Ф bscos альфа что за формула
Перейти к содержимому

Ф bscos альфа что за формула

  • автор:

Магнитный поток

Для количественного описания явления электромагнитной индукции необходимо введение понятия магнитного потока. Рассмотрим эту тему подробнее.

Проводящая рамка в магнитном поле

Явление электромагнитной индукции состоит в том, что при изменении поля, пронизывающего проводящую рамку или катушку, в ней возникает электродвижущая сила (ЭДС):

Электромагнитная индукция, опыт Фарадея

Энергия используемого в этом опыте магнитного поля характеризуется магнитной индукцией. Однако, при попытке описать наблюдаемое явление выяснилось, что одной этой величины мало.

Если выписать в таблицу значения ЭДС, наводимые магнитным полем, имеющим одну и ту же плотность магнитных линий, в разных условиях, то окажется, что ЭДС, возникающая в квадратной рамке, имеет гораздо большее значение, чем ЭДС в длинной узкой рамке (при одном периметре).

А наибольшая ЭДС возникает в круглом витке.

Причиной этого оказался разный «охват поля» рамкой. Площадь длинной узкой рамки невелика, она «охватывает» малое «количество поля», и ЭДС в ней также мала. У квадратной рамки площадь при одинаковом периметре больше, а у круглого витка – она наибольшая, в результате рамка «охватывает» большее «количество поля», и ЭДС в такой рамке тоже получается больше.

Не менее важной оказалась ориентация рамки по отношению к направлению магнитного поля. Наибольшая ЭДС возникает, если проводящая рамка перпендикулярна линиям магнитной индукции. Если плоскость рамки параллельна этим линиям – то независимо от ее площади и силы магнитного поля ЭДС в рамке не возникнет.

Понятие магнитного потока

Таким образом, для описания явления электромагнитной индукции было введено понятие «магнитный поток», характеризующее «охват поля» рамкой. В этом понятии объединяются все величины, от которых зависит наведенная в рамке ЭДС – индукция поля, площадь и ориентация рамки. Для обозначения используется большая греческая буква Ф (фи):

Таким образом, магнитный поток – это величина, равная произведению индукции магнитного поля, площади проводящего контура, и косинуса угла между нормалью к контуру и направлением линий индукции.

Магнитный поток Ф=BScosa

Из приведенной формулы магнитного потока можно вывести определение его единицы – вебер(Вб):

то есть, магнитный поток 1 Вебер – это магнитный поток, проходящий через рамку площадью 1 квадратный метр, которая ориентирована перпендикулярно линиям однородного магнитного поля с индукцией 1Тесла.

Магнитный поток зависит от

Для понимания термина «магнитный поток» можно представить аналогию с обычным водяным потоком. Водяной поток, как правило, зависит от напора воды (аналог индукции) и площади сечения трубы (аналог площади рамки), а поскольку вода, в отличие от магнитного поля, всегда заключена внутрь трубы, то водяной поток всегда ориентирован поперек сечения трубы, и значение косинуса в формуле всегда равно единице.

Что мы узнали?

Для описания явления электромагнитной индукции в проводящем контуре необходимо учесть индукцию магнитного поля, «охват» поля контуром и ориентацию контура. Все эти факторы объединяются в понятии «магнитный поток». Изменение магнитного потока приводит к возникновению ЭДС в контуре. Постоянный магнитный поток ЭДС не вызывает.

Каталог статей

Электромагинтная индукция – это явление возникновения индукционного тока в замкнутом контуре при изменении магнитного потока через него.

Магнитный поток – это величина, численно равная количеству линий магнитной индукции, пересекающих контур площадью S.

Магнитный поток вычисляется по формуле: Ф = BS cos α , где α – угол между нормалью к контуру и вектором магнитной индукции. Измеряется в веберах (Вб).

Таким образом, явление магнитной индукции возникает при любом изменении магнитного потока через контур:

— при изменении магнитной индукции В: Δ Ф = Δ BS cos α (движение магнита, движение вторичной катушки с током, изменение силы тока во вторичной катушке при перемещении ползунка реостата или включении/выключении тока в обмотке)

— площади контура S : Δ Ф = B Δ S cos α
— угла между нормалью и вектором магнитной индукции α: ΔФ = BS(cos α2 – cos α 1 ).

Закон Фарадея: ЭДС индукции, возникающая в контуре при изменении магнитного потока, пересекающего этот контур, равна по модулю скорости изменения магнитного потока:

Формула применима, если за промежуток времени Δ t магнитный поток изменяется на одну и ту же величину, т.е. когда скорость изменения магнитного потока Δ Ф/ Δ t постоянна.

Причины возникновения ЭДС индукции :

— в замкнутом контуре изменение магнитного потока через него создает вихревое электрическое поле, которое в свою очередь совершает работу по перемещению электрического заряда, которая характеризуется ЭДС индукции;

— в проводнике, движущемся в магнитном поле с постоянной скоростью v, на заряд действует сила Лоренца, которая создает направленное движение заряженных частиц по проводнику. Поэтому ЭДС индукции в движущемся в магнитном поле проводнике равно ℰ i = BvL sin α , где α – угол между направлением вектора магнитной индукции и направлением скорости при движении проводника.

Так как в проводнике возникает ЭДС индукции и соответственно индукционный ток, то силу тока можно найти по закону Ома:

Направление индукционного тока:

в замкнутом контуре определяется правилом Ленца: индукционный ток всегда направлен так, что своим магнитным полем он препятствует изменению магнитного потока, вызывающего этот ток.

— в проводнике, который движется в магнитном поле, направление индукционного тока определяется правилом левой руки: если расположить левую руку так, чтобы четыре пальца показывали направление движения проводника, магнитные линии входили в ладонь, то большой палец покажет направление индукционного тока в проводнике.

Если ток в контуре по какой-то причине будет изменяться, что созданное током магнитное поле создаст в той же катушке индукционный ток, т.е. будет наблюдаться явление самоиндукции. Магнитный поток в катушке пропорционален силе тока в ней: Ф = LI, где L – величина, называемая индуктивностью катушки L. Индуктивность зависит от свойств катушки: ее длины, числа витков, наличия сердечника и материала, из которого изготовлен сердечник (ферромагнетик, диамагнетик или парамагнетик). Единица измерения индуктивности – генри (Гн).

При самоиндукции ЭДС, возникающая в катушке при равномерном изменении силы тока в ней, равна:

Магнитное поле катушки обладает энергией:

Чему равен магнитный поток. Базовые формулы

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В — физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция — векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции . В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

СИЛА ЛОРЕНЦА

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера F А = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a — угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила м, постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м:

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

МАГНИТНЫЙ ПОТОК

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S — величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

В СИ единица магнитного потока 1 Вебер (Вб) — магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция -явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции ε i .

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Индуктивность контура L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция — частный случай электромагнитной индукции.

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I — начальное значение тока, t — промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = I cp t . Так как I cp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1 . Следовательно,

Ответ: энергия поля равна 8,6 Дж; при уменьшении тока вдвое она уменьшится в 4 раза.

Взаимосвязь электрических и магнитных полей замечена очень давно. Данную связь еще в 19 веке обнаружил английский ученый-физик Фарадей и дал ему название . Она появляется в тот момент, когда магнитный поток пронизывает поверхность замкнутого контура. После того как происходит изменение магнитного потока в течение определенного времени, в этом контуре наблюдается появление электрического тока.

Взаимосвязь электромагнитной индукции и магнитного потока

Суть магнитного потока отображается известной формулой: Ф = BS cos α. В ней Ф является магнитным потоком, S — поверхность контура (площадь), В — вектор магнитной индукции. Угол α образуется за счет направления вектора магнитной индукции и нормали к поверхности контура. Отсюда следует, что максимального порога магнитный поток достигнет при cos α = 1, а минимального — при cos α = 0.

Во втором варианте вектор В будет перпендикулярен к нормали. Получается, что линии потока не пересекают контур, а лишь скользят по его плоскости. Следовательно, определять характеристики будут линии вектора В, пересекающие поверхность контура. Для расчета в качестве единицы измерения используется вебер: 1 вб = 1в х 1с (вольт-секунда). Еще одной, более мелкой единицей измерения служит максвелл (мкс). Он составляет: 1 вб = 108 мкс, то есть 1 мкс = 10-8 вб.

Для исследования Фарадеем были использованы две проволочные спирали, изолированные между собой и размещенные на катушке из дерева. Одна из них соединялась с источником энергии, а другая — с гальванометром, предназначенным для регистрации малых токов. В тот момент, когда цепь первоначальной спирали замыкалась и размыкалась, в другой цепи стрелка измерительного устройства отклонялась.

Проведение исследований явления индукции

В первой серии опытов Майкл Фарадей вставлял намагниченный металлический брусок в катушку, подключенную к току, а затем вынимал его наружу (рис. 1, 2).

1 2

В случае помещения магнита в катушку, подключенную к измерительному прибору, в цепи начинает протекать индукционный ток. Если магнитный брусок удаляется из катушки, индукционный ток все равно появляется, но его направление становится уже противоположным. Следовательно, параметры индукционного тока будут изменены по направлению движения бруска и в зависимости от полюса, которым он помещается в катушку. На силу тока оказывает влияние быстрота перемещения магнита.

Во второй серии опытов подтверждается явление, при котором изменяющийся ток в одной катушке, вызывает индукционный ток в другой катушке (рис. 3, 4, 5). Это происходит в моменты замыкания и размыкания цепи. От того, замыкается или размыкается электрическая цепь, будет зависеть и направление тока. Кроме того, эти действия есть ни что иное, как способы изменения магнитного потока. При замыкании цепи он будет увеличиваться, а при размыкании — уменьшаться, одновременно пронизывая первую катушку.

3 4

5

В результате опытов было установлено, что возникновение электрического тока внутри замкнутого проводящего контура возможно лишь в том случае, когда они помещаются в переменное магнитное поле. При этом, поток может изменяться во времени любыми способами.

Электрический ток, появляющийся под действием электромагнитной индукции, получил название индукционного, хотя это и не будет током в общепринятом понимании. Когда замкнутый контур оказывается в магнитном поле, происходит генерация ЭДС с точным значением, а не тока, зависящего от разных сопротивлений.

Данное явление получило название ЭДС индукции, которую отражает формула: Еинд = — ∆Ф/∆t. Ее значение совпадает с быстротой изменений магнитного потока, пронизывающего поверхность замкнутого контура, взятого с отрицательным значением. Минус, присутствующий в данном выражении, является отражением правила Ленца.

Правило Ленца в отношении магнитного потока

Известное правило было выведено после проведения цикла исследований в 30-х годах 19 века. Оно сформулировано в следующем виде:

Направление индукционного тока, возбуждаемого в замкнутом контуре изменяющимся магнитным потоком, оказывает влияние на создаваемое им магнитное поле таким образом, что оно в свою очередь создает препятствие магнитному потоку, вызывающему появление индукционного тока.

Когда магнитный поток увеличивается, то есть становится Ф > 0, а ЭДС индукции снижается и становится Еинд 0, то есть действие магнитного поля индукционного тока, происходит увеличение магнитного потока, проходящего через контур.

Физический смысл правила Ленца заключается в отражении закона сохранения энергии, когда при уменьшении одной величины, другая увеличивается, и, наоборот, при увеличении одной величины другая будет уменьшаться. Различные факторы влияют и на ЭДС индукции. При вводе в катушку поочередно сильного и слабого магнита, прибор соответственно будет показывать в первом случае более высокое, а во втором — более низкое значение. То же самое происходит, когда изменяется скорость движения магнита.

На представленном рисунке видно, как определяется направление индукционного тока с применением правила Ленца. Синий цвет соответствует силовым линиям магнитных полей индукционного тока и постоянного магнита. Они расположены в направлении полюсов от севера к югу, которые имеются в каждом магните.

Изменяющийся магнитный поток приводит к возникновению индукционного электрического тока, направление которого вызывает противодействие со стороны его магнитного поля, препятствующее изменениям магнитного потока. В связи с этим, силовые линии магнитного поля катушки направлены в сторону, противоположную силовым линиям постоянного магнита, поскольку его движение происходит в сторону этой катушки.

Для определения направления тока используется с правой резьбой. Он должен ввинчиваться таким образом, чтобы направление его поступательного движения совпадало с направлением индукционных линий катушки. В этом случае направления индукционного тока и вращения рукоятки буравчика будут совпадать.

Потоком вектора магнитной индукции В (магнитным потоком ) через малую поверхность площадью dS называется скалярная физическая величина, равная

Здесь , — единичный вектор нормали к площадке площадью dS , В n — проекция вектора В на направление нормали, — угол между векторами В и n (рис. 6.28).

Рис. 6.28. Поток вектора магнитной индукции через площадку

Магнитный поток Ф B через произвольную замкнутую поверхность S равен

Отсутствие в природе магнитных зарядов приводит к тому, что линии вектора В не имеют ни начала, ни конца. Поэтому поток вектора В через замкнутую поверхность должен быть равен нулю. Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S выполняется условие

Формула (6.28) выражает теорему Остроградского — Гаусса для вектора :

Подчеркнем еще раз: эта теорема является математическим выражением того факта, что в природе отсутствуют магнитные заряды, на которых начинались бы и заканчивались линии магнитной индукции, как это имело место в случае напряженности электрического поля Е точечных зарядов.

Это свойство существенным образом отличает магнитное поле от электрического. Линии магнитной индукции замкнуты, поэтому число линий, входящих в некоторый объем пространства, равно числу линий, выходящих из этого объема. Если входящие потоки брать с одним знаком, а выходящие — с другим, то суммарный поток вектора магнитной индукции через замкнутую поверхность будет равен нулю.

Рис. 6.29. В. Вебер (1804–1891) — немецкий физик

Отличие магнитного поля от электростатического проявляется также в значении величины, которую мы называем циркуляцией — интеграла от векторного поля по замкнутому пути. В электростатике равен нулю интеграл

взятый по произвольному замкнутому контуру. Это связано с потенциальностью электростатического поля, то есть с тем фактом, что работа по перемещению заряда в электростатическом поле не зависит от пути, но лишь от положения начальной и конечной точек.

Посмотрим, как обстоит дело с аналогичной величиной для магнитного поля. Возьмем замкнутый контур, охватывающий прямой ток, и вычислим для него циркуляцию вектора В , то есть

Как было получено выше, магнитная индукция, создаваемая прямолинейным проводником с током на расстоянии R от проводника, равна

Рассмотрим случай, когда контур, охватывающий прямой ток, лежит в плоскости, перпендикулярной току, и представляет собой окружность радиусом R с центром на проводнике. В этом случае циркуляция вектора В по этой окружности равна

Можно показать, что результат для циркуляции вектора магнитной индукции не меняется при непрерывной деформации контура, если при этой деформации контур не пересекает линий тока. Тогда в силу принципа суперпозиции циркуляция вектора магнитной индукции по пути, охватывающем несколько токов, пропорциональна их алгебраической сумме (рис. 6.30)

Рис. 6.30. Замкнутый контур (L) с заданным направлением обхода.
Изображены токи I 1 , I 2 и I 3 , создающие магнитное поле.
Вклад в циркуляцию магнитного поля вдоль контура (L) дают только токи I 2 и I 3

Если выбранный контур не охватывает токов, то циркуляция по нему равна нулю.

При вычислении алгебраической суммы токов следует учитывать знак тока: положительным будем считать ток, направление которого связано с направлением обхода по контуру правилом правого винта. Например, вклад тока I 2 в циркуляцию — отрицательный, а вклад тока I 3 — положительный (рис. 6.18). Воспользовавшись соотношением

между силой тока I через любую замкнутую поверхность S и плотностью тока , для циркуляции вектора В можно записать

где S — любая замкнутая поверхность, опирающаяся на данный контур L .

Такие поля называются вихревыми . Поэтому для магнитного поля нельзя ввести потенциал, как это было сделано для электрического поля точечных зарядов. Наиболее наглядно разницу потенциального и вихревого полей можно представить по картине силовых линий. Силовые линии электростатического поля похожи на ежей: они начинаются и кончаются на зарядах (либо уходят в бесконечность). Силовые линии магнитного поля никогда не напоминают «ежей»: они всегда замкнуты и охватывают текущие токи.

Для иллюстрации применения теоремы о циркуляции найдем другим методом уже известное нам магнитное поле бесконечного соленоида. Возьмем прямоугольный контур 1-2-3-4 (рис. 6.31) и вычислим циркуляцию вектора В по этому контуру

Рис. 6.31. Применение теоремы о циркуляции В к определению магнитного поля соленоида

Второй и четвертый интегралы равны нулю в силу перпендикулярности векторов и

Мы воспроизвели результат (6.20) без интегрирования магнитных полей от отдельных витков.

Полученный результат (6.35) можно использовать для нахождения магнитного поля тонкого тороидального соленоида (рис.6.32).

Рис. 6.32. Тороидальная катушка: линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r 1 ≤ r однородном магнитном поле , модуль вектора индукции которого равен ∣В ∣, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол α с направлением вектора магнитной индукции B . Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:

В общем случае магнитный поток определяется как интеграл вектора магнитной индукции B через конечную поверхность S.

Стоит отметить, что магнитный поток через любую замкнутую поверхность равен нулю (теорема Гаусса для магнитных полей). Это означает, что силовые линии магнитного поля нигде не обрываются т.е. магнитное поле имеет вихревую природу, а также что невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле. В СИ единицей магнитного потока является Вебер (Вб), в системе СГС — максвелл (Мкс); 1 Вб = 10 8 Мкс.

Индуктивность — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Иначе, индуктивность — коэффициент пропорциональности в формуле самоиндукции .

В системе единиц СИ индуктивность измеряется в генри (Гн). Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать ЭДС самоиндукции в один вольт.

Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году. Говоря просто, индуктивность это свойство проводника с током накапливать энергию в магнитном поле, эквивалентна емкости для электрического поля. Она не зависит от величины тока, а только от формы и размеров проводника с током. Для увеличения индуктивности проводник наматывают в катушки , расчету которых и посвящена программа

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Формула работы силы Ампера при движении прямого проводника с постоянным током в однородном магнитном поле.

Таким образом, работа силы Ампера может быть выражена через силу тока в перемещаемом проводнике и изменение магнитного потока через контур, в который включен этот проводник:

Индуктивность контура.

Индуктивность физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Энергия магнитного поля.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Электромагнитная индукция.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Опыты Фарадея. Объяснение электромагнитной индукции.

Если подносить постоянный магнит к катушке или наоборот (рис.3.1), то в катушке возникнет электрический ток. То же самое происходит с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой также возникнет переменный ток, но лучше всего этот эффект проявляется, если две катушки соединить сердечником

По определению Фарадея общим для этих опытов является следующее: если поток вектора индукции, пронизывающий замкнутый, проводящий контур, меняется, то в контуре возникает электрический ток.

Это явление называют явлением электромагнитной индукции , а ток – индукционным. При этом явление совершенно не зависит от способа изменения потока вектора магнитной индукции.

Формула э.д.с. электромагнитной индукции.

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Правило Ленца.

Правило Ленца

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

Самоиндукция, ее объяснение.

Самоиндукция — явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.

Замыкание цепи
При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи
При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

Формула э.д.с. самоиндукции.

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Первое и второе положения теории электромагнитного поля Максвелла.

1. Всякое перемещенное электрическое поле порождает вихревое магнитное поле. Переменное электрическое поле было названо Максвеллом, так как оно, подобно обычному току, вызывает магнитное поле. Вихревое магнитное поле порождается как токами проводимости Iпр (движущимися электрическими зарядами), так и токами смещения (перемещенным электрическим полем Е).

Первое уравнение Максвелла

2. Всякое перемещенное магнитное поле порождает вихревое электрическое (основной закон электромагнитной индукции).

Второе уравнение Максвелла:

Электромагни́тные во́лны, электромагни́тное излуче́ние — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

3.1. Волна — это колебания, распространяющиеся в пространстве в течение времени.
Механические волны могут распространяться только в какой-нибудь среде (веществе): в газе, в жидкости, в твердом теле. Источником волн являются колеблющиеся тела, которые создают в окружающем пространстве деформацию среды. Необходимым условием для появления упругих волн является возникновение в момент возмущения среды препятствующих ему сил, в частности, упругости. Они стремятся сблизить соседние частицы, когда они расходятся, и оттолкнуть их друг от друга в момент сближения. Силы упругости, действуя на удаленные от источника возмущения частицы, начинают выводить их из равновесия. Продольные волны характерны только газообразным и жидким средам, а вот поперечные – также и твердым телам: причина этого заключается в том, что частицы, составляющие данные среды, могут свободно перемещаться, так как жестко не зафиксированы, в отличие от твердых тел. Соответственно, поперечные колебания принципиально невозможны.

Продольные волны возникают тогда, когда частицы среды колеблются, ориентируясь вдоль вектора распространения возмущения. Поперечные волны распространяются в перпендикулярном вектору воздействия направлении. Короче: если в среде деформация, вызванная возмущением, проявляется в виде сдвига, растяжения и сжатия, то речь идет о твердом теле, для которого возможны как продольные, так и поперечные волны. Если же появление сдвига невозможно, то среда может быть любой.

Каждая волна распространяется с какой-то скоростью. Под скоростью волны понимают скорость распространения возмущения. Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой «проходит» за интервал времени, равный периоду колебаний, поэтому

Волновое число (также называемое пространственной частотой ) — это отношение 2π радиан к длине волны: пространственный аналог круговой частоты.

Определение : волновым числом k называется быстрота роста фазы волны φ по пространственной координате.

3.2. Плоская волна — волна, фронт которой имеет форму плоскости.

Фронт плоской волны неограничен по размерам, вектор фазовой скорости перпендикулярен фронту. Плоская волна является частным решением волнового уравнения и удобной моделью: такая волна в природе не существует, так как фронт плоской волны начинается в и заканчивается в , чего, очевидно, быть не может.

Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Волновое уравнение для функции записывается в виде:

где

· — радиус вектора искомой точки;

Волновая поверхность — геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Частный случай волновой поверхности — волновой фронт.

А) Плоская волна – это волна, волновые поверхности которой представляют собой совокупность параллельных друг другу плоскостей.

Б) Сферическая волна – это волна, волновые поверхности которой представляют собой совокупность концентрических сфер.

Луч — линия, нормальной и волновой поверхности. Под направлением распространения волн понимают направление лучей. Если среда распространения волны однородная и изотропная, лучи прямые (причём, если волна плоская — параллельные прямые).

Понятием луч в физике обычно пользуются только в геометрической оптике и акустике, так как при проявлении эффектов, не изучаемых в данных направлениях, смысл понятия луч теряется.

3.3. Энергетические характеристики волны

Среда, в которой распространяется волна, обладает механической энергией, складывающейся из энергий колебательного движения всех ее частиц. Энергия одной частицы с массой m 0 находится по формуле: Е 0 = m 0 Α 2 ω 2 /2. В единице объема среды содержится n = p /m 0 частиц — плотность среды). Поэтому единица объема среды обладает энергией w р = nЕ 0 = ρ Α 2 ω 2 /2.

Объемная плотность энергии (W р)- энергия колебательного движения частиц среды, содержащихся в единице ее объема:

Поток энергии (Ф) — величина, равная энергии, переносимой волной через данную поверхность за единицу времени:

Интенсивность волны или плотность потока энергии (I) — величина, равная потоку энергии, переносимой волной через единичную площадку, перпендикулярную направлению распространения волны:

3.4. Электромагнитная волна

Электромагнитная волна — процесс распространения электромагнитного поля в пространстве.

Условие возникновения электромагнитных волн. Изменения магнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нем, т. е. при движении зарядов с ускорением. Следовательно, электромагнитные волны должны возникать при ускоренном движении электрических зарядов. При скорости заряда, равной нулю, существует только элект­рическое поле. При постоянной скорости заряда возникает электромаг­нитное поле. При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в про­странстве с конечной скоро­стью.

Электромагнитные волны распространяются в веществе с конечной скоростью. Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.

Электромагнитное излучение принято делить по частотам диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Интерференция волн. Когерентные волны. Условия когерентности волн.

Оптическая длина пути (о.д.п.) света. Связь разности о.д.п. волн с разностью фаз колебаний, вызываемых волнами.

Амплитуда результирующего колебания при интерференции двух волн. Условия максимумов и минимумов амплитуды при интерференции двух волн.

Интерференционные полосы и интерференционная картина на плоском экране при освещении двух узких длинных параллельных щелей: а) красным светом, б) белым светом.

1) ИНТЕРФЕРЕНЦИЯ ВОЛН — такое наложение волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других, в зависимости от соотношения между фазами этих волн.

Необходимые условия для наблюдения интерференции:

1) волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);

2) волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции (попробуйте сложить две перпендикулярные синусоиды!). Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).

Волны, для которых выполняются эти два условия, называются КОГЕРЕНТНЫМИ . Первое условие иногда называют временной когерентностью , второе — пространственной когерентностью .

Рассмотрим в качестве примера результат сложения двух одинаковых однонаправленных синусоид. Варьировать будем только их относительный сдвиг. Иными словами, мы складываем две когерентные волны, которые отличаются только начальными фазами (либо их источники сдвинуты друг относительно друга, либо то и другое вместе).

Если синусоиды расположены так, что их максимумы (и минимумы) совпадают в пространстве, произойдет их взаимное усиление.

Если же синусоиды сдвинуты друг относительно друга на полпериода, максимумы одной придутся на минимумы другой; синусоиды уничтожат друг друга, то есть произойдет их взаимное ослабление.

Математически это выглядит так. Складываем две волны:

здесь х 1 и х 2 — расстояния от источников волн до точки пространства, в которой мы наблюдаем результат наложения. Квадрат амплитуды результирующей волны (пропорциональный интенсивности волны) дается выражением:

Максимум этого выражения есть 4A 2 , минимум — 0; всё зависит от разности начальных фаз и от так называемой разности хода волн :

При в данной точке пространства будет наблюдаться интерференционный максимум, при — интерференционный минимум.

