 4 – резистор с трёхсимвольной маркировкой 10С, если воспользоваться таблицей и приведенным рядом множителей, то 10 – это 124 Ома, а С – это множитель 10^2, что равняется 12 400 Ома или 12.4 кОм.
Основные параметры резисторов
У идеального резистора учитывают только его активное сопротивление. В реальности же дело обстоит иначе – у резисторов есть и паразитные индуктивно-емкостные составляющие. Ниже приведен один из вариантов эквивалентной схемы резистора:
Рисунок 5 — Эквивалентная схема резистора
Как можно увидеть на схеме присутствуют и емкости (конденсаторы) и индуктивность. Их наличие связано с тем, что у каждого проводника есть определенная индуктивность, а у группы проводников – паразитная ёмкость. У резистора же они связаны с расположением его резистивного слоя и его конструкцией.
Эти параметры в цепях постоянного тока и низкочастотных цепях обычно не учитывают, но они могут внести существенное влияние в высокочастотных радиопередающих схемах и в импульсных блоках питания, где протекают токи частотами в десятки-сотни кГц. В таких цепях любая паразитная составляющая, в плоть до неправильной разводки проводящих дорожек печатной платы, может сделать невозможной её работу.
Итак, индуктивность и емкость – это элементы, которые оказывают влияние на полное сопротивление и фронты токов и напряжений в зависимости от частоты. Наилучшим по частотным характеристикам являют элементы для поверхностного монтажа, благодаря как раз-таки их малым размерам.
Рисунок 6 – На графике изображено отношение полного сопротивления резистора к активному на различных частотах
В полное сопротивление входит и активное сопротивление, и реактивные сопротивления паразитной индуктивностио и емкости. На графике можно наблюдать падение полного сопротивления с ростом частоты.
Конструкция резистора
Резисторы поверхностного монтажа дешевы и удобны при конвеерной автоматизированной сборке электронных устройств. Однако, они не так просты, как может показаться.
Рисунок 7 – Внутреннее устройство SMD-резистора
Основой резистора является подложка из Al2O3 – окиси алюминия. Это хороший диэлектрик и материал с хорошей теплопроводностью, что не менее важно, так как в процессе работы вся мощность резистора выделяется в тепло.
В качестве резистивного слоя используется тонкая металлическая или оксидная пленка, например – хром, двуокись рутения (как изображено на рисунке выше). От материала из которого состоит эта пленка зависят характеристики резисторов. Резистивный слой отдельных резисторов представляет собой пленку толщиной до 10 мкм, из материала с низким ТКС (температурным коэффициентом сопротивления), что дает высокую температурную стабильность параметров и возможность создать высокопрецизионные элементы, пример такого материала – константан, однако номиналы таких резисторов редко превышают 100 Ом.
Контактные площадки резистора формируются из набора слоев. Внутренний контактный слой выполняют из дорогих материалов вроде серебра или палладия. Промежуточный – из никеля. А внешний – свинцово оловянный. Такая конструкция обусловлена необходимостью обеспечить высокую адгезию (связанность) слоев. От них зависит надежность контактов и шумы.
Для снижения паразитных составляющих приходят к следующим технологическим решении при формировании резистивного слоя:
Рисунок 8 – форма резистивного слоя
Монтаж таких элементов происходит в печах, а в радиолюбительских мастерских с помощью паяльного фена, то есть потоком горячего воздуха. Поэтому при их изготовлении уделяется внимание температурной кривой нагрева и охлаждения.
Рисунок 9 – кривая нагрева и охлаждения при пайке SMD-резисторов
Использование компонентов поверхностного монтажа положительно сказалось на массогабаритных показателях радиоэлектронной аппаратуры, а также на частотных характеристиках элемента. Современная промышленность выпускает большую часть распространенных элементов в SMD-исполнении. В том числе: резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры, интегральные микросхемы.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Как определить и подобрать мощность резистора (сопротивления)
Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется. Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе. Для мелких корпусов есть другой метод определения (см. ниже).
Что такое мощность резистора
Мощность определяется как произведение силы тока на напряжение: P = I * U и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.
Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей
Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.
Стандартный ряд мощностей резисторов и их обозначение на схемах
Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса. Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.
Как обозначается на схеме мощность рассеивания резистора 0,05 Вт
Мощность резистора 0,125 Вт на схеме
Как на схеме выглядит резистор мощностью 0,25 Вт
Так на схеме обозначается резистор мощностью 0,5 Вт
Мощность резистора 1 Вт схематически обозначается так
Рассеиваемая на резисторе мощность 2 Вт
Обозначение на схеме мощности резистора 5 Вт
Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления. Самое малое стандартное значение 0,05 Вт, самое большое — 25 Вт, но есть и более мощные. Но это уже специальная элементная база и в бытовой аппаратуре не встречается.
Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах. Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д. Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.
Как определить по внешнему виду
На принципиальной схеме указана нужная мощность резистора — тут все понятно. Но как определить мощность сопротивления по внешнему виду на печатной плате? Вообще, чем больше размер корпуса, тем больше тепла он рассеивает. На достаточно крупных по размеру сопротивлениях указывается номинальное сопротивление и его мощность в ваттах.
Тут есть некоторая путаница, но не все так страшно. На отечественных сопротивлениях рядом с цифрой ставят букву В. В зарубежных ставят W. Но эти буквы есть не всегда. В импортных может стоять V или SW перед цифрой. Еще в импортных может тоже стоять буква B, а в отечественных МЛТ может не стоять ничего или буква W. Запутанная история, конечно. Но с опытом появляется хоть какая-то ясность.
Как определить мощность резистора: стоит в маркировке
А ведь есть маленькие резисторы, на которых и номинал-то с трудом помещается. В импортных он нанесен цветными полосками. Как у них узнать мощность рассеивания?
В старом ГОСТе была таблица соответствий размеров и мощностей. Резисторы отечественного производства по прежнему делают в соответствии с этой таблицей. Импортные, кстати, тоже, но они по размерам чуть меньше отечественных. Тем не менее их также можно идентифицировать. Если сомневаетесь, к какой группе отнести конкретный экземпляр, лучше считать что он имеет более низкую способность рассеивать тепло. Меньше шансов, что деталь скоро перегорит.
Тип резистора | Диаметр, мм | Длинна, мм | Рассеиваемая мощность, Вт |
---|---|---|---|
ВС | 2,5 | 7,0 | 0,125 |
УЛМ, ВС | 5,5 | 16,5 | 0,25 |
ВС | 5,5 | 26,5 | 0,5 |
7,6 | 30,5 | 1 | |
9,8 | 48,5 | 2 | |
25 | 75 | 5 | |
30 | 120 | 10 | |
КИМ | 1,8 | 3,8 | 0,05 |
2,5 | 8 | 0,125 | |
МЛТ | 2 | 6 | 0,125 |
3 | 7 | 0,125 | |
4,2 | 10,8 | 0,5 | |
6,6 | 13 | 1 | |
8,6 | 18,5 | 2 |
С размерами сопротивлений и их мощностью вроде понятно. Не все так однозначно. Есть резисторы большого размера с малой рассеивающей способностью и наоборот. Но в таких случаях, проставляют этот параметр в маркировке.
Мощность SMD-резисторов
SMD-компоненты предназначены для поверхностного монтажа и имеют миниатюрные размеры. Мощность резисторов SMD определяется по размерам. Также она есть в характеристиках, но необходимо знать серию и производителя. Таблица мощности СМД резисторов содержит наиболее часто встречающиеся номиналы.
Размеры SMD-резисторов — вот по какому признаку можно определить мощность этих элементов
Код imperial | Код metrik | Длинна inch/mm | Ширина inch/mm | Высота inch/mm | Мощность, Вт |
---|---|---|---|---|---|
0201 | 0603 | 0,024/0,6 | 0,012/0,3 | 0,01/0,25 | 1/20 (0,05) |
0402 | 1005 | 0,04/1,0 | 0,02/0,5 | 0,014/0,35 | 1/16 (0,062) |
0603 | 1608 | 0,06/1,55 | 0,03/0,85 | 0,018/0,45 | 1/10 (0,10) |
0805 | 2112 | 0,08/2,0 | 0,05/1,2 | 0,018/0,45 | 1/8 (0,125) |
1206 | 3216 | 0,12/3,2 | 0,06/1,6 | 0,022/0,55 | 1/4 (0,25) |
1210 | 3225 | 0,12/3,2 | 0,10/2,5 | 0,022/0,55 | 1/2 (0,50) |
1218 | 3246 | 0,12/3,2 | 0,18/4,6 | 0,022/0,55 | 1,0 |
2010 | 5025 | 0,20/2,0 | 0,10/2,5 | 0,024/0,6 | 3/4 (0,75) |
2512 | 6332 | 0,25/6,3 | 0,12/3,2 | 0,024/0,6 | 1,0 |
В общем-то, у этого типа радиоэлементов нет другого оперативного способа определения тока, при котором они могут работать, кроме как по размерам. Можно узнать по характеристикам, но их найти не всегда просто.
Как рассчитать мощность резистора в схеме
Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.
Если номинал написан в килоомах (кОм) или мегаомах (мОм), его переводим в Омы. Это важно, иначе будет неправильная цифра.
Схема последовательного соединения резисторов
Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток. Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R. Подставляем данные: I = 100 В / 390 Ом = 0,256 А.
По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт. Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже. Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит. Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.
Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.
При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.
Как подобрать резистор на замену
Если вам необходимо поменять резистор, брать надо либо той же мощности, либо выше. Ни в коем случае не ниже — ведь резистор и без того вышел из строя. Происходит это обычно из-за перегрева. Так что установка резистора меньшей мощности исключена. Вернее, вы его поставить можете. Но будьте готовы к тому, что скоро его снова придется менять.
Примерно определить мощность резистора можно по размерам
Если место на плате позволяет, лучше поставить деталь с большей мощностью рассеивания, чем была у заменяемой детали. Или поднять резистор той же мощности повыше (можно вообще не подрезать выводы) — чтобы охлаждение было лучше. В общем, при замене резистора, мощность берем либо ту же, либо выше на шаг.
Мощность резистора
Сегодня поговорим о мощности резисторов. Это тоже очень важный параметр. Я уже рассказывал о том что такое резистор, и какие виды и типы резисторов бывают. Но подробно про мощность мы не говорили.
Мощность резистора — это максимально допустимое значение мощности электрического тока (единица измерения Ватт), которое резистор может пропустить через себя без перегрева и выхода из строя. Резистор в зависимости от своего сопротивления и тока проходящего через него превращает часть электрической энергии в тепло. Это и называется мощностью рассеивания резистора.
Какая мощность будет выделяться (рассеиваться) на резисторе
Как я уже написал чуть выше, мощность рассеивания резистора зависит от его сопротивления и силы тока, проходящего по нему. Для расчета мощности, которая будет рассеиваться в виде тепла на резисторе используется формула: P = I² * R
- P — мощность в Ватт
- I — Сила тока в Ампер
- R — Сопротивление в Ом
Для примера рассчитаем мощность которая будет рассеиваться на резисторе в схеме с подключением светодиода. Вот схема подключения:
Про то как рассчитать номинал резистора для подключения светодиода и силу тока в цепи, а так же как управлять светодиодом с помощью Ардуино я писал в этой статье. В нашем примере используется резистор на 150 Ом и сила тока в цепи составляет 20 миллиампер или 0.02 ампера. Теперь мы можем рассчитать мощность, которая будет рассеиваться на резисторе.
P = I² * R = 0.02² * 150 = 0.0004 * 150 = 0.06 Ватт
Это значит что на нашем резисторе будет рассеиваться 0.06 Ватт. Это совсем не много, поэтому подойдет практически любой резистор кроме самых маломощных SMD элементов.
Если фактическая рассеиваемая мощность превышает допустимую для резистора, то он будет перегреваться и в итоге сгорит. Это не только разорвет электрическую цепь, но и может стать причиной пожара. Поэтому старайтесь использовать резисторы с заявленной мощностью больше чем необходимая в 1.5-2 раза.
Как определить мощность резистора
Как я уже писал в других статьях, обычно резисторы — это мелкие элементы, поэтому на их корпусе сложно описать все их параметры. Для описания номинала и класса точности используется цветовая маркировка или специальная маркировка для SMD резисторов. А для того что бы понять какой мощности резистор нужно его измерить. Вот схема которая поможет узнать мощность резисторов в зависимости от их размера:
Так же существуют резисторы рассчитанные и на более высокие мощности. Они уже крупнее, поэтому их мощность и номинал написаны на корпусе «человеческим языком». Вот керамические резисторы или даже высокомощные с радиатором для рассеивания тепла:
Мощность SMD резисторов
Показатель максимальной мощности в маркировку на таких маленьких корпусах поместить было просто не возможно. Но мы все равно можем определить максимальную мощность смд резистора при помощи штангенциркуля, ну или хотя бы обычной линейки. Дело в том что мощность зависит от размера корпуса smd резистора. Поэтому они делятся на типоразмеры и обозначаются цифрами, которые означают длину и ширину корпуса в дюймах. Вот таблица с помощью которой вы сможете определить допустимую мощность резистора в smd исполнении:
Размер в дюймах | Длинна в мм | Ширина в мм | Мощность при 70°C в Ватт |
0075 | 0,3 | 0,15 | 0,02 |
01005 | 0,4 | 0,2 | 0,03 |
0201 | 0,6 | 0,3 | 0,05 |
0402 | 1 | 0,5 | 0,063 |
0603 | 1,6 | 0,8 | 0,1 |
0805 | 2,0 | 1,25 | 0,125 |
1206 | 3,2 | 1,6 | 0,25 |
1210 | 3,2 | 2,5 | 0,5 |
1218 | 3,2 | 4,8 | 1 |
1812 | 4,5 | 3,2 | 0,75 |
2010 | 5 | 2,5 | 0,75 |
2512 | 6,4 | 3,2 | 2 |
Таблица мощности SMD резисторов
Обратите внимание что при последовательном и параллельном подключении резисторов, рассеиваемая мощность рассчитывается для каждого резистора отдельно.
Железо
Стартовый набор с Arduino Mega и RFID Это расширенный стартовый набор. В комплект входит Arduino Mega R3, макетные платы, множество датчиков, управляемые механизмы и необходимые радиоэлектронные компоненты. Полный список.
Плата Arduino Uno R3 Arduino Uno — плата на базе микроконтроллера ATmega328P с частотой 16 МГц. На плате есть все необходимое для удобной и быстрой работы.