Что определяет внешняя характеристика усилителя
Перейти к содержимому

Что определяет внешняя характеристика усилителя

  • автор:

Что определяет внешняя характеристика усилителя

Салон Hi-Fi Audio

Салон
Hi-Fi и
hi-end
техники
Мы не продаем
технику — мы
дарим эмоции!

Санкт-Петербург, Литейный пр., 30

  • Главная страница
  • Усилители
  • Характеристики усилителей

При выборе усилителя мощности покупатели часто допускают похожую ошибку, полагая, что указанные в паспорте технические характеристики позволят им понять, какого звука стоит ожидать от приобретаемого усилителя. Дело в том, что основные параметры не отражают «характер» усилителя, хотя бы потому, что они измерены в рафинированных лабораторных

условиях и вообще могут быть недостоверными. Равные по техническим характеристикам усилители могут звучать по-разному. А бывает, что усилитель с худшими характеристиками звучит гораздо лучше. Можно сделать предположение, что эти явления в основном связаны с субъективным восприятием звукового поля разными людьми. Однако правильнее предположить, что если при одинаковых «цифрах» имеются различия, это означает, что что-то измерить попросту забыли. В итоге получается, что оценивать усилитель по основным характеристикам – все равно, что оценивать человека лишь по его физическим параметрам.

К основным характеристикам усилителя мощности звуковой частоты относятся:
  1. Выходная мощность.
  2. Частотный диапазон.
  3. Коэффициент гармонических искажений.
  4. Отношение сигнал / шум.
  5. Демпинг-фактор (или коэффициент демпфирования).
Дополнительно могут указываться:
  1. Коэффициент интермодуляционных искажений.
  2. Скорость нарастания выходного напряжения.
  3. Перекрестные помехи.

Разумеется, в паспорте присутствуют и немаловажные эксплуатационные характеристики:

  1. Напряжение питания.
  2. Максимальная потребляемая мощность.
  3. Масса.
  4. Габаритные размеры.
Выходная мощность

Данный параметр имеет множество разновидностей и методик измерения, и некоторые производители используют это в рекламных целях, намеренно не указывая условия, при которых выходная мощность была измерена. Именно поэтому покупатель недоумевает, сравнивая в магазине крохотный музыкальный центр с наклейкой 2х1000W и увесистый усилитель мощности внушительных размеров с характеристикой 30 Вт на канал.

Для отечественных усилителей в основном использовались такие характеристики, как номинальная и максимальная выходная мощность:

Номинальная мощность – выходная мощность усилителя при заданном коэффициенте нелинейных искажений. Такая методика измерения предоставляет определенную свободу выбора изготовителю, который волен указать значение номинальной мощности, соответствующее наиболее выгодному значению нелинейных искажений. А ведь широко известно, что в усилителях класса АВ при малых уровнях выходной мощности, например 1Вт, уровень искажений может достигать огромных значений. Существенно уменьшаться он может только при увеличении выходной мощности до номинальной. В паспортах отечественными производителями указывались рекордные номинальные характеристики, с крайне низким уровнем искажений при высокой номинальной мощности усилителя. Тогда как наивысшая статистическая плотность музыкального сигнала лежит в диапазоне амплитуд 5-15% от максимального значения. Вероятно, поэтому советские усилители заметно проигрывали на слух западным, у которых оптимум искажений мог быть на средних уровнях громкости. В СССР же шла гонка за минимумом гармонических и иногда интермодуляционных искажений любой ценой на одном, номинальном (почти максимальном) уровне мощности.

Максимальная мощность – выходная мощность усилителя при ненормированном коэффициенте нелинейных искажений. Данный параметр является еще менее информативным, чем номинальная мощность и характеризует только запас прочности усилителя – способность работать длительное время при перегрузках по входу.

Среди зарубежных чаще всего используются характеристики RMS, PMPO и DIN POWER:

RMS (Root Mean Squared) – среднеквадратичное значение мощности при нормированном коэффициенте нелинейных искажений. Как правило, измерение проводится на 1 кГц при достижении коэффициента нелинейных искажений 10%. Этот показатель был заимствован из электротехники и, строго говоря, для описания звуковых характеристик непригоден. В музыкальных сигналах громкие звуки человек слышит лучше, чем слабые, поскольку на органы слуха воздействуют амплитудные значения, а не среднеквадратичные. Таким образом, усредненное значение будет мало о чем говорить. Стандарт RMS был одной из неудачных попыток описать параметры звуковой аппаратуры и имеет весьма ограниченное применение — усилитель, который выдает 10% искажений не на максимальной мощности нужно еще поискать. До достижения максимальной мощности, искажения не превышают зачастую сотых долей процента, а потом резко возрастают.

PMPO (Peak Music Power Output) — максимально достижимое пиковое значение сигнала независимо от искажений за минимальный промежуток времени (обычно за 10 mS). Как следует из описания, параметр PMPO — виртуальный и бессмысленный в практическом применении. Тем не менее, он очень часто встречается в описаниях на усилители, вводя в заблуждение многочисленных покупателей. В связи с этим можно лишь посетовать на отсутствие единых обязательных стандартов измерения выходной мощности и на недобросовестность производителей. 100 Вт PMPO зачастую соответствуют лишь 3 Вт номинальной мощности при 1% КНИ.

DIN POWER — значение выдаваемой на реальной нагрузке мощности при нормированном коэффициенте нелинейных искажений. Измерения проводятся в течении 10 минут с помощью сигнала частотой 1 кГц при достижении 1 % КНИ.

Данный параметр наиболее адекватно характеризует выходную мощность усилителя. Иногда он встречается в паспорте усилителя под обозначением IEJA. Его разновидность IHF определяет выходную мощность при 0,1% КНИ.

