Как определить реактивную мощность зная tg р
Перейти к содержимому

Как определить реактивную мощность зная tg р

  • автор:

Что такое коэффициент мощности (косинус фи)

Что такое коэффициент мощности (косинус фи)

Физическая сущность коэффициента мощности (косинуса «фи») заключается в следующем. Как известно, в цепи переменного тока в общем случае имеются три вида нагрузки или три вида мощности (три вида тока, три вида сопротивлений). Активная Р, реактивная Q и полная S мощности соответственно ассоциируются с активным r, реактивным х и полным z сопротивлениями.

Из курса электротехники известно, что активным называется сопротивление, в котором при прохождении тока выделяется тепло. С активным сопротивлением связаны потери активной мощности d P п , равные квадрату тока, умноженному на сопротивление d P п = I 2 r Вт.

Реактивное сопротивление при прохождении по нему тока потерь не вызывает. Обусловливается это сопротивление индуктивностью L, а также емкостью С.

Что такое коэффициент мощности

Индуктивное и емкостное сопротивления являются двумя видами реактивного сопротивления и выражаются следующими формулами:

  • реактивное сопротивление индуктивности, или индуктивное сопротивление,
  • реактивное сопротивление емкости, или емкостное сопротивление,

Тогда х = хL — х c . Например, если в цепи хL= 12 Ом, хс = 7 Ом, то реактивное сопротивление цепи x=х L — хс= 12 — 7 = 5 Ом.

Иллюстрации к объяснению сущности косинуса

Рис. 1. Иллюстрации к объяснению сущности косинуса «фи»: а — схема последовательного включения r и L в цепи переменного тока, б — треугольник сопротивлений, в — треугольник мощностей, г — треугольник мощностей при различных значениях активной мощности.

Полное сопротивление z включает в себя активное и реактивное сопротивления. Для цепи последовательного соединения г и L (рис. 1 , а) графически изображается треугольником сопротивления .

Если стороны этого треугольника умножить на квадрат одного и того же тока, то соотношение сторон не изменится, но новый треугольник будет представлять собой треугольник мощностей (рис. 1,в). Подробнее смотрите здесь — Треугольники сопротивлений, напряжений и мощностей

Как видно из треугольника, в цепи переменного тока в общем случае возникают три мощности: активная Р, реактивная Q и полная S

P = I 2 r = UIcosфи Вт, Q = I 2 х = I 2 х L — I2xc = UIsinфи Вар, S = I 2 z = UI Ва.

Активная мощность может быть названа рабочей, т. е. она «греет» (выделение тепла), «светит» (электрическое освещение), «двигает» (электродвигатели приводят в движение механизмы) и т. д. Измеряется она так же, как и мощность на постоянном токе, в ваттах.

Выработанная активная мощност ь полностью без остатка расходуется в приемниках и подводящих проводах со скоростью света — практически мгновенно. Это является одной из характерных особенностей активной мощности: сколько вырабатывается, столько и расходуется.

Реактивная мощность Q не расходуется и представляет собой колебание электромагнитной энергии в электрической цепи. Переливание энергии из источника к приемнику и обратно связано с протеканием тока по проводам, а так как провода обладают активным сопротивлением, то в них имеются потери.

Таким образом, при реактивной мощности работа не совершается, но возникают потери, которые при одной и той же активной мощности тем больше, чем меньше коэффициент мощности (cosфи , косинус «фи») .

Пример. Определить потери мощности в линии с сопротивлением r л = 1 ом, если по ней передается мощность Р=10 кВт на напряжение 400 В один раз при cosфи 1 = 0,5, а второй раз при cosфи2=0,9.

Решение. Ток в первом случае I1 = P/(Ucosфи 1) = 10/(0 ,4 • 0,5) = 50 А.

Потери мощности dP1 = I1 2 r л = 50 2 •1 = 2500 Вт = 2,5 кВт.

Во втором случае ток I1 = P/(Ucosфи 2 ) = 10/(0 ,4 • 0,9) = 28 А

Потери мощности dP2 = I 2 2 r л = 28 2 •1 = 784 Вт = 0,784 кВт, т.е. во втором случае потери мощности в 2,5/0,784 = 3,2 раза меньше только потому, что выше значение cosфи.

Расчет наглядно показывает, что чем выше величина косинус «фи», тем меньше потери энергии и тем меньше нужно закладывать цветного металла при монтаже новых установок.

Измерение коэффциента мощности

Повышая косинус «фи», преследуем три основные цели:

1) экономию электрической энергии,

2) экономию цветных металлов,

3) максимальное использование установленной мощности генераторов, трансформаторов и вообще электродвигателей переменного тока.

Последнее обстоятельство подтверждается тем, что, например, от одного и того же трансформатора можно получить тем больше активной мощности, чем больше величина со sфи потребителей. Так, от трансформатора с номинальной мощностью Sн=1000 кВа при со sфи 1 = 0,7 можно получить активной мощности Р 1 = S нcosфи 1 = 1000•0,7=700 кВт, а при cosфи2 = 0,95 Р2 = S нcosфи2= 1000•0,95 = 950 кВт.

В обоих случаях трансформатор будет нагружен полностью до 1000 кВа. Причиной низкого коэффициента мощности на предприятиях являются недогруженные асинхронные двигатели и трансформаторы. Например, асинхронный двигатель при холостом ходе имеет cos фихх примерно равный 0,2, тогда как при загрузке до номинальной мощности со sфи н = 0,85.

Для наглядности рассмотрим приближенный треугольник мощности для асинхронного двигателя (рис. 1,г). При холостом ходе асинхронный двигатель потребляет реактивную мощность, примерно равную 30% номинальной мощности, тогда как потребляемая активная мощность при этом составляет около 15%. Коэффициент мощности поэтому очень низок. С возрастанием нагрузки активная мощность увеличивается, а реактивная меняется незначительно и поэтому cosфи возрастает. Подробнее об этом читайте здесь: Коэффициент мощности электропривода

Основным мероприятием, повышающим значение cosфи, является работа на полную производственную мощность. В этом случае асинхронные двигатели будут работать с коэффициентами мощности, близкими к номинальным величинам.

Мероприятия по повышению коэффициента мощности делятся на две основные группы:

1) не требующие установки компенсирующих устройств и целесообразные во всех случаях (естественные способы);

2) связанные с применением компенсирующих устройств (искусственные способы).

Конденсаторная установка для повышения коэффициента мощности

Конденсаторная установка для повышения коэффициента мощности

К мероприятиям первой группы согласно действующим руководящим указаниям относится упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и повышению коэффициента мощности. К этим же мероприятиям относится применение синхронных двигателей вместо некоторых асинхронных (установка синхронных двигателей рекомендуется вместо асинхронных всюду, где требуется повышать соsфи).

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Как определить реактивную мощность зная tg ?р

7.7. РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТЬ

Для более полного описания энергетических процессов в цепях синусоидального тока, предназначенных для передачи энергии, вводятся понятия реактивной Q и полной S мощностей:

Q = UI sinφ = I 2 Х = U 2 B; S = UI = I 2 z = U 2 y.

Реактивная мощность Q измеряется в вольт-амперах реактивных (вар), полная мощность S — в вольт-амперах (В·А).

Активная, реактивная и полная мощности связаны друг с другом соотношениями:

P = S cosφ; Q = S sinφ; .

Полная мощность S определяет амплитуду колебаний мгновенной мощности p ( t ) (см. рис. 7.7 ). Активную, реактивную и полную мощности можно непосредственно определить по комплексным напряжению и току на участке цепи.

Рассмотрим комплексную мощность — произведение комплексного напряжения на сопряженную величину комплексного тока :

Таким образом, вещественная часть комплексной мощности равна активной мощности, а мнимая часть — реактивной мощности на рассматриваемом участке цепи.

Из полученных соотношений также следует:

= P + jQ = I 2 (R + jX) = I 2 Z; S* = P-jQ = U 2 (G — jB) = U 2 Y,

откуда Y = S * /U 2 .

При расчетах энергетических сетей, когда требуется обеспечить заданное потребление мощности в нагрузках, подключенных к узлам сети, исходными при расчете являются не проводимости этих нагрузок Y н , а потребляемые ими комплексные мощности S н . Поэтому система узловых уравнений, составленная для расчета режима в такой сети, является нелинейной: элементы матрицы узловых проводимостей Y н = S * н / U 2 н зависят от искомых узловых напряжений на нагрузках U н . Это существенно усложняет расчет и требует применения методов решения нелинейных задач, рассматриваемых в лекции 28 .

Баланс мощностей в цепи синусоидального тока. Условие баланса мощностей, вырабатываемых источниками любой сложной электрической цепи, и мощностей, потребляемых приемниками (см. п. 6.6 ), выполняется и для мгновенных мощностей при синусоидальном токе:

Поскольку это условие имеет место для любого момента времени, то оно должно соблюдаться отдельно как для средних за период составляющих мгновенной мощности — активных мощностей приемников и источников

так и для переменных составляющих мгновенной мощности, равных при ψ i = 0 . Рассматривая последние в момент времени w t = p /4, когда cos(2 w t + φ k )= – sinφ k , приходим к заключению, что из баланса пульсирующих составляющих вытекает условие баланса реактивных мощностей, генерируемых элементами цепи:

Входящие в левую часть равенства слагаемые, отвечающие емкостным элементам, будут отрицательными, так как для них φ k < 0.

Полученные условия баланса активных и реактивных мощностей можно также записать в форме баланса комплексной мощности

Как определить реактивную мощность зная tg ?р

Q = Pa · ( tgφ1-tgφ2)- реактивная мощность установки КРМ (кВАр)

Pa -активная мощность (кВт)

K- коэффициент из таблицы

S -полная мощность(кВА)

cos φ — коэффициент мощности

tg(φ12) согласуются со значениями cos φ в таблице.

Таблица определения реактивной мощности конденсаторной установки — КРМ (кВАр), необходимой для достижения заданного cos(φ).

Текущий (действующий) Требуемый (достижимый) cos (φ)
tan (φ) cos (φ) 0.80 0.82 0.85 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Коэффициент K
3.18 0.30 2.43 2.48 2.56 2.64 2.70 2.75 2.82 2.89 2.98 3.18
2.96 0.32 2.21 2.26 2.34 2.42 2.48 2.53 2.60 2.67 2.76 2.96
2.77 0.34 2.02 2.07 2.15 2.23 2.28 2.34 2.41 2.48 2.56 2.77
2.59 0.36 1.84 1.89 1.97 2.05 2.10 2.17 2.23 2.30 2.39 2.59
2.43 0.38 1.68 1.73 1.81 1.89 1.95 2.01 2.07 2.14 2.23 2.43
2.29 0.40 1.54 1.59 1.67 1.75 1.81 1.87 1.93 2.00 2.09 2.29
2.16 0.42 1.41 1.46 1.54 1.62 1.68 1.73 1.80 1.87 1.96 2.16
2.04 0.44 1.29 1.34 1.42 1.50 1.56 1.61 1.68 1.75 1.84 2.04
1.93 0.46 1.18 1.23 1.31 1.39 1.45 1.50 1.57 1.64 1.73 1.93
1.83 0.48 1.08 1.13 1.21 1.29 1.34 1.40 1.47 1.54 1.62 1.83
1.73 0.50 0.98 1.03 1.11 1.19 1.25 1.31 1.37 1.45 1.63 1.73
1.64 0.52 0.89 0.94 1.02 1.10 1.16 1.22 1.28 1.35 1.44 1.64
1.56 0.54 0.81 0.86 0.94 1.02 1.07 1.13 1.20 1.27 1.36 1.56
1.48 0.56 0.73 0.78 0.86 0.94 1.00 1.05 1.12 1.19 1.28 1.48
1.40 0.58 0.65 0.70 0.78 0.86 0.92 0.98 1.04 1.11 1.20 1.40
1.33 0.60 0.58 0.63 0.71 0.79 0.85 0.91 0.97 1.04 1.13 1.33
1.30 0.61 0.55 0.60 0.68 0.76 0.81 0.87 0.94 1.01 1.10 1.30
1.27 0.62 0.52 0.57 0.65 0.73 0.78 0.84 0.91 0.99 1.06 1.27
1.23 0.63 0.48 0.53 0.61 0.69 0.75 0.81 0.87 0.94 1.03 1.23
1.20 0.64 0.45 0.50 0.58 0.66 0.72 0.77 0.84 0.91 1.00 1.20
1.17 0.65 0.42 0.47 0.55 0.63 0.68 0.74 0.81 0.88 0.97 1.17
1.14 0.66 0.39 0.44 0.52 0.60 0.65 0.71 0.78 0.85 0.94 1.14
1.11 0.67 0.36 0.41 0.49 0.57 0.63 0.68 0.75 0.82 0.90 1.11
1.08 0.68 0.33 0.38 0.46 0.54 0.59 0.65 0.72 0.79 0.88 1.08
1.05 0.69 0.30 0.35 0.43 0.51 0.56 0.62 0.69 0.76 0.85 1.05
1.02 0.70 0.27 0.32 0.40 0.48 0.54 0.59 0.66 0.73 0.82 1.02
0.99 0.71 0.24 0.29 0.37 0.45 0.51 0.57 0.63 0.70 0.79 0.99
0.96 0.72 0.21 0.26 0.34 0.42 0.48 0.54 0.60 0.67 0.76 0.96
0.94 0.73 0.19 0.24 0.32 0.40 0.45 0.51 0.58 0.65 0.73 0.94
0.91 0.74 0.16 0.21 0.29 0.37 0.42 0.48 0.55 0.62 0.71 0.91
0.88 0.75 0.13 0.18 0.26 0.34 0.40 0.46 0.52 0.59 0.68 0.88
0.86 0.76 0.11 0.16 0.24 0.32 0.37 0.43 0.50 0.57 0.65 0.86
0.83 0.77 0.08 0.13 0.21 0.29 0.34 0.40 0.47 0.54 0.63 0.83
0.80 0.78 0.05 0.10 0.18 0.26 0.32 0.38 0.44 0.51 0.60 0.80
0.78 0.79 0.03 0.08 0.16 0.24 0.29 0.35 0.42 0.49 0.57 0.78
0.75 0.80 0.05 0.13 0.21 0.27 0.32 0.39 0.46 0.55 0.75
0.72 0.81 0.10 0.18 0.24 0.30 0.36 0.43 0.52 0.72
0.70 0.82 0.08 0.16 0.21 0.27 0.34 0.41 0.49 0.70
0.67 0.83 0.05 0.13 0.19 0.25 0.31 0.38 0.47 0.67
0.65 0.84 0.03 0.11 0.16 0.22 0.29 0.36 0.44 0.65
0.62 0.85 0.08 0.14 0.19 0.26 0.33 0.42 0.62
0.59 0.86 0.05 0.11 0.17 0.23 0.30 0.39 0.59
0.57 0.87 0.08 0.14 0.21 0.28 0.36 0.57
0.54 0.88 0.06 0.11 0.18 0.25 0.34 0.54
0.51 0.89 0.03 0.09 0.15 0.22 0.31 0.51
0.48 0.90 0.06 0.12 0.19 0.28 0.48
0.46 0.91 0.03 0.10 0.17 0.25 0.46
0.43 0.92 0.07 0.14 0.22 0.43
0.40 0.93 0.04 0.11 0.19 0.40
0.36 0.94 0.07 0.16 0.36
0.33 0.95 0.13 0.33

Пример:

Активная мощность двигателя : P=100 кВт

Действующий cos φ = 0.61

Требуемый cos φ = 0.96

Коэффициент K из таблицы = 1.01

Необходимая реактивная мощности КРМ (кВАр):

Q = 100 · 1.01=101 кВАр

Расчет реактивной мощности

Дата21 июня 2012 Авторk-igor

Для компенсации реактивной мощности в электрических сетях используют конденсаторные установки. Основным параметром конденсаторной установки является реактивная мощность конденсаторов необходимая компенсации. В этой статье я расскажу, как рассчитывается мощность конденсаторной установки, а также представлю вашему вниманию свою программу для расчета реактивной мощности конденсаторной установки.

После того, как мы подключили все электроприемники, у нас уже есть расчетная мощность, реактивная мощность и коэффициент мощность электроустановки.

Все эти данные необходимы для расчета реактивной мощности конденсаторной установки.

Реактивная мощность конденсаторной установки требуемая для получения нужного коэффициента мощности определяется по формуле:

Qк=Р*К

– реактивная мощность конденсаторной установки, кВАр;

Р – активная мощность, кВт;

К – коэффициент выбираемый из таблицы;

сosf1 – коэффициент мощности по расчету;

сosf2– коэффициент мощности требуемой энергоснабжающей организацией;

Таблица для выбора коэффициента К

Таблица для выбора коэффициента К

Приведу пример.

Пусть P=412кВт, сosf1=0,6, сosf2=0,92.

Из таблицы находим К=0,907 (на пересечении сosf1 и сosf2).

Как видим, в таблице присутствуют не все значения. А это значит, что пользоваться этим методом не совсем удобно, приходится интерполировать значения.

На основе этого метода я сделал простую программу для расчета требуемой реактивной мощности конденсаторной установки.

Расчет реактивной мощности конденсаторной установки

Расчет реактивной мощности конденсаторной установки

Указываем расчетную мощность, реактивную мощность и требуемый коэффициент мощности и программа сразу выдаст вам результат.

Условия получения программы для расчета реактивной мощности конденсаторной установки на странице МОИ ПРОГРАММЫ.

Перечень нормативных документов по компенсации реактивной мощности.

    1. ТКП 45-4.04-149-2009. Системы электрооборудования жилых и общественных зданий. Правила проектирования (гл.8.3).
    2. СП 31-110-2003. Свод правил по проектированию и строительству. «Проектирование и монтаж электроустановок жилых и общественных зданий»(п.6.33-6.34).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *