Что является основной характеристикой магнитного поля
Перейти к содержимому

Что является основной характеристикой магнитного поля

  • автор:

что является характеристикой магнитного поля? в каких единицах СИ измеряется?

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля .
Магнитная индукция- измеряется в теслах (Тл) ;
магнитный поток- в Веберах (Вб) ;
магнитная проницаемость- обозначается в абсолютных числах;
напряженность магнитного поля- в амперах на метр (А/м) .

Остальные ответы

Похожие вопросы

Теория магнитного поля и интересные факты о магнитном поле Земли

физические характеристики магнитного поля

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Магнит

Магнит — тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).

Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ.

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.

Здесь q — заряд, v — его скорость в магнитном поле, B — индукция, F — сила Лоренца, с которой поле действует на заряд.

Магнитный поток Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток — скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Магнитное поле Земли

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете — Курская и Бразильская магнитные аномалии.

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов — в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля.

Магнитная индукция является силовой характеристикой магнитного поля. Назовите физическую величину, которая служит силовой

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,708
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Магнитные поля расскажут о Вселенной

Известно, что магнитные поля присутствуют практически во всех типах космических структур во Вселенной — от небольших планет до галактик и крупнейших скоплений галактик. Есть основания полагать, что и на самых больших, космологических масштабах Вселенная пронизана магнитными полями, пусть и меньшей величины. Определение характеристик таких космологических полей имеет важное значение для космологии и физики космических частиц. Основной характеристикой магнитного поля является магнитная индукция — именно она определяет силу поля, действующую на движущиеся заряды.

Российские ученые из Государственного астрономического института им. П.К. Штернберга и Института ядерных исследований Российской академии наук вместе с зарубежными коллегами

получили самую точную на сегодняшний день оценку максимальной величины космологических магнитных полей.

Результаты исследования опубликованы в престижном научном журнале Physical Review Letters и попали в рубрику Editor’s Suggestion — «Выбор редакции». Работу удалось осуществить благодаря финансовой поддержке Российского научного фонда (РНФ). Авторы статьи использовали большой обзор далеких радиоисточников. Данные обзора позволили поставить сильные верхние ограничения на индукцию космологических полей.

Максим Пширков с коллегами применили метод изучения космологических магнитных полей с помощью явления фарадеевского вращения плоскости поляризации радиоизлучения: при распространении поляризованного излучения от далекого источника его плоскость поляризации поворачивается на некоторый угол, величина которого зависит от величины космических магнитных полей. Таким образом, изучая величины поворотов, можно оценивать эти магнитные поля.

Максим Пширков и соавторы использовали уже имевшиеся результаты измерений для примерно 3 тыс. радиоисточников, распределенных по большей части небесной сферы. При анализе данных был учтен локальный вклад в эффект Фарадея, возникающий внутри Млечного Пути.

Сравнивая данные наблюдений с предсказаниями модели с дополнительным вкладом от космологических полей, исследователи смогли получить строгие ограничения сверху на величину этих полей — около 1 нГс.

«До последнего времени было известно очень мало о космологических полях, — говорит Максим Пширков. — Около шести лет назад наблюдения спутника «Ферми» дали косвенные указания на существование очень слабых внегалактических магнитных полей (10–17 Гс), то есть была сделана оценка снизу для силы этих полей. Для сравнения, на поверхности Земли сила поля составляет примерно 0,5 Гс.

Оценку сверху на максимальную силу космологических полей делали и ранее, но полученные тогда ограничения были в пять раз больше, чем полученные нами сейчас.

Совсем недавно с использованием данных со спутника Planck была дана оценка максимальной величины космологических полей, которую теперь нам удалось улучшить в два раза. Однако Planck изучал реликтовое излучение, то есть полученные им данные могут ограничить только магнитные поля, существовавшие на ранних стадиях эволюции Вселенной».

Среди ученых пока нет единого мнения о природе космологического магнитного поля. Существует две гипотезы. В соответствие с первой, это поле первично, оно образовалось на ранних стадиях эволюции Вселенной. По другой гипотезе, это поле образовалось позже, в первый миллиард лет существования галактик. В этих ранних галактиках образовывалось магнитное поле, которое затем было вынесено из них и «загрязнило» окружающую межгалактическую среду.

Полученные учеными данные важны для изучения космических лучей сверхвысоких энергий — они помогут решить задачу отождествления источников космических лучей, которая остается нерешенной уже более полувека.

«Если бы космологическое магнитное поле оказалось больше, скажем, 3 нГс, то космические лучи от далеких источников испытывали бы сильное отклонение, и мы не смогли бы отождествить их с источниками, — объясняет Максим Пширков. — Полученное нами ограничение сверху означает, что лучи в межгалактическом пространстве отклоняются не очень значительно.

Также возможно, что полученные нами ограничения помогут ученым-теоретикам в выборе правильной модели эволюции ранней Вселенной».

Работа ученых была выполнена в рамках гранта Российского научного фонда (РНФ) «За пределами возможностей земных ускорителей: происхождение космических лучей, нейтрино и фотонов с энергиями (1015–1020) эВ» под руководством Сергея Троицкого из Института ядерных исследований Российской академии наук. Этот грант нацелен на исследования в области астрофизики частиц — новой области науки, в которой астрономические исследования используются для целей фундаментальной физики, многие из которых просто не могут быть проверены экспериментально в земных лабораториях. Для примера, энергии космолучей доходят до 1020 эВ, что в 10 млн раз больше энергий частиц на Большом адронном коллайдере.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *