Как определить ток проходящий по нейтральному проводу
Перейти к содержимому

Как определить ток проходящий по нейтральному проводу

  • автор:

Как определить ток проходящий по нейтральному проводу

1. Литунов, С. Н. Обзор и анализ аддитивных технологий. Ч. 1 / С. Н. Литунов, В. С. Слободенюк, Д. В. Мельников // Омский научный вестник. Се р. Приборы, машины и технологии — М., 2016. — 12–17 с.

2. Романова Л. Ф. Современное ювелирное искусство/ Л. Ф. Романова — М., 2010. — 16–18 с.

3. Баринов В. А. Стратегический менеджмент: Учебник/ В. А. Баринов, В. Л. Харченко — М.: ИНФРА-М, 2005. — 237 с.

4. Брагин, В. А. Применение инновационных 3D-технологий в физическом и цифровом проектировании объектов дизайна. Комплект мобильных аксессуаров отслеживания здоровья / В. А. Брагин, А. Д. Бобов, Е. А. Кузьмин. — Текст : непосредственный // Молодой ученый. — 2022. — № 13.1 (408.1). — С. 2-5.

Довольно часто возникает необходимость узнать величину тока в нейтральном (по-старому нулевом) проводе при неравномерной нагрузке в трехфазной сети. Существующие методы графический или математический очень неудобны.

Графический – из-за необходимости чертежных работ, а математический — по причине необходимости применения комплексных чисел и логарифмов.

Пришлось разработать простой порядок расчета, в котором, для наглядности, показан графический метод, но сам расчет выполнен тригонометрическим методом.

Итак, посмотрим схему трехфазной сети (Рисунок 1), на которой, в качестве примера, токи в фазах А, В и С равны 10, 30 и 20 А соответственно.

На векторной диаграмме слева мы видим векторы этих токов и добавленные вертикальную ось Y и горизонтальную ось Х. В правой части диаграммы показано сложение этих векторов путем переноса параллельно самим себе и присоединения начала следующего вектора к окончанию предыдущего.

Вектор тока в нейтральном проводе IN, полученный как результат сложения показан вместе со своими проекциями на ось Х — INX и ось Y — INY.

Рисунок 1 – Схема неравномерной трехфазной нагрузки в нейтральном проводе

Тригонометрический расчет мы начнем как раз с определения проекций тока в нейтральном проводе путем суммирования проекций токов фаз А, В и С на оси X и Y

Рисунок 2 – Векторная диаграмма

Так, проекцию тока фазы В на ось Х — IBХ можно считать катетом, величина которого является произведением полного значения тока IB (гипотенузы) на косинус угла 30О.

IBХ = IB · cos30О,

подставив значения – получим:

IBХ = 30 · 0,866025 = 25,98

Проекцию тока фазы В на ось Y — IBY можно считать вторым катетом, величина которого является произведением полного значения тока IB (гипотенузы) на косинус угла 600, но при этом, глядя на векторную диаграмму, следует учесть, что эта проекция находится в области отрицательных значений оси Y, поэтому для получения отрицательного числа добавляем в формулу (-1).

IBY = IB · cos60О · (-1),

подставив значения – получим

IBY = 30 · 0,5 · (-1) = — 15.

Для фазы С все проекции находятся в области отрицательных значений и по аналогии с фазой В формулы расчета будут следующими:

ICX = IC · cos30 · (-1),

подставив значения – получим

ICX = 20 · 0,866025 · (-1) = — 17,32.

ICY = IC · cos60О · (-1),

подставив значения – получим

ICY = 20 · 0,5 · (-1) = — 10.

C фазой А совсем просто.

Сложив все проекции по оси Х, мы получим Х – проекцию тока в нейтральном проводе, а по оси Y, его Y — проекцию.

INX = IAX + IBX + ICX = 0 + 25,9875 – 17,3205 = 8,66.

INY = IAY + IBY + ICY = 10 — 15 – 10 = -15.

Полное значение тока в нейтральном проводе вычисляем по теореме Пифагора как корень квадратный от суммы квадратов катетов INX и INY.

В случае, если нам известны только мощности по каждой фазе, значения токов в фазе А,В и С можно узнать введя значения мощностей в форму расчета тока при однофазной нагрузки, которая размещена в начале статьи. При этом не забываем, что косинус фи для активной нагрузки равен единице.