В нашем простом примере источники волн и точка пространства, где мы наблюдаем интерференцию, находятся на одной прямой; вдоль этой прямой интерференционная картина для всех точек одинакова. Если же мы сдвинем точку наблюдения в сторону от прямой, соединяющей источники, мы попадем в область пространства, где интерференционная картина меняется от точки к точке. В этом случае мы будем наблюдать интерференцию волн с равными частотами и близкими волновыми векторами.

2)1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

2. Разность фаз двух когерентных волн от одного источника, одна из которых проходит длину пути в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :

где , , λ – длина волны света в вакууме.

3)Амплитуда результирующего колебания зависит от величины, называемой разностью хода волн.

Если разность хода равна целому числу волн, то волны приходят в точку синфазно. Складываясь, волны усиливают друг друга и дают колебание с удвоенной амплитудой.

Если разность хода равна нечетному числу полуволн, то волны приходят в точку А в противофазе. В этом случае они гасят друг друга, амплитуда результирующего колебания равна нулю.

В других точках пространства наблюдается частичное усиление или ослабление результирующей волны.

В 1802 г. английский ученый Томас Юнг поставил опыт, в котором наблюдал интерференцию света. Свет из узкой щели S , падал на экран с двумя близко расположенными щелями S 1 и S 2 . Проходя через каждую из щелей, световой пучок расширялся, и на белом экране световые пучки, прошедшие через щели S 1 и S 2 , перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Осуществление интерференции света от обычных источников света.

Интерференция света на тонкой пленке. Условия максимумов и минимумов интерференции света на пленке в отраженном и в проходящем свете.

Интерференционные полосы равной толщины и интерференционные полосы равного наклона.

1)Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т. д.

2) интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённыхобъективов. Луч света, проходя через плёнку толщиной , отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, отчего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где — длина волны. Если нм, то толщина плёнки равняется 550:4=137,5 нм.

Рекомендуем статьи по теме

Образование p-n перехода. Свойства p-n перехода.

Полупроводниковым p-n- переходом называют тонкий слой, образующийся в месте контакта двух областей полупроводников акцепторного и донорного типов.

Свойства р-п-перехода:

  1. Образование запирающего слоя.
  2. Направление внешнего поля (источника) совпадает с направлением контактного поля. Тока основных носителей заряда нет. Существует слабый ток не основных носителей заряда. Такое включение называется обратным.
  3. Прямое включение. Существует ток основных носителей заряда.

pn-переход пропускает электрический ток только в одном направлении

Электрический ток в жидкостях. Законы электролиза.

Жидкости по степени электропроводности делятся на: диэлектрики (дистиллированная вода), проводники (электролиты), полупроводники (расплавленный селен).

Электролит — это проводящая жидкость (растворы кислот , щелочей, солей и расплавленные соли).

Электролиз – выделение на электродах веществ, входящих в состав электролита, при протекании через раствор(или расплав) электрического поля.

Закон Фарадея – масса вещества, выделившегося на электроде, прямо пропорциональная заряду, прошедшему через раствор(расплав) электролита : m = kQ = kIt(время прохода).

2 закон K = M/F*n F- постоянная фарадея. М – малярная масса. F = 9.65*10 в 4 степени.

Магнитное поле и его свойства.

Магнитное поле представляет собой особую форму материи и проявляется в пространстве в виде определенного рода сил, которые легко обнаруживаются по своему действию на намагниченные тела. Действие этих сил на намагниченные тела объясняется наличием в телах быстро движущихся внутримолекулярных электрических зарядов.

Основные свойства магнитного поля:

Магнитное поле порождается электрическим током ( = движущимися зарядами). Магнитное поле обнаруживается по действию на электрический ток ( = движущиеся заряды). Подобно электрическому полю, магнитное поле существует реально независимо от нас, от наших знаний о нём. Экспериментальным доказательством реальности магнитного поля, как и реальности электрического поля, является факт существования электромагнитных волн (то есть посылка и приём радио- и телевизионных сигналов).

17.Характеристики магнитного поля. Линии магнитной индукции магнитного поля, и их свойства.

СВОЙСТВА ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

  • имеют направление;
  • непрерывны;
  • замкнуты (т.е. магнитное поле является вихревым);
  • не пересекаются;
  • по их густоте судят о величине магнитной индукции. НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

— определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки ( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

18.Магнитное поле прямолинейного, кругового тока и соленоида. Определение полярности соленоида с током.

19. Сила, действующая на проводник с током в магнитном поле. Закон Ампера.

F(a)=BIL sin альфа

20. Действие магнитного поля на движущийся заряд. Характер движения заряженных частиц в магнитном поле.

F(a)=BIL sin альфа F=BLU sin альфа если заряд влетает в магнитное поле под углом 90 градусов то он движет по кругу если под углом 0 градусов то движется по спирали

21. Магнитный поток. Явление электромагнитной индукции.

магнитный поток создаться линиями поля которые попадают в некоторый замкнутый контур Ф=BScos альфа

22. Э.Д.С индукции, возникающая в проводнике при его движении в магнитном поле.

Eинд=BUL sin альфа природа магнитная

23. Закон электромагнитной индукции. Опыты Фарадая. Правило Ленца.

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Опыты Фарадея можно воспроизвести следующим образом: при внесении или вынесении магнита в катушку, замкнутую на гальванометр, в катушке возникает индукционный ток. Если радом расположить две катушки (например, на общем сердечнике или одну катушку внутри другой) и одну катушку через ключ соединить с источником тока, то при замыкании или размыкании ключа в цепи первой катушки во второй катушке появится индукционный ток. Объяснение этого явления было дано Максвеллом. Любое переменное магнитное поле всегда порождает переменное электрическое поле.

Магнитным потоком Φ через площадь S контура называют величину Φ = B · S · cos α

где B – модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура

Правило Ленца отражает тот экспериментальный факт, что инд и всегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

24. Вихревое электрическое поле и его свойства.

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

1. вызывается изменениями магнитного поля

2. силовые линии замкнуты — вихревое поле

3. источники поля указать нельзя

4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

25. Явление самоиндукции. Э.Д.С. самоиндукции. Индуктивность. Энергия магнитного поля.

индуктивность зависит от форм и размеров проводника и магнитной проницаемости стреды в которой находиться проводник ^Ф=альфа*^I

26. Механические колебания. Параметры колебательного движения. Виды колебательного движения.

1)x-смещение-отклонения тела от положения равновесия [м]

(2) T-период время одного полного колебания (сек)

(3) U-частота- величина обратная периоду определяемая числом колебаний за единицу времени (4)W-круговая или цеклическая частота-величина в 2 П раза больше U

(5) А-амлитуда-масимальное значение изменяймой величины Х(макс) измеряеться в [м] U(макс) измеряеться в [м/с] A(макс) измеряеться в [м/(с) в квадрате] F(макс) измеряеться в[H]

27. Гармонические колебания. Уравнение гармонического колебания. Явление механического резонанса.

гармонические колебания-движения при котором все изменяемые велечины поднимаються по закону синуса или косинуса х=х(макс) sin((w)t+f(0)

28. Электромагнитное поле и его распространение в пространстве, свойства поля. Колебательный контур Герца.

Электромагнитное поле — это порождающие друг друга переменные электрические и магнитные поля.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ — это электромагнитное поле, распространяющееся в пространстве с конечной скоростью,

зависящей от свойств среды.

Свойства электромагнитных волн:

-распространяются не только в веществе, но и в вакууме;

— распространяются в вакууме со скоростью света ( С = 300 000 км/c);

— это поперечные волны;

— это бегущие волны (переносят энергию).

Колебательный контур — это система, состоящая из катушки индуктивности и конденсатора

29. Свойства электромагнитного колебания, их возникновение колебательном контуре. Параметры колебаний.

Электромагнитные колебания – это колебания электрического заряда, силы тока, напряжения, связанные с ними колебания напряженности электрического поля и индукции магнитного поля, а также самостоятельные колебания в электромагнитной волне.

Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы, (м)

Период — промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), (с)

Частота — число колебаний в единицу времени, (Гц, с−1).

30. Превращении энергии в колебательном контуре.

Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет течь в ту же сторону и перезарядит конденсатор. Ток в данном направлении прекратится, и процесс повторится в обратном направлении . Таким образом, в колебательном контуре будут происходить электромагнитные колебания из-за превращения энергии электрического поля конденсатора в энергию магнитного поля катушки с током , и наоборот.

31. Переменный электрический ток, его возникновение.

Переменный ток — электрический ток, который периодически изменяется по модулю и направлению.

Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

32. Законы изменения тока и напряжения в цепи переменного тока. Действующие значения тока и напряжения.

Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи)

Действующее значение силы переменного тока равно силе такого постоянного тока, который выделяет в одном и том же проводнике за одинаковое время то же количество теплоты, что и переменный ток. Амперметры и вольтметры переменного тока градуируют по действующим значениям силы тока и напряжения. В технических паспортах всех электрических машин, аппаратов и приборов переменного тока также указаны действующие значения силы тока и напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *