Расчёт механизма подъёма крана
При модернизации крана случается ситуация, когда необходимо проверить соответствие статической расчётной мощности двигателя мощности уже установленного двигателя. Так, существующие крановые асинхронные двигатели с фазным ротором серии МТ имеют ПВ=40%, и в случае если кран по паспорту имеет лёгкий режим работы и расчётная нагрузка двигателя составит, например 25%, то мощность двигателя по существующей методике выбирается исходя из равенства:
Согласно этой формулы, если статическая расчётная мощность составила 45кВт, то двигатель будет выбран из существующей номенклатуры двигателей с ПВ=40% на 37кВт исходя из ПВ=25%, т.е. с понижением мощности.
Расчёт совершенно верный и полностью соответствует режиму работу крана с ПВ=25%. Однако, здесь необходимо учесть другой важный момент: если модернизация крана предполагает замену существующего двигателя на более современный короткозамкнутый для работы в составе частотно-регулируемого привода, то необходимо обратить внимание на перегрузочную способность двигателя, т.е. отношение максимального момента к номинальному. Тут дело в том, что у двигателей серии МТ перегрузочная способность в среднем равна 3, в то время как двигателя общепромышленного исполнения имеют Mmax/Mн=1,7-2. Здесь надо учитывать, чтобы полный момент перегруженного подъёма крана (сумма его статического момента с перегрузкой 25% плюс динамический момент) не превысил Mmax двигателя. Поэтому общепромышленные двигателя лучше выбирать по мощности равными статической мощности подъёма крана, без понижения с учётом ПВ, тем более что ПВ современных общепромышленных двигателей равно 100%, т.е. продолжительный режим S1. Исходя из этого, приведённая выше формула даст понижение мощности в два раза при ПВ=25% после извлечения квадратного корня, хотя такой двигатель по максимальному моменту не будет соответствовать требованиям механизма подъёма. Далее я приведу методику расчёта механизма подъёма и выбора двигателя общепромышленной серии по статической мощности крана.
Исходными данными для расчёта являются паспортные данные крана, паспортные данные на двигатель.
Статический момент двигателя (Н*м) подъёма рассчитывает по формуле:
Где Qп – грузоподъёмность крана в кг, Dб – диаметр барабана в м, i – общий передаточный коэффициент (произведение передаточного числа редуктора на кратность полиспаста), N – число двигателей подъёма, η – общий КПД механизма.
Статическая мощность двигателя (кВт) рассчитывается по формуле:
Где Мст – статическая мощность двигателя в Н*м, nдв – обороты двигателя в об/мин, 9549 – коэффициент привидения оборотов двигателя к величине рад/c и мощности к кВт.
Линейная скорость движения груза (м/мин) вычисляется:
Где Dб – диаметр барабана в м, nдв – обороты двигателя в об/мин, iр – передаточное число редуктора.
Грузоподъёмность крана (кг) при известной мощности двигателя, рассчитывается:
Где Мст – статическая мощность двигателя в Н*м, N – число двигателей подъёма, i – общий передаточный коэффициент (произведение передаточного числа редуктора на кратность полиспаста), η – общий КПД механизма, Dб — диаметр барабана в м.
Расчёт динамических процессов осуществляется исходя из уравнения Даламбера:
Момент инерции вращающихся частей, приведённый к валу двигателя находится по формуле:
Где J – общий коэффициент, равный Jдв + Jторм + Jм, Jдв – момент инерции двигателя в Н * м, Jторм – момент инерции тормоза в Н*м (если явно не задан, то принимается равным 0,3*Jдв), Jм – момент инерции муфты и быстроходного вала редуктора (если явно не задан, то принимается равным 0,15*Jдв), k – коэффициент влияния масс (для упрощения расчёта вместо приведения моментов инерций барабана и редуктора к валу двигателя), принимается равным 0,15 если не задан иной, N – число двигателей.
Момент инерции поступательно движущихся частей крана (Н * м), приведённый к валу двигателя находится по формуле:
Где Qп – грузоподъёмность крана в кг, mз – масса грузозахватного приспособления в кг, mк – масса каната в кг, V – линейная скорость движения груза в м/мин, nдв – скорость вращения двигателя в об/мин, 91,19 – коэффициент привидения оборотов двигателя к величине рад/с, 3600 – привидения скорости груза к м/c.
Величина динамического момента (Н * м) вычисляется:
Jвр – момент инерции вращающихся частей механизма, приведённый к валу двигателя в Н*м, Jпд – момент инерции поступательно движущихся частей крана, приведённый к валу двигателя в Н*м, nдв – обороты двигателя в об/мин, t – время разгона/торможения привода в с, N — число двигателей, η – общий КПД механизма.
Мощность двигателя находится исходя из условия:
Kпер – коэффициент перегрузки двигателя. Обычно выбирается равным 1,7 – 2.
Если статический момент на валу двигателя меньше (условие выполняется, если динамическая составляющая полного момента больше статической составляющей на некоторую величину, в зависимости от K), тогда мощность двигателя (кВт) находим, как:
Если условие не выполняется, тогда мощность (кВт) равна:
Как рассчитать мощность двигателя для поднятия груза в 100 кг по по передаче винт-гайка (ШВП)
Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!
Войти
Уже есть аккаунт? Войти в систему.
Последние посетители 0 пользователей онлайн
Ни одного зарегистрированного пользователя не просматривает данную страницу
- IPS Theme by IPSFocus
- Политика конфиденциальности
- Обратная связь
- Уже зарегистрированы? Войти
- Регистрация
Главная
Активность
- Создать.
Важная информация
Мы разместили cookie-файлы на ваше устройство, чтобы помочь сделать этот сайт лучше. Вы можете изменить свои настройки cookie-файлов, или продолжить без изменения настроек.
Расчет мощности двигателя
Как правило, мощность электродвигателя указывается на шильдике, который закреплен на корпусе или в техническом паспорте устройства. Однако в случае, когда данные на шильдике прочитать невозможно, а документация утеряна, определить мощность можно несколькими способами. Сегодня мы расскажем о двух наиболее надежных них.
Мощность электродвигателя по установочным и габаритным размерам
Понравилось видео? Подписывайтесь на наш канал!
Для первого способа необходимо знать установочные размеры электродвигателя и синхронную частоту вращения. Последняя измеряется с помощью мультиметра, установленного в режим миллиамперметра. Для этого указатель колеса выбора устанавливаем на значение 100µA. Щуп черного цвета подключаем в общее гнездо «COM», а щуп красного цвета — к гнезду для измерения напряжения, сопротивления и силы тока до 10 А.
После этого обесточиваем электродвигатель и снимаем крышку с клеммной коробки. Щупы мультиметра подключаем к началу и концу любой из обмоток (например, V1 и V2). После этого рукой медленно проворачиваем вал двигателя так, чтобы он совершил один оборот, и считаем количество отклонений стрелки из состояния покоя, которые она сделает за это время. Число отклонений стрелки за один оборот вала равно количеству полюсов и соответствует такой синхронной частоте вращения:
• 2 полюса – 3000 об/мин;
• 4 полюса – 1500 об/мин;
• 6 полюсов – 1000 об/мин;
• 8 полюсов – 750 об/мин.
Теперь необходимо выяснить установочные размеры двигателя. Для замеров используем штангенциркуль, механический или электронный, а также измерительную рулетку. Записываем результаты измерений в миллиметрах: диаметр и длину вылета вала, высоту оси вращения, расстояние между центрами отверстий в «лапах», а если двигатель фланцевый, то диаметр фланца и диаметр крепежных отверстий.
Как рассчитать потребляемую мощность двигателя
В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.
Понятие мощности электродвигателя
Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.
На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.
Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:
КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:
Мощность и нагрев двигателя
Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.
В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.
Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:
Если необходимо рассчитать потребляемую активную мощность, используем следующую формулу:
Р1 = 1,73 · U · I · ƞ
Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.
Расчет мощности при помощи счетчика электроэнергии
Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время. Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1). Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.