Конечно, можно было бы разработать расчет в котором учитывались бы и реактивные нагрузки, но это привело бы к его значительному усложнению, да и к тому же подавляющая часть нагрузок в обычных сетях является активной, потому значащих отклонений реальных токов от полученных в данном расчете быть не должно.

Ток в нейтральном проводе

Author24 — интернет-сервис помощи студентам

Как посчитать ток в нейтральном проводе? Соединение по схеме «звезда». Нагрузка активная. IA=10, IB=30, IC=5, IN-?

94731 / 64177 / 26122
Регистрация: 12.04.2006
Сообщений: 116,782
Ответы с готовыми решениями:

Ток в нейтральном проводе
в трехфазную четырехпроводную сеть с Uл=220В включены резистор с R=10 Oм, инд.катушка с Zb=(6+i8)Oм.

Определение тока в нейтральном проводе
Можете посоветовать что ИМЕННО прочесть, чтобы решить её, может быть есть примеры такой же задачи и.

Определение тока в нейтральном (нулевом) проводе
Имеется задача: В трехфазной электрической цепи, линейное напряжение которой равно UL, фазы.

Определить ток, протекающий в выпрямительном диоде, если известен обратный ток
Помогите пожалуйста решить. Задача 1. Определить ток I, протекающий в выпрямительном диоде при.

7484 / 4148 / 474
Регистрация: 25.08.2012
Сообщений: 11,529
Записей в блоге: 11

ЦитатаСообщение от manubest Посмотреть сообщение

Как посчитать ток в нейтральном проводе?
А Вы как думаете?
Регистрация: 04.05.2013
Сообщений: 136
сумма векторов)))
7484 / 4148 / 474
Регистрация: 25.08.2012
Сообщений: 11,529
Записей в блоге: 11

ЦитатаСообщение от manubest Посмотреть сообщение

сумма векторов)))
Верно.
Со своими фазами.
Регистрация: 04.05.2013
Сообщений: 136

Я всё равно не понимаю. Графически у меня получается. Численное значение не могу найти)

Добавлено через 10 минут
может графически нарисовать и просто измерить длину. А хочется найти по формулам.

7484 / 4148 / 474
Регистрация: 25.08.2012
Сообщений: 11,529
Записей в блоге: 11

ЦитатаСообщение от manubest Посмотреть сообщение

А хочется найти по формулам
Регистрация: 04.05.2013
Сообщений: 136

OldFedor, спасибо))) но, у меня теперь много вопросов)) Почему на sqrt <2>умножаем? и как посчитать синусы?

7484 / 4148 / 474
Регистрация: 25.08.2012
Сообщений: 11,529
Записей в блоге: 11

ЦитатаСообщение от manubest Посмотреть сообщение

Почему на sqrt <2>умножаем?

Амплитуда. Правильней писать ia(t) и т.д.

ЦитатаСообщение от manubest Посмотреть сообщение

и как посчитать синусы?
Это чистая тригонометрия.
Регистрация: 04.05.2013
Сообщений: 136

ok)) Почему амплитуда у нас sqrt<2>?? Может Я теорию не понял? подскажите литературу, если вам не сложно)

Добавлено через 10 минут
I=Im/sqrt; Причина в этом наверное)))

7484 / 4148 / 474
Регистрация: 25.08.2012
Сообщений: 11,529
Записей в блоге: 11

ЦитатаСообщение от manubest Посмотреть сообщение

Почему амплитуда у нас sqrt<2>??

Не амплитуда равна кор.(2), а действующее значение (что Вам задано)*кор.(2) = амплитуда
для гармонического синусоидального тока.

Вам действительно не хватает основ.
Если это школа, то Вы сами знаете что читать.
А так Бессонов.

Регистрация: 04.05.2013
Сообщений: 136
Извиняюсь, Я знал эту формулу)) Но чего-то не подумал))) Нет не школа, а универ)) спасибо)))
7484 / 4148 / 474
Регистрация: 25.08.2012
Сообщений: 11,529
Записей в блоге: 11

ЦитатаСообщение от manubest Посмотреть сообщение

Изв е няюсь
Ничего. Удачи.
Регистрация: 04.05.2013
Сообщений: 136
теперь правильно)
4226 / 1795 / 211
Регистрация: 24.11.2009
Сообщений: 27,562

ЦитатаСообщение от manubest Посмотреть сообщение

Как посчитать ток в нейтральном проводе? Соединение по схеме «звезда». Нагрузка активная. IA=10, IB=30, IC=5, IN-?

Векторная сумма всех четырёх токов должна быть равна нулю, три слагаемых известны полностью: фазы стандартны, амплитуды косвенно через действующие значения даны в задаче. Так что сложи эти три тока и обрати фазу суммы.

Добавлено через 2 минуты

ЦитатаСообщение от manubest Посмотреть сообщение

Я всё равно не понимаю. Графически у меня получается. Численное значение не могу найти)

А ты сложи фазные токи, как комплексные числа в тригонометрическом представлении да помножь сумму на -1.

7484 / 4148 / 474
Регистрация: 25.08.2012
Сообщений: 11,529
Записей в блоге: 11

ЦитатаСообщение от taras atavin Посмотреть сообщение

Векторная сумма
см. пост. №4 и 6 — читайте внимательно, что было ранее и не повторяйте.
4226 / 1795 / 211
Регистрация: 24.11.2009
Сообщений: 27,562

ЦитатаСообщение от manubest Посмотреть сообщение

Почему на sqrt <2>умножаем?
Формфактор синусоидального тока.

Пока замечание.

Регистрация: 23.05.2013
Сообщений: 203
Пантюшин В.С
Регистрация: 04.05.2013
Сообщений: 136
taras atavin thank you very much))
4226 / 1795 / 211
Регистрация: 24.11.2009
Сообщений: 27,562

ЦитатаСообщение от manubest Посмотреть сообщение

ok)) Почему амплитуда у нас sqrt<2>?? Может Я теорию не понял? подскажите литературу, если вам не сложно)

Тебе дано действующее значение. А чему равна амлитуда? Вот представь: так импульсный, импульсы прямоугольные, занимают треть периода. Тогда формфактор 3 и при действующем значении напряжения 220 Вольт амплитуда напряжения 660 Вольт. А если импульс той же формы занимает четверть периода, то форм фактор 4 и амплитуда при том же действующем значении уже 880 Вольт. А если импульс занимает половину периода, то формфактор только 2 и напряжение уже 440. Формфактор синусоиды корень квадратный из двух и в розетке у тебя амплитуда напряжения 311 Вольт.

Ноль бьет током. Потенциал на PEN проводнике

почему ноль бьет током - откуда напряжение на нуле

Ноль бьет током — это значит, что PEN проводник, имеющий общую точку с нейтралью трансформатора и землей в определенных ситуациях может иметь потенциал, отличный от нуля.

Самая распространенная причина, из-за которой ноль бьет током — это обрыв (отгорание) нейтрали трансформатора. В этом случае на уже не связанном с нейтралью и землей PEN проводнике в зависимости от неравномерной нагрузки появляется фазное напряжение.

Также, отличный от нуля потенциал на нейтральном проводе имеется практически всегда при нормальном режиме работы. В пятипроводной системе электроснабжения напряжение между землей и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места за счет сопротивления проводов разность потенциалов постепенно появляется и увеличивается. В данном обзоре будет подробно рассмотрено именно данная ситуация, когда ноль бьет током в штатном режиме работы системы электроснабжения.

Видео обзор — ноль бьет током

Ошибки при анализе нулевого потенциала PEN проводника

Поражение электрическим током возникает при соприкосновении с электрической цепью, в которой присутствуют источники напряжения и/или источники тока, способные вызвать протекание тока по попавшей под напряжение части тела. Обычно чувствительным для человека является пропускание тока силой более 1 мА.

Многие утверждают, что нейтральный проводник при нормальном режиме работы не бьет током. А в качестве объяснения используют следующие доводы:

  • Например, ток течет по пути наименьшего сопротивления.
  • Или якобы нейтраль соединена с землей с нулевым потенциалом и мы стоим на земле. Но все это поверхностно и неверно.

На поверхности земли электрический потенциал равен 0 вольт. Но нужно понимать, что данный нулевой потенциал — это условность, своего рода точка отсчета, о которую спотыкаются многие электрики, пытаясь объяснить процессы протекания электрического тока. Учитывая, что в сеть почти всегда включена нагрузка, а распределить ее по фазам равномерно нереально, между нулевым (PEN) проводником и землей всегда есть разность потенциалов, создаваемая сопротивлением проводника и переходных контактов. Соответственно дотронувшись до нулевого проводника и стоя на земле, вы замкнете цепь, и через вас пройдет ток.

Как распространяется ток в электрической цепи

Начнем разбирать данный вопрос с анализа утверждения, что ток течет по пути наименьшего сопротивления. Это не верно, так как в замкнутой цепи он (а точнее — свободные электроны) распределяется везде, только его сила обратно пропорциональна сопротивлению (если речь идет о смешанном соединении). Другое дело, когда на определенном участке нет вообще сопротивления, тогда весь ток пойдет через него. Это можно показать на схеме, но в реальности на воздушных линиях с большой протяженностью такое невозможно. Для наглядности рассмотрим подключение нагрузки к источнику однофазного тока:

почему ноль бьет током - откуда напряжение на нуле

К источнику питания подключена нагрузка (условно чайник) создающий сопротивление 30 Ом. Цепь замкнулась, и в ней образовался ток 7,3 Ампер. Прикоснувшись к нулевому проводу и стоя на земле, мы создали дополнительную цепь через тело, землю и заземлитель к источнику питания. На данном этапе уместно вспомнить землю с ее нулевым потенциалом. В данном случае она выступает просто как проводник, соединенный с нулевым выводом источника питания. Поэтому можно перестроить схему, заменив землю обычным проводником:

почему ноль бьет током - откуда напряжение на нуле

Как в первой, так и во второй схеме через участок человек — заземление — источник питания не проходит ток. Не удивительно, ведь на пути два резистора с сопротивлением 4 и 1000 Ом. Так почему же неверна трактовка движения по пути наименьшего сопротивления. Весь секрет кроется в проводах, которые имеют свое сопротивление. Электрическое сопротивление жилы самонесущего изолированного провода (СИП) сечением 25 мм² равно 1,380 Ом/км. К примеру, возьмем длину 250 метров. Тогда сопротивление провода в конце линии будет приблизительно 0,345 Ом. Добавим это сопротивление в нашу схему:

почему ноль бьет током - откуда напряжение на нуле

Теперь ток 2,5 мА пошел через человека. Произошло пропорциональное перераспределение тока в цепи. И земля здесь никак не спасает, а наоборот усугубляет. Ведь если бы не был заземлен вывод источника однофазного тока, то никакой разности потенциалов с землей и не было бы.

Для того чтобы понять, почему в цепи человек-земля (проводник)-заземлитель-источник питания появился ток и рассчитать его величину, нужно воспользоваться правилами последовательного, параллельного и смешанного соединения резисторов. Мы этого не будем делать, так как программа Electronics Workbench все посчитала за нас. Лучше простыми словами пройдемся по схеме и разберемся с потенциалами:

почему ноль бьет током - откуда напряжение на нуле

Оранжевый участок от источника питания до нагрузки имеет потенциал 217,5 Вольт. Это значение равно напряжению на входе в резистор с сопротивлением 30 Ом. Участок цепи, отмеченный желтым имеет потенциал 2,5 Вольта, что равно падению напряжения за счет резистора 30 Ом. Как и упоминалось выше, без сопротивления провода 0,345 Ом никакого потенциала на нулевом проводе бы не было. Данный резистор создал в цепи сопротивление, которое позволило распределиться току по двум участкам с силами обратно пропорциональными сопротивлениям этих участков:

  • Участок между человеком и заземлителем источника питания — это зона растекания (локальная земля).
  • Участок схемы, помеченный голубым цветом, имеет нулевой потенциал.

Мы рассмотрели подключение нагрузки к источнику однофазного тока с заземленным выводом. Как видно, при включенной нагрузке за счет сопротивления проводов всегда будет разность потенциалов между нулем и землей. И эта разность будет тем больше, чем больше сопротивление проводов и мощность включенной нагрузки. Так, увеличив мощность нагрузки в три раза, сила тока, проходящая через человека, возросла с 2,5 до 7,4 мА. При таком значении фиксируются судороги и болевые ощущения в руках.

Ноль бьет током в сетях трехфазного тока

Теперь перейдем к рассмотрению разности потенциалов между нейтральным проводом и землей в сетях трехфазного тока. Здесь уже имеются свои особенности. Так, если нагрузки по всем фазам будут одинаковы и не будет смещения нейтрали, то на нейтральном проводе ток будет равен нулю. То есть при соединении в звезду фаз симметричного приемника нейтральный провод не оказывает влияния на работу цепи и может быть исключен.

Отсутствие сопротивления в проводах и равномерное потребление в многоквартирном доме или на линии с одно-дух этажной застройкой — это что-то из области фантастики, поэтому нейтральный проводник необходим и его основная функция – это минимизация напряжение смещения нейтрали и искажений фазных напряжений приемников. Подробно на данных процессах останавливаться не будем, и рассмотрим их отдельной темой. А пока же перейдем к току в нейтральном проводе при несимметричном потреблении.

Как и в случае с источником однофазного тока, при добавлении в схему сопротивления проводников помимо смещения нейтрали открывается путь для протекания тока через землю при прикосновении человека к рабочему нулевому или защитному проводнику.

Кстати, во всех системах TN с зануленным электрооборудованием при нормальном режиме работы на проводящих корпусах есть потенциал. А для того, чтобы не было разности потенциалов и вас не било током при замыкании цепи через трубы и иные проводящие коммуникации выполняется система уравнивания потенциалов.

почему ноль бьет током - откуда напряжение на нуле

Вернемся к теме и для наглядности рассмотрим схему:

Как видно, с учетом неравномерной нагрузки (на схеме это резисторы 10, 30 и 50 Ом) и сопротивления проводов взятых условно 0,3 Ом потенциал на дальнем от распределительного трансформатора участке нейтрального провода 4,5 Вольта. Соответственно через человека с сопротивлением 1000 Ом, стоящего на земле и касающегося нейтрального провода, потечет ток с силой 4,5 мА.

Если мы увеличим сопротивление проводов в два раза, то и проходящий через человека ток также возрастет почти в два раза (до 8,3 мА).

Мы знаем, что система TN с глухозаземленной нейтралью должна иметь повторные заземления PEN проводника с общим сопротивлением заземлителей не больше 10 Ом. С добавлением этого повторного заземления большая часть тока уйдет через него, а ток, проходящий через человека снизится с 8,3 до 3,2 мА.

Стоит отметить, что везде мы рассматривали сопротивление человека равное 1000 Ом. Но ведь нужно учитывать также сопротивление обуви, пола, грунта. И действительно, если вы будете стоять к примеру на сухом деревянном полу в обуви с хорошим сопротивлением, то вы скорее всего не почувствуете ничего, прикоснувшись к нейтральному проводу. И здесь условный нулевой потенциал земли никакой роли не играет. Вы всего лишь изолируетесь от проводимости земли. А если еще и выполнена система уравнивания потенциалов, то даже стоя босиком на влажном полу или дотронувшись второй рукой до трубы или батареи, разности потенциалов с нейтралью не будет. И если мы изменим сопротивление человека с 1000 до 5000 Ом, то проходящий через тело ток снизится с 3,2 до 0,6 мА.

Как видно, утверждение, что нейтральный проводник не бьется током, в корне не верное. Разность потенциалов между ним и землей есть всегда. Зависит она от нагрузки, неравномерной нагрузки в сетях трехфазного тока, протяженности воздушной линии и сопротивления проводов. Поэтому, несмотря на то, что в большинстве случаев вы хорошо изолированы от земли либо имеется система уравнивания потенциалов, и вы можете не ощутить влияния малых токов при контакте с нейтральным проводом, никогда не прикасайтесь, не убедившись в отсутствии большого потенциала на нем. Чем больше сопротивление нейтрального провода вплоть до отгорания, тем больше разность его потенциала с потенциалом земли и тем больший ток по закону Ома потечет в этой цепи.

Трехфазные ИБП

Промышленная трехфазная сеть используется для питания трехфазного оборудования (станков, электродвигателей, больших компьютеров и т.д.), рассчитанного на напряжение 3х380 В и однофазных потребителей энергии, работающих при напряжении 220 В .

Если пользователь захочет использовать централизованную систему бесперебойного питания мощностью 10-20 кВА или более и включит в сеть однофазный ИБП такой мощности, то может возникнуть неравномерное распределение нагрузки по фазам трехфазной электрической сети.

Если одна из фаз сети нагружена на 100 % мощности, а две другие не нагружены совсем, то напряжения в трехфазной электрической сети будут искажены. В сильно нагруженной фазе напряжение будет меньше номинального, а в ненагруженных фазах напряжения будут выше номинального. Электрики называют эту ситуацию «перекос фаз».

Перекос фаз имеет некоторые сопутствующие неприятности. Если к сильно нагруженной фазе (скажем фазе А) подключены нелинейные нагрузки, вроде компьютеров, то в этой фазе возникают гармонические искажения напряжения. Поскольку остальные фазы трехфазной сети нагружены слабо, то ток нагрузки фазы А замыкается по нейтральному проводу. В нем тоже возникают гармонические искажения напряжения, которые влияют на работу оборудования, погдключенного к недогруженным фазам.

Для того, чтобы избежать этого, ИБП большой мощности (начиная примерно с 10 кВА ) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА — переходный. Для такой мощности делают чисто однофазные ИБП , чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП , начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход .

Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП . Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе «Особенности трехфазных источников бесперебойного питания» главы 8.

Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП , построенные по схеме, похожей на ИБП , взаимодействующий с сетью.

Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

Рис. 18. Трехфазный ИБП с двойным преобразованием энергии

Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП . Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

Слева на рис 18. — входная электрическая сеть. Она включает пять проводов: три фазных , нейтраль и землю. Между сетью и ИБП — предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП .

Выпрямитель в этой схеме — регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП , тем дольше открыты тиристоры.

Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения.

Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть.

Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности ( более 80-150 кВА ) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП .

Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

Для формирования батареи трехфазных ИБП (как и в однофазных ИБП ) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы.

В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП , она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

Как и в ИБП малой мощности , в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ).

Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3 % на линейной нагрузке).

Применение двух инверторов увеличивает надежность ИБП , поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора.

В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125 % номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки — от долей секунды до минут) переключается на работу через статический байпас.

В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего «идеального» значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется.

Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме — СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса — см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП . В ряде случаев это может вызвать трудности с проводкой.

Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки.

Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас . Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

Режимы работы трехфазного ИБП с двойным преобразованием

Трехфазный ИБП может работать на четырех режимах работы.

При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.

Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП .

Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.

Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования.

Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции.

Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки.

Входной дроссель не только обеспечивает «мягкий запуск», но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех «соседних по мощности» ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен.

Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы «жесткой логики»), цепи управления силовыми полупроводниками и сами силовые полупроводники.

Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц . В некоторых странах (например в США) частота переменного напряжения равна 60 Гц .

Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты.

ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты. В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую.

Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием.

Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

ИБП с горячим резервированием

В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь.

Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания.

Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП.

Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

Рис. 19а. Последовательное соединение двух трехфазных ИБП .

На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП . Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора.

Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП , а от вспомогательного ИБП .

Только при выходе из строя второго ИБП , нагрузка переключается на работу от статического байпаса.

Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

А.Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов «подхватить» нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.
Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.
Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он «не знает», что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.
Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП .
Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.
На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП ) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).
После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.
Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.
На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.
Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме — он первый — СВБ1), который, вообще говоря, не нужен — ведь все необходимые переключения могут быть произведены и без него.
2. Весь второй ИБП выполняет только одну функцию — резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку).

Некоторые производители предлагают «готовые» системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

Рис.19б. Трехфазный ИБП с горячим резервированием

Принципиальных отличий от схемы с последовательным соединением ИБП немного.
1. У второго ИБП отсутствует байпас.
2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан).

Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП.

Преимущество «готового» ИБП с резервированием, пожалуй только одно — он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму — стоимость батареи

Недостатков у схемы с общей батареей много.

1.Не все ИБП могут работать с общей батареей.

2.Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.

3.В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя.

Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации — не применять схемы с общей батареей.

Параллельная работа нескольких ИБП

Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП .

Существует другая возможность резервирования на уровне ИБП — параллельная работа нескольких ИБП . Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

На рисунке 20 приведена схема параллельной работы нескольких ИБП .

Рис.20. Параллельная работа ИБП

На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких.

На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП . Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8.

Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

Рассмотрим режимы работы параллельной системы.

Нормальная работа (работа от сети). Надежность

Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку.

Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП . В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются «готовыми к параллельной работе», и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП , работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП — не более двух.

В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

Пусть в системе 3 ИБП мощностью по 100 кВА , а нагрузка равна 90 кВА . При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

Сбой питания (исчезновение напряжения в сети).

Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП . Если в сети есть напряжение, все выпрямители системы работают

Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП . Если в сети есть напряжение, все выпрямители системы продолжают работать.

Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается.

Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП .

Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров:

количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность — система становится слишком сложной и сложно управляемой — впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8),

нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки),

примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП ),

технологии работы предприятия.

Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием — его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

Недогруженная система из нескольких параллельно работающих ИБП , которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

Работа с частичной нагрузкой

Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП , то инверторы «лишних» ИБП могут быть отключены.

В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме.

Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает.

Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование.

Все выпрямители системы продолжают работать, включая выпрямители тех ИБП , инверторы которых отключены.

Работа от батареи

В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи.

В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП , специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП

Выход из строя выпрямителя

Это режим , при котором вышли из строя один или несколько выпрямителей.

ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал «неисправность выпрямителя». Остальные ИБП продолжают работать нормально.

После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП , то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы).

В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

Выход из строя инвертора

Это режим работы параллельной системы, когда вышли из строя один или несколько инверторов.

Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса.

Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

Работа от статического байпаса

Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас.

Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать).

Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса.

Нагрузка питается от сети, все элементы параллельной системы ИБП , кроме батарей, обесточены.

Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП . В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суумарный номинальных ток.

Помещение для установки трехфазного ИБП

Трехфазные источники бесперебойного питания имеют большую мощность. Поэтому их размеры, вес и существенное тепловыделение заставляют пользователя решать непростую задачу размещения ИБП.

ИБП при работе выделяет тепло. КПД трехфазных ИБП примерно равен 90 % (иногда чуть меньше для средних мощностей и чуть больше для больших ИБП). Учитывая расчетный коэффициент мощности 0.8, можно считать, что максимальное выделение тепла (в кВт) при работе на режиме номинальной мощности не превышает 10 % от номинальной мощности ИБП (в кВА).

Даже при средней мощности порядка 50 кВА тепловыделение составит 4 кВт . Если это тепло не удалить из помещения, то температура в помещении повысится. Это немедленно скажется на ресурсе батареи ИБП . ( Ресурс батареи уменьшается вдвое на каждые 10 градусов повышения температуры).

Для снятия избыточного тепла в помещении, где размещен мощный ИБП , нужно установить кондиционер воздуха с соответствующей тепловой мощностью или организовать принудительную вентиляцию необходимой производительности.

Обычные офисные кондиционеры предназначены для работы при температуре воздуха (на улице) не ниже 5 градусов Цельсия. При более низких температурах эффективность их работы снижается, а при температуре ниже минус 15 градусов они практически бесполезны.

Большие ИБП как правило предназначены для круглогодичной работы, и отводить тепло из комнаты нужно при любой температуре воздуха на улице. Для надежной круглогодичной работы иногда приходится комбинировать систему кондиционирования и вентиляции, с тем, чтобы первая работала летом,а вторая — зимой.

Для правильного отвода тепла непосредственно от ИБП его нужно установить так, чтобы был обеспечен свободный приток воздуха к вентиляционным отверстиям ИБП.

Второе важное условие для правильной установки мощного ИБП — обеспечить рядом с ИБП пространство, необходимое для его обслуживания (установки и замены батареи, настройки и управления). Для работы с большим ИБП необходимо пространство шириной около 1.5 м перед ИБП, и, в некоторых случаях, чуть меньшее место сзади ИБП.

Камнем преткновения при размещении ИБП в офисных зданиях может оказаться его вес. Масса трехфазных ИБП составляет сотни или тысячи килограмм даже без учета массы батареи. Аккумуляторная батарея ИБП мощностью 200 кВА , рассчитанная на время автономного режима 30 минут весит примерно 4 тонны. Пол в помещении, где предполагается разместить ИБП , должен выдерживать такую нагрузку.

При размещении мощных ИБП нужно обязательно проконсультироваться (или, лучше, получить санкцию) у проектировщика здания или квалифицированного архитектора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *