Металлическому шару сообщается отрицательный заряд который распределяется
Перейти к содержимому

Металлическому шару сообщается отрицательный заряд который распределяется

  • автор:

Металлическому шару сообщается отрицательный заряд который распределяется

Проводники это тела, в которых электрические заряды способны перемещаться под действием сколь угодно слабого электростатического поля, что приводит к появлению поля внутри проводника, равного и противоположного внешнему. Вследствие этого сообщённый проводнику заряд будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю.

Таким образом, напряженность электрического поля внутри проводника всегда будет равна нулю.

Распределение зарядов по поверхности

Потенциал внутри проводника постоянен и одинаков.

E = dϕ/dr → dϕ/dr = 0 → ϕ = const [1] Так как напряжённость внутри проводника равна нулю (Е = 0), то потенциал внутри проводника постоянен.

На поверхности заряженного проводника вектор напряженности Е должен быть направлен перпендикулярно к этой поверхности, иначе под действием составляющей, касательной к поверхности (Et), заряды перемещались бы по поверхности проводника.

Таким образом, при условии статического распределения зарядов, напряженность на поверхности: E = En, Et = 0 [2] где En — нормальная составляющая напряженности,
Et — составляющая напряженности, направленная касательно к поверхности.

Из равенств [1] и [2] следует, что при равновесии зарядов поверхность проводника является эквипотенциальной.

В заряженном проводнике нескомпенсированные заряды располагаются только на поверхности проводника.

Суммарный заряд внутри произвольного объёма проводника

Представим внутри проводника произвольную замкнутую поверхность S, ограничивающую некоторый внутренний объём проводника. Согласно теореме Гаусса, суммарный заряд этого объёма равен:
Таким образом, в состоянии равновесия внутри проводника избыточных зарядов нет.

Поэтому если мы удалим вещество из некоторого объёма, взятого внутри проводника, это никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т.е. по его наружной поверхности. На внутренней поверхности избыточные заряды располагаться не могут.

Исследуя величину напряжённости электрического поля вблизи поверхности заряженных тел различной формы можно судить и о распределении зарядов по поверхности — плотность зарядов при данном потенциале проводника определяется кривизной поверхности – она растёт с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно велика бывает плотность на остриях. Напряженность поля вблизи остриёв может быть настолько большой, что происходит ионизация молекул окружающего газа. При этом заряд проводника уменьшается, он как бы стекает с острия.

Проводники во внешнем электрическом поле.

В проводниках могут свободно перемещаться не только заряды, принесённые извне, но и заряды, из которых состоят атомы и молекулы проводника (электроны и ионы). Поэтому при помещении незаряженного проводника во внешнее электрическое поле свободные заряды будут перемещаться к его поверхности, положительные по полю, а отрицательные против поля. В результате у концов проводника возникают заряды противоположного знака, называемые индуцированными зарядами. Это явление, состоящее в электризации незаряженного проводника во внешнем электростатическом поле путём разделения на этом проводнике уже имеющихся в нём в равных количествах положительных и отрицательных электрических зарядов называется электростатической индукцией.

Вытеснение зарядов из объёма проводника

Перемещение зарядов в проводнике помещённом во внешнее электрическое поле Е0 будет происходить до тех пор, пока создаваемое индукционными зарядами дополнительное поле Едоп. не скомпенсирует внешнее поле Е0 во всех точках внутри проводника и результирующее поле Е внутри проводника станет равным нулю.

Суммарное поле Е вблизи проводника будет заметно отличаться от своего первоначального значения Е0. Линии Е будут перпендикулярны к поверхности проводника и будут частично кончаться на индуцированных отрицательных зарядах и вновь начинаться на индуцированных положительных зарядах.

Индуцированные на проводнике заряды исчезают, когда проводник удаляют из электрического поля. Если предварительно отвести индуцированные заряды одного знака на другой проводник (например в землю) и отключить последний , то первый проводник останется заряженным электричеством противоположного знака.

Отсутствие поля внутри проводника, помещённого в электрическое поле, широко применяется в технике для электростатической защиты от внешних электрических полей (экранировки) разных электрических приборов и проводов. Когда какой-то прибор хотят защитить от воздействия внешних полей, его окружают проводящим футляром (экраном).

Подобный экран действует хорошо и в том случае, если его сделать не сплошным, а в виде густой сетки — именно так устроена «клетка Фарадея»

Распределение заряда по поверхности проводника

В случае равновесного распределения заряды проводника распределяются в тонком поверхностном слое. Так, например, если проводнику сообщить отрицательный заряд, то из-за наличия сил отталкивания элементов этого заряда они рассредоточатся по всей поверхности проводника.

Исследование при помощи пробной пластинки

Для того чтобы на опыте исследовать, как распределяются заряды на внешней поверхности проводника используют так называемую пробную пластинку. Эта пластинка настолько мала, что при соприкосновении с проводником ее можно рассматривать как часть поверхности проводника. Если эту пластинку приложить к заряженному проводнику, то часть заряда ($\triangle q$) перейдет на нее и величина этого заряда будет равна заряду, который находился на поверхности проводника по площади равной площади пластинки ($\triangle S$).

Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты

Тогда величина равная:

называется поверхностной плотностью распределения заряда в данной точке.

Разряжая пробную пластинку через электрометр можно судить о величине поверхностной плотности заряда. Так, например, если зарядить проводящий шар, то можно увидеть, с помощью вышеприведенного метода, что в состоянии равновесия поверхностная плотность заряда на шаре одна и та же во всех его точках. То есть заряд по поверхности шара распределяется равномерно. Для проводников более сложной формы распределение заряда сложнее.

Поверхностная плотность проводника

Поверхность любого проводника является эквипотенциальной, но в общем случае плотность распределения заряда может очень сильно отличаться в разных точках. Поверхностная плотность распределения заряда зависит от кривизны поверхности. В разделе, который был посвящен описанию состояния проводников в электростатическом поле, мы установили, что напряженность поля около поверхности проводника перпендикулярна поверхности проводника в любой его точке и равна по модулю:

где $_0$ — электрическая постоянная, $\varepsilon $ — диэлектрическая проницаемость среды. Следовательно,

Чем больше кривизна поверхности тем, тем больше напряженность поля. Следовательно, на выступах плотность заряда особенно велика. Вблизи углублений в проводнике эквипотенциальные поверхности расположены реже. Следовательно, напряженность поля и плотность зарядов в этих местах меньше. Плотность зарядов при заданном потенциале проводника определяется кривизной поверхности. Она растет с увеличением выпуклости и убывает с увеличением вогнутости. Особенно большая плотность заряда на остриях проводников. Так, напряженность поля на острие может быть настолько велика, что может возникать ионизация молекул газа, который окружает проводник. Ионы газа противоположного знака заряда (относительно заряда проводника) притягиваются к проводнику, нейтрализуют его заряд. Ионы того же знака отталкиваются от проводника, «тянут» за собой нейтральные молекулы газа. Такое явление называют электрическим ветром. Заряд проводника уменьшается в результате процесса нейтрализации, он как бы стекает с острия. Такое явление называют истечением заряда с острия.

Мы уже говорили, что когда мы вносим проводник в электрическое поле, происходит разделение положительных зарядов (ядер) и отрицательных (электронов). Такое явление носит название электростатической индукции. Заряды, которые появляются в результате, называют индуцированными. Индуцированные заряды создают дополнительное электрическое поле.

«Распределение заряда по поверхности проводника» ��
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети

Поле индуцированных зарядов направлено в сторону противоположную направлению внешнего поля. Поэтому заряды, которые накапливаются на проводнике, ослабляют внешнее поле.

Перераспределение зарядов идет, пока не выполнены условия равновесия зарядов для проводников. Такие как: равенство нулю напряженности поля везде внутри проводника и перпендикулярность вектора напряженности заряженной поверхности проводника. Если в проводнике есть полость, то при равновесном распределении индуцированного заряда поле внутри полости равно нулю. На этом явлении основана электростатическая защита. Если какой-либо прибор хотят защитить от воздействия внешних полей, его окружают проводящим экраном. В таком случае внешнее поле компенсируется внутри экрана возникающими на его поверхности индуцированными зарядами. Такой может быть не обязательно сплошным, но и в виде густой сетки.

Задание: Бесконечно длинная нить, заряженная с линейной плотностью $\tau $, расположена перпендикулярно бесконечно большой проводящей плоскости. Расстояние от нити до плоскости $l$. Если продолжить нить до пересечения с плоскостью, то в месте пересечения получим некоторую точку А. Составьте формулу зависимости поверхностной плотности $\sigma \left(r\right)\ $индуцированных зарядов на плоскости от расстояния до точки А.

Пример 1

Рассмотрим некоторую точку В на плоскости. Бесконечно длинная заряженная нить в точке В создает электростатическое поле, в поле находится проводящая плоскость, на плоскости образуются индуцированные заряды, которые в свою очередь создают поле, которое ослабляет внешнее поле нити. Нормальная составляющая поля плоскости (индуцированных зарядов) в точке В будет равна нормальной составляющей поля нити в этой же точке, если система находится в равновесии. Выделим на нити элементарный заряд ($dq=\tau dx,\ где\ dx-элементарный\ кусочек\ нити\ $), найдем в точке В напряжённость, создаваемую этим зарядом ($dE$):

Найдем нормальную составляющую элемента напряженности поля нити в точке В:

где $cos\alpha $ выразим как:

Выразим расстояние $a$ по теореме Пифагора как:

Подставим (1.3) и (1.4) в (1.2), получим:

Найдем интеграл от (1.5) где пределы интегрирования от $l\ (расстояние\ до\ ближайшего\ конца\ нити\ от\ плоскости)\ до\ \infty $:

С другой стороны, мы знаем, что поле равномерно заряженной плоскости равно:

Приравняем (1.6) и (1.7), выразим поверхностную плотность заряда:

Задание: Рассчитайте поверхностную плотность заряда, который создается около поверхности Земли, если напряженность поля Земли равна 200$\ \frac$.

Будем считать, что диэлектрическая проводимость воздуха $\varepsilon =1$ как у вакуума. За основу решения задачи примем формулу для расчёта напряженности заряженного проводника:

Выразим поверхностную плотность заряда, получим:

где электрическая постоянная нам известна и равна в СИ $_0=8,85\cdot ^\frac.$

Ответ: Поверхностная плотность распределения заряда поверхности Земли равна $1,77\cdot ^\frac$.

Электризация соприкосновением

формулки.ру

Сообщить заряд телу можно, либо трением о другое тело, либо, прикоснувшись этим телом к заряженному телу. То есть, электризация происходит либо при трении тел, либо, когда незаряженное тело прикасается к заряженному.

Сравним электризацию при трении и соприкосновении

Потрем кусочек эбонита о шерсть. Во время трения эбонит получает электроны, поэтому, заряжается отрицательно.

А шерсть электроны отдает, поэтому, заряжается положительно. Сколько электронов отдала шерсть, столько же получил эбонит.

Поэтому, заряды эбонита и шерсти равны по модулю, но имеют противоположные знаки.

После электризации трением одно тело содержит положительный заряд, другое – отрицательный. Заряды всегда численно равны.

После электризации соприкосновением заряды тел равны не всегда. Чем больше размеры тела, тем большую часть заряда оно получит.

Как распределяются заряды при соприкосновении

Возьмем два шара, имеющие одинаковые размеры. Один из шаров наэлектризуем, а второй оставим незаряженным. Если шары соприкоснутся, то заряд распределится поровну между двумя шарами (рис. 1).

Рис. 1. Если размеры совпадают, то при контакте тел между телами заряд распределяется на две равные части

Заменим теперь шар незаряженный шаром, имеющим большие размеры. При соприкосновении на большой шар перейдет большая часть заряда (рис. 2). То есть, заряд теперь распределяется не поровну.

Рис. 2. Когда размеры различаются, при контакте тел заряд между телами распределяется на неравные части

Заряд, полученный телом при соприкосновении, зависит от размеров тела. Чем больше размеры тела, тем большая часть заряда перейдет на него при соприкосновении.

Это свойство используется при заземлении. Земной шар имеет значительно большие размеры, по сравнению с телами, которые на нем находятся.

Передавая заряд земле, тело становится электрически нейтральным, потому, что на землю стекает почти весь заряд тела (рис. 3).

Рис. 3. Заземляя тело, мы передаем весь его заряд на земной шар

В левой части рисунка 3 изображено тело до заземления. Оно имеет заряд «+q». А в правой — после заземления, тело заряда не имеет.

Примечание: Заземление – это передача избыточного заряда от тела к земле. Тела заземляют, соединяя с землей отрезком толстой проволоки, или кабеля. Заземление металлических корпусов электроприборов применяют для защиты людей от удара электрическим током.

Несколько случаев для контакта двух одинаковых тел удобно объяснить на примере решения задач.

Три задачи о распределении заряда между двумя одинаковыми шарами

Распределение зарядов между двумя телами, имеющими одинаковые размеры, но различные заряды, просто показать на примерах решения задач.

Задача 1

Даны два одинаковых шара. Один шар имеет положительный заряд величиной 0,8 Кулона, а второй – отрицательный заряд 0,2 Кулона. Каким окажется заряд каждого шара после их соприкосновения?

Решение:

Шар, имеющий положительный заряд, обладает недостатком электронов.

При соприкосновении с ним отрицательно заряженного шара, избыток электронов с него полностью переходит на положительный шар, так, что компенсирует часть положительного заряда.

Общий заряд шаров имеет положительный знак и равен ( 0,8 Кл — 0,2 Кл ) = 0,6 Кл. Этот заряд перераспределится между шарами поровну, потому, что в условии сказано, что шары имеют одинаковые размеры.

Ответ:

После соприкосновения заряд каждого шара положительный и равен 0,3 Кл.

Задача 2

Даны два одинаковых шара. Один шар имеет положительный заряд величиной 0,3 Кулона, а второй – отрицательный заряд 0,7 Кулона. Каким окажется заряд каждого шара после их соприкосновения?

Решение:

Шар, имеющий положительный заряд, имеет недостаток электронов.

Часть электронов при соприкосновении переходит с отрицательного на положительный шар и компенсирует положительный заряд.

Общий заряд шаров имеет отрицательный знак и равен ( 0,7 Кл — 0,3 Кл ) = 0,4 Кл. Этот заряд перераспределится между шарами поровну, так как в условии сказано, что шары имеют одинаковые размеры.

Ответ:

После соприкосновения заряд каждого шара отрицательный и равен 0,2 Кл.

Задача 3

Даны два одинаковых шара. Один шар имеет положительный заряд величиной 0,3 Кулона, а второй – положительный заряд 0,7 Кулона. Каким окажется заряд каждого шара после их соприкосновения?

Решение:

Недостаток электронов больше у шара, имеющего больший положительный заряд. Поэтому при соприкосновении часть электронов с шара, имеющего меньший положительный заряд, перейдет на шар с большим положительным зарядом.

Общий заряд шаров имеет положительный знак и равен ( 0,7 Кл + 0,3 Кл ) = 1,0 Кл. Этот заряд перераспределится между шарами поровну, так как в условии сказано, что шары имеют одинаковые размеры.

Ответ:

После соприкосновения заряд каждого шара положительный и равен 0,5 Кл.

При контактировании тел выполняется закон сохранения заряда. Несколько случаев для двух тел одинаковых размеров записаны в виде таблицы 1.

Таблица 1. Распределение заряда при контакте двух тел, имеющих одинаковые размеры

Выводы

Возьмем два одинаковых тела. Каждое тело имеет свой заряд. Будем прикасаться одним телом к другому.

  1. Если заряды тел численно не равны и имеют различные знаки, то часть заряда компенсируется, а оставшаяся часть распределится между телами поровну. Когда же заряды имеют одинаковые знаки, то сумма зарядов распределятся поровну между телами.
  2. В случае, если заряды тел численно равны и имеют различные знаки, то заряд компенсируется, после соприкосновения тела не будут иметь зарядов. А когда заряды имеют одинаковые знаки, то после контакта заряд каждого тела не изменится.

Электрическое поле. Действие электрического поля на электрические заряды. Проводники и диэлектрики

1. Электрическое взаимодействие отличается от взаимодействия тел, изучаемого механикой, прежде всего тем, что заряженные тела взаимодействуют, находясь на некотором расстоянии друг от друга. Это взаимодействие наблюдается как в вещественной среде, так и в безвоздушном пространстве. Согласно утверждению английских учёных М. Фарадея и Д. Максвелла, в пространстве, в котором находится заряженное тело, существует электрическое поле. Посредством этого поля одно заряженное тело действует на другое.

Электрическое поле материально, наряду с веществом оно представляет собой вид материи. Это означает, что электрическое поле реально, оно существует независимо от нас. Убедиться в реальности электрического поля заряженного тела можно, наблюдая его действие на другие тела.

Силу, с которой поле действует на внесённый в него электрический заряд, называют электрической силой. Предположим, что в электрическое поле, существующее вокруг некоторого заряженного тела, вносят электрический заряд. Значение силы, с которой это поле действует на заряд, зависит от расстояния между зарядами и от значения этих зарядов.

2. Одним из способов электризации тел является электризация через влияние. Предположим, что к шару электрометра поднесли, не касаясь его, отрицательно заряженную палочку. Электрическое поле этой палочки будет действовать на заряды, содержащиеся в электрометре. При этом свободные электроны будут отталкиваться и соберутся на конце стержня и на стрелке, отклонение стрелки покажет наличие заряда. На шаре электрометра при этом будет избыточный положительный заряд. Если палочку убрать, то стрелка электрометра вернётся в ноль.

Для того чтобы на электрометре остался заряд, его нужно заземлить, т.е. соединить с Землёй. Это можно сделать, если коснуться шара электрометра рукой. Тогда электроны, стремясь уйти как можно дальше, переместятся с электрометра в землю. Если теперь убрать руку и палочку, то стрелка покажет, что электрометр заряжен. На нём останется избыточный положительный заряд. Аналогично электрометр может приобрести отрицательный заряд, если поднести к нему положительно заряженную палочку. В этом случае при заземлении на электрометре будет избыток электронов.

3. В рассмотренном выше опыте электрические заряды перемещались по электрометру. По эбонитовой палочке они не перемещались, в противном случае при касании её рукой она бы разряжалась. Из этого следует, что существуют вещества, по которым заряды могут перемещаться, и вещества, по которым заряды не могут перемещаться.

Первый класс веществ называют проводниками. Хорошими проводниками являются металлы. Это связано с тем, что в металлах существуют электроны, слабо связанные с ядром атома и имеющие возможность свободно перемещаться. Если поместить проводник в электрическое поле так, как это было в рассмотренном опыте с электрометром, то произойдёт разделение зарядов.

Второй класс веществ называют диэлектриками. К ним относятся эбонит, стекло, пластмассы и пр. В диэлектрике нет свободных зарядов. Если внести диэлектрик в электрическое поле, то нейтральный атом в нём примет определённую ориентацию, однако никакого перемещения зарядов не произойдет.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Лёгкий незаряженный шарик из металлической фольги подвешен на тонкой шёлковой нити. При поднесении к шарику стержня с положительным электрическим зарядом (без прикосновения) шарик

1) отталкивается от стержня
2) не испытывает ни притяжения, ни отталкивания
3) на больших расстояниях притягивается к стержню, на малых расстояниях отталкивается
4) притягивается к стержню

2. К незаряженной лёгкой металлической гильзе, подвешенной на шёлковой нити, поднесли, не касаясь, положительно заряженную стеклянную палочку. На каком рисунке правильно показано поведение гильзы и распределение зарядов на ней?

3. К незаряженному электрометру поднесли положительно заряженную палочку. Какой заряд приобретут шар и стрелка электрометра?

1) шар и стрелка будут заряжены отрицательно
2) шар и стрелка будут заряжены положительно
3) на шаре будет избыточный положительный заряд, на стрелке — избыточный отрицательный заряд
4) на шаре будет избыточный отрицательный заряд, на стрелке — избыточный положительный заряд

4. К двум одинаковым заряженным шарикам, подвешенным на изолирующих нитях, подносят положительно заряженную стеклянную палочку. В результате положение шариков изменяется так, как показано на рисунке (пунктирными линиями указано первоначальное положение нитей). Это означает, что

1) оба шарика заряжены положительно
2) оба шарика заряжены отрицательно
3) первый шарик заряжен положительно, а второй отрицательно
4) первый шарик заряжен отрицательно, а второй положительно

5. К подвешенному на тонкой нити отрицательно заряженному шарику А поднесли, не касаясь, шарик Б. Шарик А отклонился, как показано на рисунке. Шарик Б

1) имеет отрицательный заряд
2) имеет положительный заряд
3) может быть не заряжен
4) может иметь как положительный, так и отрицательный заряд

6. К отрицательно заряженному электроскопу поднесли, не касаясь его, диэлектрическую палочку. При этом листочки электроскопа разошлись на заметно больший угол. Заряд палочки может быть

1) только положительным
2) только отрицательным
3) и положительным, и отрицательным
4) равным нулю

7. К незаряженному изолированному проводнику АБ приблизили изолированный отрицательно заряженный металлический шар. В результате листочки, подвешенные с двух сторон проводника, разошлись на некоторый угол (см. рисунок).

Распределение заряда в проводнике АБ правильно изображено на рисунке

8. На нити подвешен незаряженный металлический шарик. К нему снизу поднесли заряженную палочку. Изменится ли сила натяжения нити, и если да, то как?

1) не изменится
2) увеличится независимо от знака заряда палочки
3) уменьшится независимо от знака заряда палочки
4) увеличится или уменьшится в зависимости от знака заряда палочки

9. Из какого материала может быть сделан стержень, соединяющий электроскопы, изображённые на рисунке?

А. Сталь
Б. Стекло

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

10. Два металлических шарика, укреплённых на изолирующей подставке, соединили металлическим стержнем. К правому шарику поднесли отрицательно заряженную палочку, затем убрали стержень и заряженную палочку. Какой заряд будет на правом и на левом шариках?

1) на правом шарике — положительный, на левом — отрицательный
2) на правом шарике — отрицательный, на левом — положительный
3) на нравом и на левом шариках — положительный
4) на правом и на левом шариках — отрицательный

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Вокруг электрического заряда существует электрическое поле.
2) В диэлектрике, помещенном в электрическое поле, происходит перераспределение зарядов.
3) Электрическое поле невидимо и не может быть обнаружено.
4) При электризации через влияние в проводнике происходит перераспределение зарядов.
5) Диэлектрику можно сообщить электрический заряд, поместив его в электрическое поле.

12. Электрометр с шариком на его конце помещён в поле отрицательного заряда. При этом его стрелка отклонилась на некоторый угол. Как при этом изменилось количество заряженных частиц электрометре? Установите соответствие между физическими величинами и их возможными изменениями при этом. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) количество протонов на шарике
Б) количество электронов на шарике
B) количество электронов на стрелке

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *