Что такое цап и ацп
Перейти к содержимому

Что такое цап и ацп

  • автор:

Что такое цап и ацп

3.3.4 Цифро-аналоговые и аналого-цифровые преобразователи

Раздел: Аналогово-цифровая и цифро-аналоговая схемотехника

1. Цифро-аналоговые преобразователи (ЦАП) служат для преобразования информации из цифровой формы в аналоговый сигнал – суммирование токов и напряжений. ЦАП широко применяется в различных устройствах автоматики для связи цифровых ЭВМ с аналоговыми элементами и системами.

Принцип работы ЦАП состоит в суммировании аналоговых сигналов, пропорциональных весам разрядов входного цифрового кода, с коэффициентами, равными нулю или единице в зависимости от значения соответствующего разряда кода.

ЦАП преобразует цифровой двоичный код Q 4 Q 3 Q 2 Q 1 в аналоговую величину, обычно напряжение U вых. . Каждый разряд двоичного кода имеет определенный вес i-го разряда вдвое больше, чем вес (i-1)-го. Работу ЦАП можно описать следующей формулой:

U вых =e*(Q 1 1+Q 2 *2+Q 3 *4+Q 4 *8+…), (1)

где e — напряжение, соответствующее весу младшего разряда, Q i — значение i -го разряда двоичного кода (0 или 1).

Например, числу 1001 соответствует

U вых =у*(1*1+0*2+0*4+1*8)=9*e, а числу 1100

На рисунке 3.3.4.1 приведена схема цифро — аналогового преобразователя.

Рисунок 3.3.4.1 — Схема цифро-аналогового преобразователя

Упрощенная схема реализации ЦАП представлена на рис1. В схеме i – й ключ замкнут при Q i =1, при Q i =0 – разомкнут. Регистры подобраны таким образом, что R>>Rн.

Эквивалентное сопротивление обведенного пунктиром двухполюсника Rэк и сопротивление нагрузки Rн образуют делитель напряжения, тогда

Uвых = E Rн / Rэк + Rн » E*Rн / Rэк (2)

Проводимость двухполюсника 1 / Rэк равна сумме проводимостей ветвей (при Q i =1 i – ветвь включена, при Q i =0 – отключена):

1 / Rэк = Q1 / 8R + Q2 / 4R + Q3 / 2R + Q4 / R (3)

Подставив (3) в (2), получаем выражение, идентичное (1)

Uвых = (8Е Rн / R)*( Q 1 *1 + Q 2 *2 + Q 3 *4 + Q 4 *8 )

Очевидно, что е = 8Е Rн / R. Выбором е можно установить требуемый масштаб аналоговой величины.

2. Аналогово-цифровые преобразователи . В информационных и управляющих системах часть (или вся) информация от датчиков бывает представлена в аналоговой форме. Для ее ввода в цифровые ЭВМ и цифровое управляющее устройство широко применяются аналогово-цифровые преобразователи (АЦП). В большинстве случаев АЦП выполняют преобразование входного напряжения или тока в двоичный цифровой код.

Существуют различные типы АЦП. Мы остановимся лишь на тех типах, которые получили в настоящее время наибольшее распространение.

Рисунок 3.3.4.2 — Схема АЦП последовательного приближения

2.1. АЦП последовательного приближения (АЦППП). Структурная схема АЦППП приведена на рисунке 3.3.4.2. Схема работает следующим образом. Входной аналоговый сигнал Uвх перед началом преобразования запоминается схемой выборки – хранения ВХ, что необходимо, так как в процессе преобразования необходимо изменение аналогового сигнала. Далее по команде “Пуск” с помощью сдвигового регистра последовательно во времени каждый триггер Ti, начиная со старшего разряда, переводит в положение 1 соответствующий разряд ЦАП. Напряжение U1 (или ток) с выхода ЦАП сравнивается с входным аналоговым сигналом с помощью компаратора КП. Если U0 > U1, на выходе компаратора сохраняется низкий уровень и в триггере сохраняется единица, при U0 < U1 срабатывает компаратор и переводит триггер в положение 0. После окончания цикла на выходах триггеров получается двоичный код, соответствующий (при идеальных элементах) U0 с точностью до половины младшего разряда.

Погрешность АЦППП определяется неточностью ЦАП, зоной нечувствительности и смещением нуля компаратора, а также погрешностью схемы выборки – хранения.

Поскольку в такой схеме ошибка в каком – либо разряде в дальнейшем не корректируется, необходимо, чтобы время на “взвешивание” каждого разряда было достаточно для затухания переходного процесса до уровня, соответствующего половине младшего разряда, и чтобы при разбалансе U1 – U0 на это значение компаратора успел сработать. Общее время преобразования

t пр =t вх +n(t з,к +t у +t ц )+t cб ,

где tвх – время, необходимое для фиксации Uвх схемой ВХ; n – число разрядов; tз,к – время задержки, вносимое компаратором; tу – время установления U1 на входе ЦАП; tц – время задержки цифровых элементов в схеме управления и срабатывания триггера; tсб – время, необходимое для сброса ЦАП в исходное состояние, включая время, необходимое для синхронизации с началом такта.

Наибольшую долю в tпр обычно вносит tу, наибольшая величина которого может быть оценена следующим образом:

где Tэ – эквивалентная постоянная времени на входе ЦАП. Если на его выходе включен ОУ, который полезен для уменьшения выходного сопротивления и ускорения тем самым переходного процесса, то Tэ» 1/2p fср (fср – частота среза ОУ по контуру обратной свази).

При 12 – разрядном АЦП и использовании быстродействующего ЦАП с tу=100 нс время tпр близко к 1,5 мкс. В большинстве случаев tпр такого преобразователя достигает 10 – 100 мкс.

2.2. АЦП параллельного типа (АЦПП). Существенное уменьшение tпр удается получить в АЦП параллельного типа. Его структурная схема приведена на рис3. Здесь входная аналоговая величина U 0 с выхода схемы ВХ сравнивается с помощью 2 n+1 – 1 компараторов с 2(2 n -1) эталонными уровнями, образованными делителями из резисторов равного сопротивления. При этом срабатывают m младших компараторов, образующих на выходах схем И-НЕ нормальный единичный код, затем который с помощью специального дешифратора ДШ преобразуется в двоичный выходной сигнал.

Погрешность АЦПП определяется неточностью и нестабильностью эталонного напряжения, резистивного делителя и погрешностями компараторов. Значительную роль могут играть входные токи компараторов, если делитель недостаточно низкоомный. На рисунке 3.3.4.3 приведена структурная схема АЦП параллельного типа.

Рисунок 3.3.4.3 — Схема АЦП параллельного типа.

Время преобразования складывается из следующих составляющих:

t пр = t вх + t з,к + a t л,сi ,

где t л,сi – Время задержки логичесих схем; k – число последовательно включенных логических схем.

При использовании компаратров со стробированием АЦПП может быть без схемы ВХ. При этом он обеспечивает наибольшее быстродействие по сравнению с любыми другими АЦП.

Рисунок 3.3.4.4 — АЦП и ЦАП.

На рисунке 3.3.4.4, показана схема для преобразование аналоговой величины (напряжения) в цифровой код и обратное проебразование цифрового кода в аналоговую величину. Процесс работы схемы показан на временной диаграмме. Временная диаграмма, иллюстрирующая работу АЦП и ЦАП, приведена на рисунке 3.3.4.5.

Рисунок 3.3.4.5 — Диаграмма работы АЦП и ЦАП.

  1. Используя пакет Electronics Workbench спроектировать схему представленную на рисунке 3.3.4.4, и провести анализ изменения напряжения, меняя частоту и амплитуду, изменить время замыкания и размыкания каждого из ключей.
  2. Составить отчет о выполнении лабораторной работы в MS Word в который включить
    — Схемы ЦАП и АЦП;
    — Временные диаграммы работы ЦАП и АЦП .

АЦП и ЦАП

КР572ПА1А (AD7520), Умножающий ЦАП

Аналого-цифровой преобразователь (АЦП) — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал).

Цифро-аналоговый преобразователь (ЦАП) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.

Контакты
О компании
  • Контактная информация
  • Политика конфиденциальности
Как купить
  • Доставка заказа
  • Состояние заказа
Помощь

Цены и нормы отпуска товара, указанные на сайте, несут ознакомительный характер и не являются публичной офертой.

AllFrets

Надеюсь, вы уже успели прочитать первую теоретическую статью по звуку, поэтому, как и обещалось, мы переходим к расшифровке, а точнее сказать «нормально-русскому объяснению» двух похожих аббревиатур — ЦАП и АЦП.

Для удобства статья будет разбита на 2 части.

Часть I

АЦП или аналогово-цифровое преобразование.

В аналоговой аппаратуре аналоговый звук имеет вид непрерывного электрического сигнала, компьютерная техника, в свою очередь работает только с цифровыми данными — следовательно звук в компьютере имеет цифровой вид.

Думаю у вас уже возникла некая путаница между «звуками». Что бы не было недопонимании рассмотрим что такое цифровой звук и как аналоговый преобразуется «в цифру».

Цифровой звук — способ представления звукового сигнала посредством дискретных численных значений его амплитуды.

Как обычно — постараюсь объяснить все по-проще. Немного повторюсь.

Звуковая волна представляет собой сложную функцию изображающую зависимость ее амплитуды от времени.

Для оцифровки этой волны следует описать ее, сохранив дискретное значение к конкретных точках.

Значение амплитуды звуковой волны нужно измерить в каждой временной точке, а полученное значение записать в виде чисел. Но, из-за невозможности фиксирования значения амплитуды с точностью 100%, их приходится записывать в округленном виде. Что как следствие влечет небольшие искажения исходного сигнала. Иными словами будет происходить как бы приближение этой функции по амплитудной и временной координатным осям.

Как видим, процесс оцифровки сигнала состоит из двух этапов.

1.Первый — дискретизации (осуществления выборки)

Дискретизация — процесс получения значений величин преобразуемого сигнала в определенные промежутки времени. Иными словами это как бы «выборка» сигнала по заданным значениям.

Квантование — представляет собой процесс замены полученных значений амплитуды сигнала с максимально приближенной точностью.

Как и говорилось выше — при преобразовании сигнала приходится округлять значения из-за невозможности фиксировать «реальное» значение амплитуды с идеальной(по сути — бесконечной) точностью. Для этого компьютерам понадобился бы более огромный объем оперативной памяти (больше чем 1Тб), а уточнять можно до бесконечности, что как следствие влечет создание ОЗУ с бесконечным объемом памяти.

На точность округления влияет уровень квантования(или же разрядность квантования). Чем больше количество уровней, тем на меньшую величину округляется значение амплитуды, что как следствие получаем меньшую величину погрешности.

Исходя из выше изложенного уже можно сделать вывод, о том что оцифровка сигнала представляет собой фиксирование амплитуды звуковой волны через определенный интервалы времени, и запись полученного с минимальной величиной погрешности.

Напрашивается и другой вывод. Чем выше частота дискретизации и разрядность квантования, тем точнее выходит описание полученного сигнала.

Качество напрямую зависит от параметров выбранных для оцифровки. Это — частота дискретизации (выражается в Кгц) и разрядность (выражается в Битах).

Иными словами — чем выше разрядность и частота дискретизации, тем более качественным получается сигнал, и тем больше получается объем оцифрованных данных. Поэтому тут следует искать «золотую середину» между весом и качеством.

Теорема Коте́льникова (в англоязычной литературе— теорема Найквиста— Шеннона или теорема отсчётов) гласит, что, если аналоговый сигнал имеет финитный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой, строго большей удвоенной верхней частоты.

В «переводе на нормально-человеческий язык»,что бы получить наиболее полную информацию о звуке, допустим в частотном диапазоне до 22 000 Гц, необходима дискретизация с частотой , не менее 44.1Кг.

Это говорит о том, что нет смысла сильно гнаться за высокими частотами дискретизации, так как частота 44.1Кгц охватывает весь диапазон частот, которые способен слышать человек, и даже немного выше.

Часть II

Цифро-аналоговое преобразование.

Что бы после оцифровки иметь возможность послушать звук, его нужно обратно преобразовать в аналоговый.

Аналоговый сигнал может обрабатываться усилителями и другими аналоговыми устройствами и воспроизводиться акустическими системами.

Преобразовывает цифровой сигнал в аналоговый — цифро-аналаговый преобразователь(ЦАП). Процесс преобразования представляет собой процедуру обратную АЦП.

Современные системы воспроизводят и записывают звук через аудио интерфейс, задачей которого является ввод и вывод аудио информации, т..е. Это и есть устройство преобразования аналогового сигнала в цифровой и обратно.

Работу аудио интерфейса можно объяснить более простыми словами.

Вначале входной аналоговый звук попадает в аналоговый вход(или микшер), после этого он направляется в АЦП, который его квантует и дискретизирует.. Результатом является получение цифрового аудио сигнала который по шине идет в компьютер и получается цифровой звук.

При выводе аудио информации происходит аналогичный процесс, только в обратную сторону. Поток данных проходит через ЦАП,который преобразует числа определяющие амплитуду сигнала в электрический — аналоговый сигнал.

Схематично, все это выглядит, как представлено на рис.1

Хочу отметить, что если аудио интерфейс оборудован интерфейсом для обмена цифровыми данными, то при работе с цифровым аудио никакие его аналоговые блоки не задействованы — таким образом, обходя преобразователи, вы будете сохранять звук практически таким какой он есть.

Цифро-аналоговые и аналого-цифровые преобразователи в категории Оборудования для домашней звукозаписи и звукозаписывающих студий

ЦАП – цифро-аналоговый преобразователь (DAC, Digital to analog converter) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.

АЦП – аналого-цифровой преобразователь (ADC, Analog to digital converter) — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя, DAC).
АЦП незаменим при оцифровке старых аналоговых записей (на грампластинках, аудио и видеокассетах), также при записи в цифровом виде живого звука с микрофона.

Конвертеры высокого класса, а именно класса А, позволяют преобразовать входящий аналоговый сигнал в цифровой с минимальными потерями. И преобразовать цифровой в аналоговый так же точно, то есть максимально качественно (с высоким битрэйтом и сэмплрэйтом). Чем выше будут параметры bitrate и samplerate, тем лучше будет ваша запись в плане качества и приближенности к оригиналу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *