Что такое круговая поляризация света
Физика
Электродинамика
Магнитное поле
Механические колебания
Электромагнитные колебания
Механические волны
Электромагнитные волны
Оптика
Геометрическая оптика
Задачи на сферическое зеркало
Линза
Волновая оптика
Основы теории относительности
Основы квантовой физики
Излучения и спектры
Световые кванты
Атомная физика
Ядерная физика
Физика элементарных частиц
Открытие позитрона. Античастицы
Современная физическая картина мира
Современная физическая картина мира
Строение Вселенной
Строение Вселенной
Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд
Наша галактика и другие галактики
Пространственные масштабы наблюдаемой Вселенной
Применимость законов физики для объяснения природы космических объектов
«Красное смещение» в спектрах галактик
Современные взгляды на строение и эволюцию Вселенной
Наблюдение солнечных пятен, звёздных скоплений, туманностей и галактик
Медиаматериалы
Направление поляризации
Вектор напряженности электромагнитной волны E, поляризованной эллиптически, вращается в плоскости декартовой системы координат в направлении распространения волны и видится наблюдателю в форме спирали. Такие условия часто принимаются в технической литературе.
Любое состояние поляризации волны можно разделить на две линейно поляризованные ортогональные компоненты, ориентированные вдоль осей х и у. Если амплитуды обеих компонент равны, а фазовый сдвиг у-компоненты относительно х-компоненты равен ± π/2, то такое излучение поляризовано циркулярно. Знак фазового сдвига определяет направление вращения. За вращение по часовой стрелке (правая круговая поляризация (рис. 1)) отвечает фазовый сдвиг – π/2, соответственно, вращение против часовой стрелки или левая круговая поляризация (рис. 2), задается фазовым сдвигом + π/2.
Рисунок 1. Правая круговая поляризация
Рисунок 2. Левая круговая поляризация
На рис. 1 и рис. 2 проиллюстрирована проекция вращения вектора напряженности поля Е на виртуальном экране. Окружность формируется при каждом вращении вектора напряженности поля Е по часовой стрелке (или против часовой стрелки), соответственно.
Генерация циркулярно поляризованного света
Круговой поляризацией света называется состояние поляризации света, которое получается в результате прохождения линейно поляризованной волны через четвертьволновую пластину. Удобно описывать это состояние математически с помощью матриц.
Под вектором Джонса принимается описание направления поляризации света, матрица Джонса описывает четвертьволновую пластину.
Матрица Джонса, описывающая четвертьволновую пластину, медленная ось которой ориентирована вдоль оси х, принимает вид:
(1)
где e iπ /4 – коэффициент фазы (практически во всех случаях может быть опущен).
Вектор Джонса, описывающий вектор линейной поляризации, ориентированный под углом + 45°, записывается как:
(2)
Когда линейно поляризованный свет проходит через четвертьволновую пластину, вектор Джонса для излучения на ее выходе вычисляется как:
(3)
Соотношение справедливо для света с правой круговой поляризацией. Иллюстрация, приведенная на рис. 3, показывает случай, когда быстрая и медленная оси четвертьволновой пластины сонаправлены с осями х и у в декартовой системе координат. Фиолетовый вектор показывает ориентацию линейной поляризации падающей под углом + 45° волны. Красный и синий векторы – ортогональные компоненты вектора напряженности в фазе. x-компонента (синий) сонаправлена с медленной осью волновой пластины. Скорость перемещения этой компоненты ниже скорости перемещения у-компоненты (красный), сонаправленной с быстрой осью пластины. Прохождение сквозь волновую пластину задерживает фазу х-компоненты. Величина замедления зависит от толщины пластины, для четвертьволновой пластины фазовый сдвиг равен – π/2 При таком сдвиге фаз результатом является правая круговая поляризация. Вектор напряженности поля Е вращается по часовой стрелке по ходу распространения волны вдоль оси z.
Рисунок 3. Генерация право циркулярно поляризованного света
Когда падающий свет поляризован линейно, а вектор поляризации ориентрирован под углом – 45 о , вектор Джонса принимает следующий вид:
(4)
Вектор Джонса излучения на выходе четвертьволновой пластины описывается соотношением:
(5)
Выходное излучение характеризуется левой круговой поляризацией. Данный случай проиллюстрирован на рис. 4. Волновая пластина ориентирована так же, как и на рис. 3, фиолетовый вектор также обозначает ориентацию вектора линейной поляризации падающего света. При этом разность фаз между х— и у-компонентами вектора напряженности поля Е отсутствует. Ориентация вектора поляризации под углом – 45 о означает азимутальное вращение. Красный вектор указывает на положительное направление оси у, синий – на отрицательное направление оси х. Прохождение сквозь пластину добавляет компоненте, сонаправленной с медленной осью, сдвиг фазы + π/2 относительно фазы компоненты, сонаправленной с быстрой осью пластины. Выходное излучение обладает левой круговой поляризацией и вектор Е вращается против часовой стрелки по ходу распространения волны вдоль оси z.
Рисунок 4. Генерация лево циркулярно поляризованного света
Векторы и матрицы Джонса
Приведенные таблицы содержат информацию о видах векторов и матриц Джонса для стандартных оптических компонентов в зависимости от состояния поляризации.
Таблица 1. Векторы Джонса
Таблица 2. Матрицы Джонса для стандартной оптики
Оптический элемент | Матрица Джонса |
Горизонтальный линейный поляризатор | |
Вертикальный линейный поляризатор | |
Линейный поляризатор, + 45 о | |
Линейный поляризатор, – 45 о | |
Четвертьволновая пластина, медленная ось ориентирована горизонтально | |
Четвертьволновая пластина, медленная ось ориентирована вертикально |
Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Thorlabs на территории РФ
Круговая поляризация света
Свет является одной из разновидностей электромагнитного излучения, поэтому его возможно охарактеризовать источником и направленностью. Кроме того, данное явление имеет двойственную природу: в одном пространстве оно представляет собой волну, а в другом – фотон.
Рисунок 1. Свет, поляризованный по кругу. Автор24 — интернет-биржа студенческих работ
Определение 1
Поляризация света — это одно из важнейших свойств любого светового излучения, наблюдаемого в оптическом диапазоне.
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
При поляризации колебания частиц оптического вектора, направленных на поперечную поверхность, происходят в одной и той же плоскости. Другие составляющие в процессе отсекаются.
Замечание 1
Так как свет – это электрическая и магнитная волна, то оно непосредственно зависит от электромагнитных осей напряженности.
Такие векторы всегда перпендикулярны друг к другу и создают условную среду, которая перпендикулярна основной линии распространения световой волны. Круговая поляризация света появляется в том случае, если все оси магнитной индукции и электрического поля движутся относительно направления пучка света.
В свою очередь, при колебаниях напряженности электрического поля в одном и том же пространстве возникает плоско-поляризованная волна. Ее второе название, отражающее тот же самый физический процесс – «линейно поляризованная».
Особенности круговой поляризации
Определение 2
Круговая поляризация света — одно из распространенных проявлений поперечной линии по отношению к направлению распределении электромагнитных полей анизотропии.
«Круговая поляризация света»
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети
Этот эффект наблюдается в результате «поперечности» колебаний осей напряженности магнитной и электрической волны, при которой появление осевая симметрия луча невозможно. В пространстве возникают выделенные направления колебаний осей в плоскости после анизотропии электромагнитной волны. Из-за взаимной ортогональности веществ для детального описания состояния внутренних колебаний в волне достаточно использовать принцип действия круговой поляризации, в качестве которого выбирают обычно ось напряжённости электрического поля.
Сущность физического явления круговой поляризации волны света ясна из следующих рассуждений. Рассмотрим две абсолютно плоские монохроматические волны, имеющие одинаковую интенсивность, располагающуюся вдоль вектора декартовой системы координат. При сложении всех показателей когерентных изменение получается волна, в которой конкретный вектор вращается вокруг своей оси.
В световой волне вращение вектора напряжённости, которое происходит в направлении против часовой стрелки, носит название поляризованной по левому кругу. Соответственно, волна света, вращение оси напряженности которой осуществляется по часовой стрелки, называется поляризованной по правому кругу.
Две произвольные световые волны, поляризованные по двум направлениям, не могут взаимодействовать между собой, так как в их совместном наблюдении не возникает интерференционной картины. Это считается основанием относить эти процессы к волнам с ортогональной, постоянной поляризацией.
Из сказанного выше следует метод получения плоского светового излучения с круговой поляризацией. Для этого нужно просто сложить две плоские линейно поляризованные оси в соответствующих направлениях световые волны.
Получение кругового поляризованного света
Как известно из гипотезы колебаний, определенное состояние поляризации возникает при взаимодействии двух монохроматических перпендикулярных световых волн, имеющие равные частоты и распространяющиеся строго в одном направлении. Этот процесс происходит при определенных соотношениях их амплитуд и разности фаз.
Из вышеизложенного следует, что для получения кругового поляризованного света необходимо:
- получить две прямые перпендикулярные с одинаковыми амплитудами и монохроматические волны света равной частоты, движущиеся в одну сторону;
- создать между этими волнами разность фазовых амплитуд;
- пропустить линейно поляризованный свет с длиной волны через определенную плоскопараллельную пластинку толщиной, соответствующую параметрам кристалла.
В этом случае пластинка находится параллельно оптическому вектору. Круговая поляризованная световая волна во время попадания в тонкую пластинку, автоматически разбивается на две — обыкновенную и необыкновенную. Будучи линейно поляризованными, пучок света располагается во взаимно перпендикулярных средах, а волны приобретут на выходе из нее разность фаз.
Применение круговой поляризации
Чаще всего круговая поляризации используется для разработки различных оптических эффектов, а также в современном 3D-кинематографе, где это явление применяется для разделения ярких изображений, предназначенных левому и правому глазу.
Круговая поляризация внедряется в антеннах космических линий связи, так как для приёма сверхвысокого сигнала важно не только его положение устройства, а и плоскость приёмной и передающей частот. То есть вращение любого космического аппарата не повлияет на вероятность нормальной связи с ним. В наземных линиях зачастую применяется антенны линейной поляризации. Конструкцию круговой поляризации выполнить сложнее, так как само явление рассматривается только с точки зрения теорий. На практике задействуют антенны эллиптической поляризации — с правым или левым направлением вращения.
Круговая поляризация позволяет избегать двоение картинки при незначительных боковых наклонах головы и сохранять начальный стереоэффект. Также, данный эффект находит широкое применение в автомобилях: стекло фар всегда поляризовано в горизонтальной плоскости, а лобовое стекло — в вертикальной. Благодаря этому встречная машина не способна ослепить водителя ярким светом от фар.
Рисунок 2. Применение поляризации. Автор24 — интернет-биржа студенческих работ
Без круговой поляризации не обходятся и современные фильтры для фотоаппаратов, а также и стереокино, которое снимается специальными камерами. Для просмотра необходимы стерео-очки. Правый и левый глаз видит изображение так, как его передают два объектива камеры. Создаётся впечатление невероятного объема кадра. Если же посмотреть на монитор без специальных очков, то картинки будет не резкими и смазанным. Чтобы получить поляризованное и качественное изображение на объективы камер, обязательно надеваются соответствующие светофильтры.
Из симметричной сферы создали источник света с круговой поляризацией
Физикам удалось получить свет с круговой поляризацией от сферического симметричного источника размером несколько нанометров. В основе метода лежит катодолюминесценция, а характер поляризации зависит от положения используемого электронного луча. Помимо фундаментального значения, способ может помочь в создании квантовых компьютеров. Статья опубликована в ACS Nano.
Электромагнитное волны по своей природе поперечные, то есть в луче света колебания идут поперек его оси. В естественном свете, как от Солнца или лампы накаливания, колебания не лежат в одной плоскости, а распределены хаотично по кругу, и такие волны называют неполяризованными. Однако если колебания идут в одном направлении или в нескольких, то такой свет точно будет поляризованным.
Поляризация при этом бывает разной. Если плоскость колебаний всего одна, ее называют линейной. Если две волны с разной плоскостью поляризации совместить перпендикулярно друг другу, но со сдвигом фазы, то они сложатся, и вектор электрического поля будет постоянно описывать круг. Такую поляризацию называют круговой. В настоящий момент круговой поляризации света в повседневной жизни почти нет практического применения, и только некоторые животные способны ее замечать — например, несколько видов морских ракообразных.
Однако этот эффект может пригодиться в перспективной электронике, в том числе квантовых компьютерах. Например, с его помощью можно влиять на электроны внутри квантовых точек. Один из способов получить волну с круговой поляризацией — использовать хиральный (несимметричный) на масштабах меньше длины волны источник света. Поэтому в исследованиях в области квантовых вычислений к обычному светящемуся источнику, например, однофотонному генератору, подсоединяют хиральную оптическую наноантенну.
Таеко Матсукато (Taeko Matsukata) из Токийского технологического института и его коллеги придумали, как добиться управляемой наноскопической люминесценции без использования антенн, прямо от источника. В качестве источников света использовали кремнивые сферы диаметром 100 нанометров, которые начинают светиться под действием потока свободных электронов. Это явление называется катодолюминесценция: в ней нет ничего нового — по этому принципу работали кинескопные телвизоры, у которых круговой поляризации не наблюдалось.
Находка японских ученых заключается в том, что они смогли управлять поляризацией света за счет выбора места и угла падения электронного луча.
Электроны влияли на дипольный момент наносферы, нарушая симметрию, делая ее хиральной. В зависимости от комбинации угла облучения и энергии сфера испускала свет с разной поляризаций, в том числе, при некоторых конфигурациях, одна ее сторона светилась с правой круговой поляризацией, а вторая — с левой.
Описанный метод получения света с заданной поляризацией стабилен и точен: в ходе эксперимента удавалось добиться произвольной разницы фаз, нуля до пи, и потому технологии может найтись применение в элементарной базе вычислительной техники будущего.
У поляризованного света есть ряд особых свойств: например, поляризация позволяет преодолеть дифракционный предел и увидеть микроскопические детали.
Василий Зайцев
Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Физики разобрались с танцем арахиса в пиве
Это поможет добывать руду и обрабатывать ядерные отходы
Европейские физики теоретически и экспериментально исследовали цикличные процессы всплытия и опускания на дно зерен арахиса в пиве, который называют «танец арахиса». Для этого они в течение двух с половиной часов снимали на камеру этот процесс в лаборатории. Анализируя эти результаты, ученые выяснили, что танец происходит из-за поверхностных свойств арахиса, на которых образование пузырьков предпочтительнее, чем на стенках стакана. Исследование опубликовано в Royal Society Open Science. В России распространен фокус, который показывают на вечеринках с шампанским. Для этого в полный бокал игристого напитка бросают изюминку, кусочек ананаса или дольку шоколада. Брошенное в жидкость тело сначала тонет, но затем всплывает под действием пузырьков газа, зародившихся на его краях. У поверхности пузырьки разрушаются и цикл повторяется. В аргентинских барах существует такая же традиция, только вместо шампанского там используют пиво, а вместо изюма — арахис. Там этот трюк получил название «танец арахиса». Несмотря на качественное понимание такого танца, физики плохо понимают его детали. Вместе с тем, такие процессы происходят не только на вечеринках или в барах, но и в природе: предполагается, что именно так плотный магнетит всплывает в магме. Похожим же образом горняки отделяют железо от руды. Разобраться в этом вопросе решили Луис Перейра (Luiz Pereira) из Университета Людвига Максимилиана и его коллеги из Англии, Германии и Франции. Для этого они провели экспериментальны с арахисом в пиве и подтвердили их результаты численными вычислениями. Физики наполняли резервуар размером 100 × 100 × 200 миллиметров одним литром лагера и опускали в него 13 обжаренных зерен арахиса Arachis hypogaea. Весь процесс они снимали на цифровую камеру. На начальном этапе все зерна плавали на поверхности из-за активного образования пузырей в перенасыщенном углекислом газом пиве. Примерно через 25-30 минут количество пузырьков уменьшалось и арахис начинал цикличное движение вверх и вниз под действием описанного выше механизма. Танец всех зерен прекратился примерно через 150 минут после начала эксперимента — количество газа, растворенного в пиве, опустилось ниже пороговой отметки. Для анализа результатов эксперимента авторы разбили задачу на три части: зарождение пузырьков, плавучесть и цикличность. Для этого им потребовалось знать капиллярные свойства системы, такие как плотность пива и газа, поверхностное натяжение, углы смачивания и так далее. Первое они рассчитали с помощью пивного онлайн калькулятора, второй — взяли из литературы, а для получения информации об углах ученым потребовалось провести дополнительные эксперименты по смачиванию пива стеклом и плоской частью арахиса. В результате физики смогли воспроизвести основные особенности поведения арахиса в пиве, которые они увидели в эксперименте. Так, они доказали, что арахис обладает поверхностью, на которой образование пузырей энергетически более выгодно, чем на стенках стакана. Если бы это было не так, танец арахиса был бы невозможен. Ученые отмечают, что арахис в пиве может служить модельной системой не только для задач геологии и добычи полезных ископаемых, но и в обработке ядерных отходов. Один литр пива — это не так много, когда речь идет о физическом эксперименте (впрочем, не только). То ли дело 30 литров! Именно столько потратили физики из Германии и Кореи, изучая стабильностью пивной пены при розливе «снизу-вверх».
© 2024 N + 1 Интернет-издание / Свидетельство о регистрации СМИ Эл № ФС77-67614
Использование всех текстовых материалов без изменений в некоммерческих целях разрешается со ссылкой на N + 1.
Все аудиовизуальные произведения являются собственностью своих авторов и правообладателей и используются только в образовательных и информационных целях.
Если вы являетесь собственником того или иного произведения и не согласны с его размещением на нашем сайте, пожалуйста, напишите на [email protected]
Сайт может содержать контент, не предназначенный для лиц младше 18 лет.