Строго говоря, есть и многие другие виды измерений, например, DIN MUSIC POWER, описывающая мощность не синусоидального, а музыкального сигнала. В последнее время из-за отсутствия единого стандарта производители стараются указывать выходную мощность вкупе с другими характеристиками, при которых она измерена. Например,

650 W (8 Ω, 20 – 20000 Hz, 0,1% THD)
750 W (8 Ω, 1000 Hz, 0,1% THD)

Учитывая тот факт, что музыкальный сигнал имеет большой частотный и динамический диапазон, правильнее проводить измерения с помощью музыкальных сигналов. И указывать не номинальную мощность, а график зависимости коэффициента нелинейных искажений от выходной мощности.

Можно добавить, что каждый усилитель рассчитан на определенное сопротивление нагрузки. Тем не менее, оно может варьироваться, и в технических паспортах указываются основные параметры для каждого допустимого сопротивления.

Частотный диапазон

Практически любой современный усилитель мощности звуковой частоты способен усиливать сигналы с частотой, выходящей далеко за рамки слышимого диапазона. Поэтому указывать в чистом виде частотный диапазон, например, от 5 Гц до 100 кГц – совершенно бессмысленно.

Назначение усилителя мощности звуковой частоты (если он не имеет специального назначения, как, например, гитарный усилитель) – формирование на выходе электрического сигнала, по форме в точности повторяющего входной сигнал, но имеющего большую мощность. Так как музыкальный сигнал, даже если он формируется одним музыкальным инструментом, далек от гармонического, то минимизации коэффициента нелинейных искажений в усилителях для качественного воспроизведения звука, недостаточно. Необходимо, чтобы в диапазоне слышимых частот от 16 до 20000 Гц амплитудно-частотная и фазо-частотная характеристики усилителя были абсолютно горизонтальными. На практике, этого добиться не удается, да и акустическая система имеет АЧХ с более существенными провалами и подъемами.

Частотный диапазон указывается при нормированной неравномерности амплитудно-частотной характеристике, выраженной в относительных величинах. Самые удачные модели усилителей имеют неравномерность АЧХ +/-0,1 дБ в диапазоне от 20 до 20000 Гц. Если при измерении принять стандартную неравномерность амплитудно-частотной характеристики 3 дБ, то частотный диапазон составит 10 – 100000 Гц.

Коэффициент гармонических искажений

Искажения сигнала вызваны нелинейностью входных и выходных характеристик усилительных элементов и присущи любым усилителям мощности. Если подать на вход усилителя синусоидальный сигнал, то в спектре выходного сигнала, кроме основной гармоники, обнаружатся дополнительные, частота которых кратна частоте полезного сигнала. Такие гармоники являются паразитными и их мощность, как правило, невелика. Однако их суммирование с полезным сигналом приводит к существенному искажению его формы, и как следствие, искаженному звучанию.

Коэффициент гармонических искажений (Total Harmonic Distortion) показывает слышимую составляющую гармонических искажений в выходном сигнале и определяется как отношение суммарной мощности паразитных сигналов к мощности полезного гармонического сигнала. Как правило, измерения проводятся на частоте 1 кГц.

При замерах обращается внимание на спектральное распределение и характер искажений. Слышимость паразитных гармоник зависит от относительного уровня по отношению к тестовому сигналу, от порядка гармоники, от типа (четная/нечетная), а так же от того, на какой громкости прослушивается тестовый фрагмент.

Типовое значение THD для Hi-Fi усилителя составляет 0,1%. Однако, уже не раз отмечалось: усилитель с THD 0,001% может оказаться хуже по звуку, чем другой, с THD 0,1%. Дело в том, что при таких малых значениях этого параметра, искажения сложно проследить в форме выходного сигнала или ощутить на слух. Поэтому, разницы между 0,1% и 0,001% слышно не будет.

Отношение сигнал / шум

Отношение сигнал / шум определяется как отношение мощности полезного гармонического сигнала к мощности собственных шумов усилителя мощности. Данный параметр для современной звукоусилительной техники превышает значение 100дБ. Это означает, что мощность собственных шумов усилителя в 10 миллиардов раз меньше мощности полезного музыкального сигнала. Можно с уверенностью сказать, что в настоящее время этот параметр – лишь предмет гордости производителя. Он не имеет для пользователя никакого значения. Кто сможет ощутить различия между ОСШ 95 и 100 дБ?!

Демпинг-фактор (коэффициент демпфирования)

Коэффициент демпфирования определяется как отношение номинального сопротивления нагрузки к выходному сопротивлению усилителя и характеризует способность подавлять паразитные напряжения, которые возникают в динамических головках при движении катушки в магнитном поле. Если демпфирование недостаточно, то диффузор будет совершать свои собственные «телодвижения», никак не связанные с музыкой, но зависящие от упругости подвески. Необходимо отметить, что в подавляющем большинстве моделей акустических систем эта проблема успешно решается. Можно считать достаточным, если значение коэффициента превышает 100.

Демпфирование зависит не только от выходного сопротивления усилителя и сопротивления акустической системы. Необходимо учитывать, что способность поглощать возвращаемую громкоговорителем энергию зависит от индуктивностей фильтров и от сопротивления разъемов и кабеля, которым подключены акустические системы.

Минимальным значением коэффициента демпфирования можно считать 20, хорошим — 150-400. Современные усилители высокого класса имеют значение этого параметра 150 и выше.

Коэффициент интермодуляционных искажений

Нелинейность характеристик усилительных элементов приводит к возникновению нелинейных искажений. Большинство производителей усилителей измеряют и указывают в паспорте только коэффициент гармонических искажений (THD). Измерения проводятся с помощью гармонического сигнала. При подобном тестировании на выходе усилительного тракта появляются высшие гармоники, частота которых кратна частоте основного тона. Однако, как уже упоминалось, музыкальный сигнал далек от гармонического. Более того, любой музыкальный инструмент воспроизводит не только основной тон, но «обертона», которые являются ярким примером гармонических искажений. Известно, что наличие в музыкальном сигнале «обертонов» вовсе не портят, а обогащают звук. Поэтому очень важно указывать не коэффициент гармонических искажений, а весь спектр выходного сигнала, из которого можно определить тип (четные или нечетные) паразитных гармоник и их уровень относительно полезного сигнала. С точки зрения психоакустики, например, наличие в выходном сигнале ощутимых по уровню четных гармоник воспринимается на слух лучше, чем наличие малых нечетных.

Наибольший вред музыкальному сигналу приносят интермодуляционные искажения (Inter Modulation Distortion), которые возникают при подаче на вход нелинейной системы мультитонового сигнала. При этом на выходе появляются паразитные сигналы с частотами, являющимися суммой или разностью частот входных сигналов, а также суммой или разностью частот сигналов, вызванных гармоническими искажениями и через обратную связь возвращенных на вход усилителя. Подобные искажения не соотносятся с основными тонами музыкального сигнала и привносят в него фоновый шум.

Необходимо отметить, что единых стандартов по измерению интермодуляционных искажений не существует, а результаты измерений существенно зависят от уровней входных сигналов и их частот. Чаще всего, IMD не указывается просто потому, что неизвестно как его измерять. Тем не менее, данный параметр является наиболее перспективным для оценки нелинейных свойств усилителя мощности.

Скорость нарастания выходного сигнала

Данный параметр характеризует уровень динамических искажений, которые возникают вследствие ограничения скорости нарастания выходного сигнала в усилителе, охваченного глубокой обратной связью. Введение ООС, как правило, приводит к нестабильности усилителя на высоких частотах. Это вынуждает применять частотную коррекцию. В свою очередь недостаточно высокая частота среза образуемого фильтра низких частот и вызывает динамические искажения.

В музыкальном сигнале всегда присутствуют резкие всплески по уровню, например, при работе ударных инструментов. Недостаточная скорость нарастания сигнала приводит к ухудшению звучания, которое выражается в потере энергичности.

Перекрестные помехи

Данный параметр определяет степень проникновения сигнала из одного канала в другой. Высокий уровень перекрестных помех приводит к незначительному ухудшению четкости восприятия стереобазы. Однако чуткий слушатель сразу ощутит, что звук не дает представления о взаимном расположении и размерах музыкальных инструментов, т.е. отсутствие или нечеткость звуковой 3D картинки.

Не в последнюю очередь при выборе усилителя обращается внимание на его внешний вид и удобство в эксплуатации. В силу субъективности эти показатели не поддаются никакому измерению и выражаются в виде звездочек в многочисленных рейтингах и наклеек типа «Gold Design» на корпусе устройства. Вне сомнений, это также является характеристикой усилителя мощности.

Частотная характеристика усилителя

Частотной характеристикой усилителя ( рис. 136, б ) называется графически выраженная зависимость коэффициента усиления от частоты: К = φ (F). Коэффициенты усиления реального усилителя уменьшаются в области нижних и верхних частот, образуя «завалы» частотной характеристики на этих крайних частотах.

Обычно при построении частотной характеристики по оси абсцисс откладывают частоты в логарифмическом масштабе, а по оси ординат — коэффициент усиления в децибелах.

Рассмотрим подробнее причины, которые вызывают уменьшение коэффициентов усиления К н и К в , соответственно на нижних и верхних частотах рабочего диапазона усилителя. Выше было установлено, что напряжения источника анодного питания, смещения и экранирующей сетки определяют положение первоначальной (исходной) рабочей точки, от правильного выбора которой зависит величина нелинейных искажений, вносимых усилительным элементом. Наличие же в схеме развязывающего фильтра R ф , С ф обеспечивает устойчивую работу усилителя.

Если предположить, что режим работы усилителя выбран правильно, то эквивалентная схема усилительного каскада, позволяющая определить влияние элементов схемы на прохождение сигнала, может быть представлена и виде, показанном на рис. 137, а , где μU с и R i — э. д. с. и внутреннее сопротивление эквивалентного генератора, вменяющего лампу; R а — сопротивление анодной нагрузки; С с — разделительный конденсатор; R с — сопротивление утечки; С 0 = С вых + С’ вх + С м — общая емкость, учитывающая выходную емкость усилительного элемента, динамическую входную емкость усилительного элемента следующего каскада С’ вх = С вх + С ас (1 + К 2 ) где К 2 — коэффициент усиления следующего каскада, и емкость монтажа (последняя невелика — порядка нескольких десятков пикофарад).

Рис. 137. Эквивалентные схемы усилителя на сопротивлениях: а — полная; б — на средних частотах; в — на нижних частотах; г — на верхних частотах.

Таким образом, полной нагрузкой усилителя Z н является сложная электрическая цепь, состоящая из сопротивлений и емкостей: R а , С с , R с и С 0 . Чем больше сопротивление нагрузки, тем выше напряжение на выходе U вых (при неизменных μU с и R i ).

В области средних частот сопротивление конденсатора С c много меньше, а сопротивление емкости С 0 много больше сопротивления R c , поэтому влиянием этих емкостей можно пренебречь. Эквивалентная схема с учетом этих допущений приведена на рис. 137, б .

Известно, что коэффициент усиления на средних частотах, согласно определению, равен

Тогда, исходя из эквивалентной схемы, напряжение на выходе (на нагрузке)

Разделив числитель и знаменатель дроби на произведение R а R с , получим

Подставив полученный результат в выражение для К ср , получим формулу для коэффициента усиления на средних частотах в окончательном виде:

Как можно видеть из этой формулы, коэффициент усиления в области средних частот не зависит от частоты, всегда меньше статического коэффициента усиления лампы μ и оказывается тем больше, чем больше сопротивления R а и R с по сравнению с внутренним сопротивлением лампы R i .

Если усилитель собран на пентоде, то, пренебрегая влиянием R с на усилительные свойства каскада, можно рассчитать коэффициент усиления на средних частотах по приближенной формуле

так как R i >>R а

Эквивалентная схема усилителя в области нижних частот приведена на рис. 137, в . На этих частотах сопротивление разделительного конденсатора С с увеличивается примерно в 10 раз по сравнению с сопротивлением на средних частотах. Напряжение на выходе усилителя падает вследствие увеличившихся потерь напряжения усиленного сигнала на разделительном конденсаторе. Влиянием С 0 в области нижних частот можно пренебречь по той же причине, что и на средних частотах, но с еще большим основанием.

Исходя из указанных условий, коэффициент усиления на нижних частотах определяется по формуле

где Ω н = 2πF н — угловая частота сигнала самой нижней частоты.

Как можно видеть из формулы (229), коэффициент усиления в области нижних частот меньше коэффициента усиления в области средних частот; тем меньше, чем ниже частота и тем выше, чем больше произведение R с C с .

Эквивалентная схема усилительного каскада на сопротивлениях в области верхних частот приведена на рис. 137, г . Разделительный конденсатор С с отсутствует в данной схеме по известным уже причинам, но шунтирующее действие конденсатора С 0 на сопротивление R с приходится учитывать, так как эти сопротивления становятся соизмеримыми.

Исходя из указанных условий, коэффициент усиления на верхних частотах определяется по формуле

где Ω в = 2πF в — угловая частота сигнала самой верхней частоты F в ; R э = R i R а /R i +R а — эквивалентное сопротивление усилителя.

Коэффициент усиления в области верхних частот меньше коэффициента усиления на средних частотах; тем ниже, чем выше частота, и тем выше, чем меньше емкость С 0 и сопротивление R э .

Таким образом, снижение усиления, появление частотных искажений в области нижних частот вызывает конденсатор С с , а в области верхних частот — конденсатор С 0 .

Частотные искажения усилительного каскада на сротивлениях определяют последующим формулам:

на нижних частотах

на верхних частотах

Чтобы поднять усиление в области нижних звуковых частот, и тем самым уменьшить частотные искажения, надо, следовательно, увеличить емкость разделительного конденсатора С с и величину сопротивления утечки R с .

Чтобы поднять усиление в области верхних звуковых частот для уменьшения частотных искажений, надо тщательно производить монтаж усилителя и тем самым уменьшить емкость С 0 .

Человеческое ухо почти не замечает наличия частотных искажений, если они не превышают 25—30%, что соответствует изменению коэффициента усиления в полосе рабочих частот на 2—3 децибела.

Фазовая характеристика усилителя на сопротивлениях определяется следующими соотношениями:

В области нижних частот сдвиг фаз определяется емкостью конденсатора С с , а в области верхних частот — емкостью С 0 , причем здесь он имеет отрицательный знак. Пользуясь формулами (233) и (234), можно определить частоту F 0 , на которой угол сдвига фаз, обусловленный емкостями С с и С 0 , равен нулю:

После несложных преобразований получаем

Частота F 0 называется квазирезонансной, на этой частоте коэффициент усиления максимален. Она расположена и середине полосы пропускания.

Следует иметь в виду, что фазовые искажения в усилителях низкой частоты не оказывают практического влияния на их работу и на качество воспроизведения сигнала.

Формула (235) позволяет определить частоту F 0 = F ср , которой соответствует коэффициент усиления К ср .

Обычно в усилительном каскаде, выполненном на триоде,

Сопротивление утечки R с в 5—10 раз больше сопротивления анодной нагрузки Сопротивление фильтра R ф = (0,2÷0,3) R а , а емкость С ф порядка единиц микрофарад. Емкость блокировочного конденсатора С бл в цепи экранирующей сетки составляет десятые доли микрофарады. Величина гасящего сопротивления R в цепи экранирующей сетки зависит от типа лампы и режима работы, но должна быть примерно в два раза больше R а .

Усилительный каскад на сопротивлениях, или, как его часто называют, реостатный каскад, прост и дешев в изготовлении, имеет малые частотные и нелинейные искажения. Однако, как уже отмечалось выше, коэффициент усиления реостатного усилителя значительно меньше статического коэффициента усиления лампы μ.

Так, при использовании триода

при использовании пентода

К недостаткам реостатного усилительного каскада следует отнести также и значительное бесполезное падение напряжения источника анодного питания на сопротивлении нагрузки.

Основные параметры усилителя

Каждый электронщик должен знать основные параметры усилителя, так как усилитель в электронике используется абсолютно везде. В этой статье мы рассмотрим самые важные параметры усилителей.

Входное и выходное сопротивление

Кто в первый раз сталкивается с этими понятиями, читайте эту статью. Кому лень читать, вкратце объясню здесь из прошлой статьи. Каждый усилительный каскад имеем свое входное и выходное сопротивление. На схеме Rвх и Rвых

основная схема усилителя

Входное сопротивление усилителя находится по формуле Rвх =Uвх / Iвх . Думаю, здесь вопросов возникать не должно. Эта формула справедлива как для постоянного тока, так и для переменного. В случае с постоянным током — это у нас будет усилитель постоянного тока (УПТ).

12 недорогих наборов электроники для самостоятельной сборки и пайки

Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит

Немного иначе обстоят дела с выходным сопротивлением. В теории, можно замкнуть выходные клеммы 3 и 4 накоротко. В этом случае во выходной цепи усилителя у нас появится ток короткого замыкания Iкз

Основные параметры усилителя

Основные параметры усилителя

Ну и по закону Ома нетрудно догадаться, что Rвых = Eвых / Iкз . Но как же найти Евых ? Достаточно разомкнуть цепь и просто и замерить напряжение мультиметром. Это и будет Eвых. Физический смысл очень простой. Так как вольтметр обладает очень высоким входным сопротивлением, то в цепи у нас почти не будет течь ток, так как по закону Ома I=U/R. А если сопротивление нагрузки бесконечно большое, то, следовательно, Iкз будет бесконечно малое.

В этом случае этим бесконечно маленьким током можно пренебречь и считать, что в цепи нет никакой силы тока. А раз сила тока равна нулю, то и падение напряжения на Rвых также будет равняться нулю или формулой: URвых = IRвых = 0 Вольт. Следовательно, на клеммах 3 и 4 мы будем замерять Eвых .

Основные параметры усилителя

Выходное сопротивление усилителя можно найти двумя способами: теоретическим и практическим. Теоретический способ, часто сложен, поскольку неизвестны многие параметры «черного ящика», называемого усилителем. Проще определить выходное сопротивление практическим путем.

Как найти выходное сопротивление на практике

Что нужно для этого? Номинальная мощность усилителя и допустимое напряжение на выходе. Не важно — усилитель это постоянного или переменного тока (напряжения). Тестирование усилителя любого типа желательно выполнять на уровне 70% допустимой выходной мощности. Это общая практика.

Основные параметры усилителя

Если вы не забыли, мультиметр в этом случае нам покажет ЭДС Eвых , т. е. в данном случае Eвых = Uвых . (Что такое ЭДС).

Основные параметры усилителя

Номинал нагрузочного сопротивления должен выбираться исходя из допустимого тока и мощности усилителя.

Выходная мощность усилителя 10 Вт, допустимое выходное напряжение (эффективное) 100 В. В этом случае, резистор нагрузки должен иметь сопротивление не менее R=U 2 /P = 10000/10 = 1 кОм. Мощность резистора: PR = U 2 /R = 10000/1000 = 10 Вт

Какой же физический смысл этого опыта? В результате этих шагов, у нас цепь станет замкнутой, а два сопротивления, Rвых и Rн , образуют делитель напряжения. Сюда же можно приписать закон Ома для полной цепи, который выражается формулой:

Основные параметры усилителя

I — сила тока в цепи, А

R — сопротивление нагрузки, Ом

r — внутреннее сопротивление источника ЭДС, Ом

Применительно к нашей ситуации, формула будет иметь такой вид:

Основные параметры усилителя

Основные параметры усилителя

Основные параметры усилителя

Или словами, ЭДС равняется сумме падений напряжения на каждом сопротивлении.

Как вы могли заметить, падение напряжения на сопротивлении Rвых зависит от силы тока в цепи. Чем больше сила тока в цепи, тем больше падение напряжения на выходном сопротивлении Rвых . Но от чего же зависит сила тока в цепи? От нагрузки Rн ! Чем она меньше, тем больше сила Iвых в цепи, тем больше будет падение напряжения на Rвых , а значит, падение напряжения на U будет меньше.

Основные параметры усилителя

Теперь, зная этот принцип, можно косвенно вычислить выходное сопротивление Rвых .

Шаг номер 3: Замеряем напряжение на нагрузке U. Вспоминаем формулу выше:

Основные параметры усилителя

Основные параметры усилителя

Основные параметры усилителя

Основные параметры усилителя

Далее что нам требуется — это увеличивать входное напряжение и снимать выходное напряжение — так мы увидим всю нелинейность выходной характеристики от тока и сможем замерить выходное сопротивление в диапазоне нагрузок, так как большинство усилителей мощности имеют нелинейность выходного сопротивления от допустимого тока нагрузки.

Коэффициент усиления

Про коэффициенты усиления мы писали еще в прошлой статье.

Рабочий диапазон частот

Рабочий диапазон — это диапазон частот, где коэффициент усиления изменяется в допустимых пределах, заданных в технических условиях на усилитель. Для этого надо построить АЧХ усилителя. Обычно этот предел устанавливается на уровне -3 децибел. Почему именно -3 дБ? В свое время так было удобнее учитывать передаваемую энергию. В полосе — 3 дБ передается 50% мощности сигнала.

рабочий диапазон частот

Но иногда требуется незначительное изменение коэффициента усиления. Например, в -1 дБ. В этом случае рабочий диапазон частот усилителя будет меньше:

Основные параметры усилителя

Собственные шумы усилителя.

Что же такое шум?

В электронике шумом называют беспорядочные колебания амплитуды сигнала, которые глушат полезный сигнал. Сюда же относятся разного рода помехи. Собственные шумы усилителя — это шумы, которые зарождаются как внутри самого усилителя, так и могут быть вызваны внешним источником помех, либо некачественным питанием усилителя. Давайте рассмотрим основные виды шумов усилителя.

Этот шум вызван некачественным питанием усилителя. Если источник питания собран на сетевом трансформаторе, то шум будет на частоте 100 Гц (2х50Гц, по схеме диодного моста). То есть на выходе такого усилителя мы услышим гудение, если подцепим к выходу динамик. Думаю, вы часто слышали такое выражение «что-то динамики фонят». Это все из этой серии.

Помехи и наводки

Это могут быть внешние источники, которые так или иначе действуют на усилитель. Это может быть наводка от сети 220 Вольт (очень часто ее можно увидеть, если просто прикоснуться к сигнальному щупу осциллографа), это также может быть какая-либо искра, которая образуется в свечах двигателей внутреннего сгорания.

Небольшое лирическое отступление. Помню, как смотрел диснеевские мультики по первому каналу, а через дорогу сосед пилил дрова с помощью бензопилы Дружба-2. Тогда на экране ТВ были такие помехи, что я про себя тихо материл соседа.

Ну а как же без грозовых разрядов? Благодаря электромагнитному импульсу у нас появилось такое изобретение, как радио.

К источникам помех можно также отнести радио- и ТВ-станции, рядом лежащее и стоящее электрооборудование, типа мощных коммутационных механических ключей, разрядников и тд.

Ну и конечно, это шум самих радиоэлементов. Сюда относится тепловой шум (джонсоновский), дробовой шум, а также фликкер-шум.

Наиболее существенными являются шумы, которые возникают на входе усилителя в самом первом каскаде. Этот шум в дальнейшем усиливается также, как и входной полезный сигнал. В результате на выходе усилителя у нас будет усилен как полезный сигнал, так и шумовой. Поэтому, при проектировании качественных усилителей стараются как можно сильнее минимизировать шум на входе первого каскада усилителя.

Отношение сигнал/шум

Пусть у вас дома стоит телевизор, который ловит аналоговое вещание. На экране телевизора мы видим четкую картинку:

Основные параметры усилителя

Но вдруг антенна на крыше вашего дома из-за сильного ветра чуток отклонилась в сторону и изображение ухудшилось

Основные параметры усилителя

Потом антенна вообще упала с крыши, и на телевизоре мы видим теперь что-то типа этого

Основные параметры усилителя

В каком случае отношение сигнал/шум будет больше, а в каком меньше? На первой картинке, где четкое изображение, отношение сигнала к шуму будет очень большое, так как не первой картинке мы простым взглядом не можем уловить каких-либо помех на изображении, хотя по идее они есть).

Основные параметры усилителя

На второй картинке мы видим, что в изображении появились помехи, которые делают некомфортным просмотр картинки. Здесь отношение сигнала к шуму уже будет намного меньше, чем на первой картинке.

Основные параметры усилителя

Ну и на третьей картинке шумы почти полностью одолели изображение. В этом случае можно сказать , что отношение сигнала к шуму будет ну очень малым.

Основные параметры усилителя

Отношение сигнал/шум является количественной безразмерной величиной.

В аналоговой электронике для нормальной работы усилителя полезный сигнал должен в несколько раз превышать шумы, иначе это сильно скажется на качестве усиления, так как полезный сигнал суммируется с шумовым.

Отношение сигнал/шум в англоязычной литературе обозначается как SNR или S/N.

формула сигнал шум

Так как порой это отношение достигает очень больших значений в цифрах, поэтому чаще всего его выражают в децибелах:

формула сигнал шум в децибелах

Ucигнал — среднеквадратичное значение полезного сигнала, В

Uшум — среднеквадратичное значение шумового сигнала, В

Pсигнал — мощность сигнала

То есть в нашем случае с котиком на первой картинке амплитуда полезного видеосигнала в разы превосходила амплитуду шума, поэтому первая картинка была четкой. На третьей картинке амплитуда полезного видеосигнала почти была равна амплитуде шума, поэтому картинка получилась очень зашумленной.

Еще один пример. Вот синусоидальный сигнал с SNR=10:

сигнал шум

А вот тот же самый синус с SNR=3

отношение сигнал шум

Как вы могли заметить, сигнал с SNR=10 намного «чище», чем с SNR=3.

SNR чаще всего можно увидеть при описании характеристик усилителя звука. Чем выше SNR, тем лучше по качеству звучания будет усилитель. Для HI-FI систем звучания этот показатель должен быть от 90 дБ и выше. Для телефонных разговоров вполне достаточно и 30 дБ.

На практике SNR измеряется на выходе усилителя с помощью милливольтметра с trueRMS, либо с помощью анализатора спектра.

Амплитудная характеристика

Амплитудная характеристика усилителя — это зависимость амплитуды сигнала на выходе от входного сигнала при фиксированной частоте. Обычно она составляет 1 кГц.

Амплитудная характеристика идеального усилителя по идее должна выглядеть вот так:

Основные параметры усилителя

Это луч, который начинается от нулевой точки отсчета координат и простирается в бесконечность.

Но на самом деле реальная амплитудная характеристика усилителя выглядит вот так:

амплитудная характеристика усилителя

Здесь мы видим, что если даже входное напряжение Uвх =0, то на выходе усилителя мы все равно получим какой-то уровень сигнала. Это будет напряжение шума Uш .

Динамический диапазон усилителя

Динамический диапазон — это отношение максимально допустимого уровня выходного сигнала к его минимальному уровню, при котором обеспечивается заданное отношение сигнал/шум:

формула динамического диапазона усилителя

Чтобы понять концовку определения «обеспечивается заданное отношение сигнал/шум» динамического диапазона, давайте рассмотрим наш рисунок:

Основные параметры усилителя

Допустим, наш усилитель должен иметь SNR=90 дБ. Будет ли правильно, если мы возьмем Uвых мин за Uшум?

Основные параметры усилителя

Конечно же нет! В этом случае в этой точке на графике амплитуды сигнала и шума будут равны, а следовательно, по формуле

Основные параметры усилителя

получим, что SNR=0 дБ.

Непорядок. Значит, надо взять такое значение Uвых , при котором бы соблюдалось равенство

Основные параметры усилителя

Допустим, что Uшум =1 мкВ, подставляем в формулу

Основные параметры усилителя

Из этого уравнения находим Uвых . Это будет как раз являться Uвых. мин. для формулы:

Основные параметры усилителя

при SNR=90. В нашем случае это будет точка А.

Uвых макс берем в точке B, так как в этом случае это максимальное значение, при котором у нас в усилителе не возникают нелинейные искажения (о них чуть ниже).

Основные параметры усилителя

Рабочая область усилителя будет обеспечиваться на отрезке АВ. В этом случае у нас будут минимальные искажения в сигнале, так как эта область линейная. Отношение максимально допустимого выходного сигнала к уровню шума — это предельный уровень динамического диапазона для аналогового усилителя.

Для усилителей звука выход за пределы этой рабочей области в большую сторону будет чреват нелинейными искажениями, а в меньшую — полезный сигнал задавят помехи. Да вы и сами, наверное замечали, что выкрутив на полную катушку ручку громкости дешевой китайской магнитолы, у нас качество звучания оставляло желать лучшего, так как в дело «вклинивались» нелинейные искажения.

Коэффициент полезного действия (КПД)

КПД представляет из себя отношение мощности на нагрузке усилителя к мощности, которая потребляется усилителем от источника питания

кпд усилителя

Pвых — это мощность на нагрузке, Вт

Pи.п. — мощность, потребляемая источником питания, Вт

Искажения, вносимые усилителем

Искажения определяют сравнением формы сигнала на входе и на выходе. Идеальным является усилитель, который в точности повторяет форму сигнала, поданного на вход. Но так как наш мир не идеален, и радиоэлементы тоже не идеальны, то и на выходе у нас сигнал будет всегда немного искаженный. Главное, чтобы эти искажения не были столь критичны.

В основном искажения делятся на 4 группы:

  • Частотные
  • Фазовые
  • Переходные
  • Нелинейные

Частотные искажения

Частотные искажения возникают вследствие того, что коэффициент усиления во всем диапазоне частот не одинаковый. Или простыми словами, какие-то частоты усиливаются хорошо, а какие-то плохо). Чтобы в этом разобраться, достаточно посмотреть на АЧХ усилителя.

ачх усилителя

В данном случае мы можем увидеть, что низкие и высокие частоты будут усиливаться меньше, чем средние частоты. А так как сложный сигнал состоит из множества частотных составляющих, вследствие этого и возникнут частотные искажения.

Фазовые искажения

Фазовые искажения возникают из-за того, что разные частоты с разной задержкой по времени появляются на выходе усилителя. Какие-то частоты запаздывают больше, а какие-то меньше. Давайте все это рассмотрим на примере двух картинок.

Допустим, мы «загоняем» на вход синусоидальный сигнал с низкой частотой и на выходе получаем уже усиленный сигнал, но немного с небольшой задержкой.

фазовые искажения

Но также не забывайте, что катушки и конденсаторы являются частото-зависимыми радиоэлементами. Их реактивное сопротивление зависит от частоты сигнала, поэтому, прогоняя через усилитель сигнал с другой частотой, мы получим уже совсем другую задержку сигнала

Основные параметры усилителя

То есть в нашем случае t1 ≠ t2 . Хорошо это или плохо? Если мы будем усиливать синусоиду, то в принципе нам по барабану. Какая разница раньше он появится на выходе или позже? Главное то, что сигнал будет усиленный.

Все бы ничего, но стоит помнить, что сложные сигналы состоят из суммы множества синусоид различных частот и амплитуд.

Чтобы понять, что такое сумма сигналов, достаточно рассмотреть вот такие примеры:

сумма сигналов

ну и еще один, мне не жалко)

Основные параметры усилителя

Складываем амплитуды в одинаковые моменты времени и получаем сумму этих двух сигналов.

А вот так из разных синусоид разных частот складывается прямоугольный сигнал:

спектр прямоугольного сигнала

В данном случае мы пытаемся «собрать» прямоугольный сигнал из суммы синусоид разных амплитуд и частот.

Но так как у нас усилитель задерживает разные сигналы по частоте по-разному, то у нас между сигналами происходит разнобой. Лучше всего это объяснит рисунок ниже. Имеем два синусоидальных сигнала с разной частотой и амплитудой:

сложение двух сигналов

Если их сложить, получим сложный сигнал:

Основные параметры усилителя

Но что будет, если второй сигнал сдвинется по фазе относительно первого?

сумма двух сигналов

Смотрим теперь сумму этих сигналов:

Основные параметры усилителя

Абсолютно другой сигнал! Чувствуете разницу? Чуток сдвинули фазу, а форма сигнала уже поменялась.

То есть на выходе усилителя мы хотели получить вот такой усиленный сигнал:

Основные параметры усилителя

а получили такой:

Основные параметры усилителя

В результате фазовых искажений наш сложный сигнал, состоящий из двух синусоид, поменял форму. На выходе усилителя мы получили совсем другой сигнал. А как вы помните, роль усилителя заключается в том, чтобы усиливать сигнал, сохраняя при этом его форму.

Фазо-частотная характеристика (ФЧХ) усилителя — это график зависимости угла сдвига фаз, вносимого усилителем, от частоты. Выглядеть она может примерно вот так:

фазочастотная характеристика усилителя

φ — это сдвиг фазы относительно входного и выходного сигнала

f — частота сигнала

Человеческое ухо не замечает фазовых искажений, несмотря на то, что даже изменяется форма сигнала. Поэтому при проектировании звуковых усилителей фазовые искажения не принимают во внимание.

Частотные искажения и фазовые искажения относят к линейным искажениям, так как оба вида искажений обусловлены линейными элементами схемы. Если сказать по научному, у нас в спектре сигнала не появляется дополнительных гармоник.

Переходные искажения

Переходным искажением называют искажение прямоугольного импульса, которое подается на вход усилителя. На выходе такой импульс будет иметь уже другую форму, вызванную искажением сигнала внутри самого усилителя.

Для оценки переходных искажений используют переходную характеристику. Она представляет из себя зависимость напряжения или тока на выходе усилителя от времени от подачи на его вход прямоугольного импульса.

На рисунке ниже имеем прямоугольный сигнал, который подаем на вход усилителя, а на выходе усилителя уже будет искаженный усиленный сигнал. Это искажения вызваны, как обычно, с наличием в схеме усилителя реактивных радиоэлементов, то есть тех же самых катушек индуктивности и конденсаторов.

переходные искажения усилителя

Для оценки переходных искажений используют такие параметры:

основные параметры импульса

Um — это амплитуда импульса, отсчитывается от плоской вершины импульса, В

ΔUв — это выброс фронта импульса, В

Следующие два параметра измеряются в диапазоне от 0,1Um и до 0,9Um :

tф — длительность фронта импульса

tc — длительность спада импульса

А длительность самого импульса tи измеряется на уровне 0,5Um .

Нелинейные искажения

Ну и напоследок мы с вами разберем нелинейные искажения. Нелинейными она называются из-за того, что такие искажения уже меняют форму сигнала, в отличие от линейных искажений. Все дело в том, что электронные лампы и полупроводники имеют нелинейную характеристику. Давайте рассмотрим все это дело более подробно.

нелинейные искажения усилителя

Как вы могли заметить, на выходе у нас форма сигнала изменилась. Нашу верхнюю часть синусоиды усиленного сигнала немного «придавило». То есть мы подавали сигнал одной формы, а вышел сигнал совсем другой формы. Это не есть хорошо и с этим надо бороться.

Если сказать более научным радиотехническим языком, в нашем сигнале появились дополнительные гармоники, которых не было в исходном сигнале. В данном случае мы на вход загоняли простой синусоидальный сигнал, состоящий из одной гармоники, а получили на выходе сложный сигнал, состоящий уже из нескольких гармоник.

Для количественной оценки нелинейных искажений используется коэффициент гармонических искажений (КГИ). Он выражается формулой:

коэффициент гармонических искажений формула

Эта величина находится как отношение среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход усилителя синусоидального сигнала.

или на английский манер

Основные параметры усилителя

Также есть и подобный параметр коэффициент нелинейных искажений (КНИ). Он выражается формулой:

коэффициент нелинейных искажений формула

на английский манер

Основные параметры усилителя

Эти два параметра выражаются в процентах. Для малых значений коэффициенты КГИ и КНИ почти совпадают. Так что коэффициент искажений можно считать как по первой, так и по второй формуле.

Определение характеристик усилителя с использованием согласования нагрузки

Согласование нагрузки — это высокоэффективный метод определения характеристик ВЧ-усилителей мощности посредством вариации импеданса. Согласование нагрузки позволяет исключать (компенсировать) и проверять модель, а также проводить испытания ее рабочих характеристик, надежности и эффективности.

Согласование нагрузки на базе векторного приемника

Согласование нагрузки на базе векторного приемника

Согласование нагрузки на базе векторного приемника

Согласование нагрузки на базе векторного приемника

Измерительная задача

Вы разрабатываете усилитель мощности, который не обязательно является устройством с сопротивлением 50 Ом. Однако целевая среда обычно представляет собой 50-омное окружение, поэтому требуется соответствующая согласующая сеть. Характеристики усилителя сильно зависят от импеданса нагрузки. Вы определяете характеристики усилителя, используя различные импедансы источника и нагрузки, и оптимизируете его по усилению, выходной мощности (Pout) и КПД добавленной мощности (PAE). Все это помогает спроектировать подходящую согласующую цепь. Для достижения максимального КПД усилители, как правило, работают вблизи области компрессии. Классические малосигнальные S-параметры не могут адекватно описать испытуемое устройство (ИУ). Вместо них, чтобы охарактеризовать нелинейное поведение ИУ, потребуется возбуждение в режиме большого сигнала и нагрузочные импедансы без 50-омного согласования. Векторные волновые величины (a1, b1, a2, b2) описывают характеристики ИУ и позволяют создавать и проверять модель усилителя.

Контуры КПД добавленной мощности (PAE) в % и выходной мощности (Pout) в дБмВт

Контуры КПД добавленной мощности (PAE) в % и выходной мощности (Pout) в дБмВт

Контуры КПД добавленной мощности (PAE) в % и выходной мощности (Pout) в дБмВт

Контуры КПД добавленной мощности (PAE) в % и выходной мощности (Pout) в дБмВт

Контрольно-измерительное решение

Процедура согласования нагрузки основывается на гибком изменении импеданса, оказывающего влияние на усилитель. Основным параметром, который необходимо варьировать во время измерения, является не частота, не уровень и не напряжение смещения, а импеданс на входе и выходе ИУ на основной частоте и на частотах гармоник. Согласование нагрузки позволяет характеризовать ИУ как функцию переменного импеданса нагрузки.

В настоящее время установки для измерения согласования нагрузки чаще всего включают в себя векторный анализатор цепей (ВАЦ), такой как R&S®ZNA, а также согласователи (тюнеры) сопротивлений источника и нагрузки. Возможность прямого доступа к приемнику в ВАЦ позволяет измерять векторы падающих и отраженных от ИУ волн a и b через внешние ответвители с низкими потерями. ВАЦ обеспечивает калибровку в опорной плоскости ИУ, обеспечивая максимальную стабильность и точность измерений волновых величин a и b.

Применение

Все представляющие интерес значения параметров, такие как коэффициенты отражения Γ на входе и выходе усилителя, входная мощность, выходная мощность, коэффициент усиления, КПД и КПД добавленной мощности, могут быть получены по измеренным волновым величинам (амплитудам и фазам). Установка также позволяет изучить согласователи, чтобы точно измерять и контролировать соответствующие импедансы, предназначенные для ИУ.

Установку можно легко расширить до активной или гибридной системы согласования нагрузки или комбинации активного и пассивного согласования нагрузки. Тем самым расширяется доступный диапазон настройки в опорной плоскости ИУ за счет подачи дополнительного фазово-когерентного сигнала. Это позволяет получать характеристики устройств с очень низким импедансом в широком диапазоне импедансов. Данный метод также используется, если требуется гармоническое согласование нагрузки для снятия расширенных характеристик устройства и извлечения сложных моделей ИУ.

Поддерживаемые типы сигналов часто включают в себя непрерывные колебания и импульсные ВЧ-колебания. Импульсные сигналы необходимы для измерений на необработанном кристалле и на пластине, чтобы избежать во время испытаний колебаний температуры из-за самонагрева устройства.

Компания Rohde & Schwarz сотрудничает с ведущими отраслевыми партнерами Focus Microwaves и Maury Microwave, предлагая готовые решения для систем согласования нагрузки.

См. также: www.rohde-schwarz.com/product/zna

Измерительная установка для согласования нагрузки на базе векторного приемника

Измерительная установка для согласования нагрузки на базе векторного приемника

Измерительная установка для согласования нагрузки на базе векторного приемника

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *