Лекция №5а — Диоды(рус.)
Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.
По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.
Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.
Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостьюp-типа, а другая — проводимостью n-типа.
На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:
Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.
Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.
На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:
1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.
Прямое включение диода. Прямой ток.
Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется воткрытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.
При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.
Например. Oсновные носители заряда в области n-типа электроны, преодолеваяp-n переход попадают в дырочную область p-типа, в которой они становятсянеосновными. Ставшие неосновными, электроны будут поглощатьсяосновными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновныминосителями заряда в этой области, и будут также поглощаться основныминосителями – электронами.
Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.
Обратное включение диода. Обратный ток.
Поменяем полярность источника постоянного напряжения – диод окажется взакрытом состоянии.
В этом случае электроны в области n-типа станут перемещаться кположительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большоесопротивление.
Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.
Прямое и обратное напряжение диода.
Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).
При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.
Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем большийпрямой ток Iпр течет через диод. В закрытом состоянии на диоде падаетпрактически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.
Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропускаяпрямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.
Вольт-амперная характеристика полупроводникового диода.
Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемойвольт-амперной характеристикой диода.
На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).
Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.
Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).
При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.
Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).
Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.
У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.
При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:
Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.
При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.
Пробои p-n перехода.
Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.
Электрический пробой.
Электрический пробой возникает в результате воздействия сильногоэлектрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работаютстабилитроны – диоды, предназначенные для стабилизации напряжения.
Туннельный пробой.
Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.
В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).
Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.
Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.
Лавинный пробой.
Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменномнапряжении.
Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.
Тепловой пробой.
Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточномтеплоотводе, не обеспечивающем устойчивость теплового режима перехода.
При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличениютемпературы перехода и соседних с ним областей полупроводника,усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразноенарастание температуры, что приводит к разрушению перехода.
1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
Стабилитрон. Характеристики стабилитронов
Существует такой тип диода как стабилитрон или, как его ещё называют, диод Зенера. В стабилитроне используется тот же самый p-n переход, но работает диод Зенера совсем иначе!
При создании различных электронных устройств бывает нужно получить стабильное напряжение для питания какой-либо части этого устройства, так как некоторые схемы, особенно на транзисторах, достаточно чувствительны к колебаниям напряжения питания, которое неизбежно по чисто физическим и техническим причинам.
Один из способов получения такого стабилизированного напряжения — использование стабилитрона. В зависимости от модели стабилитрона можно поддерживать стабильным напряжение вплоть до 400В. Очень хорошо. Но в радиолюбительской практике высоковольтные стабилитроны редкость и чаще встречаются на 3.3В, 5В, 12В и т.д.
Конструкция стабилитрона такая же как у диода: p-n переход, два вывода, изолирующая или проводящая (встречается у некоторых советских стабилитронов) оболочка. Но в схеме они используются совсем иначе!
Во-первых, стабилитрон подключается минусом к плюсу, а плюсом к минусу. А ты уже знаешь, что при таком подключени диоды ток не проводят. Или проводят? Давай разберёмся.
Принцип работы стабилитрона
Сложно предположить, что еще 70-100 лет назад редкая квартира в городах имела собственную ванную комнату со привычной нам белой чугунной ванной. Если ты сейчас пойдёшь в свою ванную комнату и посмотришь на ванну, то увидишь в ней два отверстия. Одно сливное, расположено на дне ванны, а второе, поменьше, возле края верхнего борта ванны.
Зачем нужно второе отверстие? Чтобы не затопить соседей! С его помощью ограничивается уровень воды, до которого можно набрать воду в ванну. Как только уровень воды в достигнет защитного отверстия, то лишняя вода будет через это отверстие уходить в канализацию.
Так вот стабилитрон работает аналогично. Как только падение напряжения на нём превысит заданное на заводе значение (3.3В, 5В, 12В и т.д.), стабилитрон отведёт через себя лишний ток, удерживая выходное напряжение на заданном уровне, например, 3.3В
Стабилитрон — это защита от перелива
Пример использования стабилитрона
Возьмём резистор, стабилитрон и соединим их так, как показано на схеме ниже. Стабилитрон включен катодом (минусом) к резистору, а анодом (плюсом) к минусу. Т.е. включен в обратном направлении. В таком положении через стабилитрон протекает ток Iобр — маленький, незначительный ток. Можно считать, что тока практически нет.
Если теперь подать Uвх, то на резисторе Rн будет приблизительно паспортное значение напряжения стабилизации стабилитрона Uст равное 3В, 3.3В, 5В, 12В и т.д. Приблизительное, так как номинал значения любой радиодетали имеет погрешность. Что поделать. Такова жизнь. Кстати, должно выполняться условие Uвх > Uст. Чтобы стбилизация была надежней следует иметь некоторый запас прочности по напряжению.
Если внимательно рассмотреть цепь R1-V1, то можно увидеть хорошо тебе знакомый делитель напряжения. Разница между делителем напряжения из резисторов и делителем напряжения с использованием стабилитрона заключается в том, что если Uвх вдруг слегка увеличится, то и выходное напряжение резистивного делителя напряжения слегка увеличится. И наоборот.
А вот если вместо резистора в делителе напряжения используется стабилитрон, как на схеме выше, тогда таких изменений Uвых не будет. Конечно при условии, что Uвх ± небольшое изменение > Uвых.
Достигается это благодаря все тому же эффекту «переливного отверстия», модель которого я использовал, чтобы описать принцип работы стабилитрона.
Характеристики стабилитрона
При использовании стабилитронов следует помнить, что он не всемогущ, а является обычной полупроводниковой деталью. Это значит следует внимательно выбирать для своей схемы подходящий стабилитрон с учетом его характеристик. Для тебя наиболее важными параметрами стабилитрона являются:
- Максимальный ток стабилизации
- Напряжение стабилизации
Максимальный ток стабилизации
Если неправильно выбрать стабилитрон и ток, который будет через неко протекать во время работы схемы окажется больше, чем допустимое заводское значение, то он начнёт нагреваться и со временем перегрется и выйдет из строя. Поэтому следует выбирать стабилитрон так, чтобы его допустимый максимальный ток был значительно больше, чем ток, который будет через него протекать во время работы схемы.
Стабилитроны выпускаются с жестко заданным напряжением стабилизации. Это его паспортное значение, заложенное при изготовлении на заводе. Поэтому, когда ты выбираешь стабилитрон, то первоначально смотришь на паспортное значение напряжения стабилизации, а затем уже на допустимые ток и мощность.
Что ещё важно знать
Практически все радиодетали зависят от температуры окружающей среды. И стабилитрон тоже. Это означает, что паспортное напряжение стабилизации может измениться, если температура сильно возрастёт или упадёт. Вот пример, отечественный стабилитрон Д814 напряжение стабилизации при Iст = 5 мА:
Маркировка | Напряжение стабилизации |
При Т = +25°C | |
Д814А | 7. 8,5 В |
Д814Б | 8. 9,5 В |
Д814В | 9. 10,5 В |
Д814Г | 10. 12 В |
Д814Д | 11,5. 14 В |
При Т = -60°C | |
Д814А | 6. 8,5 В |
Д814Б | 7. 9,5 В |
Д814В | 8. 10,5 В |
Д814Г | 9. 12 В |
Д814Д | 10. 14 В |
Как видно из таблицы при изменениии температуры меняется и напряжение стабилизации. Незначительно, но все же меняется. Хотел бы я посмотреть на любительский прибор, который должен работать при -60. Но знать о том, что напряжение стабилизации зависит от температуры все же надо.
Защита от перенапряжений электронных систем
Защита электроники от перенапряжения и мощных помех является проблемой важной не только для спецтехники, но и для промышленности, проводных сетей и устройств вычислительной техники, связи и бытовой электроники. Эта проблема решается достаточно просто с помощью супрессоров — TVS диодов (ограничителей напряжения), варисторов, TVS-тиристористоров и разрядников и с помощью ограничителей напряжения на обычных диодах. Здесь я расскажу о применении TVS- диодов и немного разрядников.
TVS диоды (супрессоры) — полупроводниковые диоды, позволяющие ограничивать импульсные всплески перенапряжения, амплитуда которых превышает напряжение лавинного пробоя диода. Эти перенапряжения возникают из-за внешних воздействий, таких как: электростатические разряды (ESD), грозовые разряды, подключение индуктивной нагрузки и др.
Статическое электричество – явление, при котором на поверхности и в объеме диэлектриков, проводников и полупроводников возникает и накапливается свободный электрический заряд. Как правило, незаряженные атомы обладают одинаковым количеством положительных и отрицательных электронов, электрически заряженными объектами считаются, обладающие малым либо избыточным числом электронов. Взаимодействие точечных электрических зарядов описывается законом Кулона.
При стекании на металлоконструкции (в том числе и заземленные) происходит кратковременное повышение напряжения на металлоконструкции, проводниках, элементах электронных схем. Это повышение может многократно превышать напряжение питания электронных схем.
Переходный процесс – в электрической цепи, явление, возникающее при переходе из одного режима работы электрической цепи в другой, отличающийся от предыдущего амплитудой, фазой, формой или частотой действующего в цепи напряжения, значениями параметров или конфигурацией цепи.
История открытия статического заряда и его происхождение
Закон взаимодействия электрических зарядов был открыт Шарлем Огюстен де Кулоном в 1785 году. Однако за 11 лет до открытия и формулирования его закона, Генри Кавендиш установил закономерность взаимодействия зарядов, но результаты его исследовании не были опубликованы и долгое время оставались не известными. Электризация диэлектриков трением может возникнуть при соприкосновении двух разнородных веществ из-за различия атомных и молекулярных сил (из-за различия работы выхода электрона из материалов). При этом происходит перераспределение электронов (в жидкостях и газах еще и ионов) с образованием на соприкасающихся поверхностях электрических слоев с противоположными знаками электрических зарядов. Фактически атомы и молекулы одного вещества отрывают электроны от другого вещества. Полученная разность потенциалов соприкасающихся поверхностей зависит от ряда факторов – диэлектрических свойств материалов, значения их взаимного давления при соприкосновении, влажности и температуры поверхностей этих тел, климатических условий. При последующем разделении этих тел каждое из них сохраняет свой электрический заряд, а с увеличением расстояния между ними за счет совершаемой работы по разделению зарядов, разность потенциалов возрастает и может достигнуть десятков и сотен киловольт.
Электрические разряды могут взаимно нейтрализоваться вследствие некоторой электропроводности влажного воздуха. При влажности воздуха более 85% статическое электричество практически не возникает.
Статическое электричество вокруг нас
Среда вокруг нас очень загрязнена не только пылью, химическими элементами от выбросов промышленных предприятий, но и помехами, вызванными электрическими зарядами. Электрические помехи окружающие нас вызваны атмосферными явлениями и промышленными устройствами.
Статическое электричество в природе
Электростатические явления встречаются повсюду вокруг нас. Впервые электризация жидкости при дроблении была замечена у водопадов Швейцарии в 1786 году, это явление получило название баллоэлектрического эффекта. Заряженный воздух у водопадов сообщают микроскопические капельки воды и молекулярные комплексы, которые при дроблении отрываются от водной поверхности и уносятся в окружающую среду. Эффект электризации наблюдается не только у водопадов, но и в пещерах.
Воздух у берегов морей приобретает положительный заряд, вследствие разбрызгивания соленой воды. Так же наблюдаются электрические разряды в ходе схода
снежных лавин.
В результате движения атмосферных масс мы достаточно часто можем наблюдать такое явление как молния. Молния – это тот же электрический разряд, возникший в атмосфере. Это явление достаточно изучено, и в настоящей статье это явление более подробно рассматривать не будем.
Статическое электричество в технике
В технике из-за статического электричества возникают перенапряжения, вызывающие импульсы тока, что ведет зачастую к выходу из строя электроники. Методы защиты электроники от скачков и выбросов напряжения и тока мы рассмотрим позже.
Статическое электричество может быть хорошим помощником человека, если изучить его свойства и правильно их применять. В технике применяется следующий
метод: мельчайшие твердые или жидкие частицы материала поступают в электрическое поле, где на их поверхность «оседают» электроны и ионы, т.е. частицы, приобретают заряд и далее движутся под действием электрического поля. В зависимости от назначения аппаратуры можно с помощью электрических полей по-разному управлять движением частиц в соответствии с необходимым технологическим процессом. Такие технологии активно применяются в автомобиле строении, рыбной промышленности, текстильной и хлебопекарной промышленности. А так же на основе заряженных частиц построен ряд систем для очистки воздуха.
Возникновение перенапряжения
При эксплуатации электронного оборудования в его цепях возникают различные виды электрических перегрузок, наиболее опасными из которых являются перепады напряжения.
Перепад напряжения – случайные пульсации напряжения с амплитудой большей, чем рабочее напряжение в цепи. Такие перегрузки возникают в результате возникновения электромагнитных импульсов естественного происхождения (грозовые разряды), импульсов искусственного происхождения (излучение радиопередающих устройств, высоковольтных линий передач, сетей электротранспорта и др.), а так же за счет внутренних переходных процессов в оборудовании, которые возникают при отключении емкостной, индуктивной нагрузки или электростатических разрядов. Перепад может длиться от несколько наносекунд до нескольких миллисекунд.
а | б |
Рис. 1. Формы импульсов а) стандарт IEC61000-4-5 б) стандарт 61643-321 |
Такие переходные процессы сокращают срок службы электронного оборудования или вовсе выводят его из строя, что усложняет жизнь разработчикам электроники, которым необходимо разрабатывать схемы защиты электронных устройств.
В то время как перепады могут возникать по различным причинам наиболее распространенными и опасными являются грозовой и статический разряд.
Перепады, вызванные грозовым разрядом, характеризуются высокоэнергетическими длительными импульсами с длительностью от десятков до тысяч микросекунд. Формы импульсов определяются стандартами IEC61000-4-5 и 61643-321 рисунок 1.
Электростатический разряд другой наиболее распространенный перепад напряжения. Электростатический заряд возникает из-за трибоэлектрического эффекта.
Трибоэлектрический эффект – эффект при котором электрический заряд возникает из-за механического контакта двух диэлектриков. Наиболее распространенные трибоэлектрические материалы – нейлон, бумага, резина, винил, эбонит.
Человеческое тело является отличным аккумулятором статического напряжения, по мере своей активной деятельности статический заряд может накапливаться на теле человека и при контакте с токопроводящим объектом происходит разряд.
Статически разряды могут достигать напряжения до 15 тысяч вольт. Форма волны разряда достигает пика в 1 наносекунду с общей продолжительностью до 60 наносекунд рисунок 2.
Рис.2. Импульс статического разряда стандарт IEC61000-4-2
Для защиты цепей электронных устройств от воздействия электрических перегрузок могут использоваться различные методы, основными из которых являются:
конструкционные, структурно — функциональные, схемотехнические.
Конструкционные методы защиты включают в себя: рациональное расположение и монтаж компонентов, экранирование, заземление и др.
Методы структурно-функциональной защиты включают в себя: рациональный выбор принципа действия оборудования и выбор используемых стандартов передачи сигналов.
Схемотехнические способы защиты включают в себя: пассивную и активную защиту. Наиболее эффективным средством защиты оборудования от воздействия является активная защита.
Основными элементами активной защиты являются, TVS-диоды (transient voltage suppressors) (или так называемые супрессоры, защитные диоды, ограничители
напряжения), варисторы, TVS-тиристоры и разрядники.
Методы защиты электроники от выбросов напряжения
Методы снижения импульсных помех в цепях питания с помощью LC и RC-фильтров, а так же экранов между обмотками сетевых трансформаторов зачастую не
спасают положение. Избежать негативных последствий скачков напряжения позволяют устройства защиты, которые вводятся в состав схемы и принимают на себя удары, которые могут выводить из строя электронные устройства.
Защитные элементы должны выполнять две основные функции:
— отклонять скачек напряжения от защищаемых цепей,
— фиксировать перепад напряжения ниже порога повреждения защищаемого элемента для данной ширины импульса.
С дальнейшим, восстановления нормальной работы цепи (без явлений перепадов), защитный элемент не должен ухудшать функционирование защищаемой цепи.
Так гасящий элемент для высокоскоростных интерфейсов должен обладать достаточно быстрым временем реакции, низким защитным и рабочим напряжением и в случае портативных или ручных устройств, они должны занимать минимум рабочего пространства.
Как правило, чем ближе находится элемент гасящий броски напряжения к защищаемому устройству, тем лучше могут быть его ограничивающие характеристики.
На сегодняшний день, стратегия борьбы от электростатического разряда и его последствий заключается в использовании схем защиты электронных устройств от
импульсных всплесков при переходных процессах. Реализуется он с помощью установки на основной схеме элементов защиты – устройства гашения импульсов, например варисторы, полупроводниковые элементы общего назначения или специальные полупроводниковые ограничители напряжения. В течение переходного процесса ток протекает через устройство гашения импульсов, в свою очередь это ведет к снижению значения переходного напряжения в основной схеме.
Устройства гашения импульсов можно разделить на две категории:
Каждый из типов устройств оптимизирован для определенных условий переходного процесса.
Электронно-ключевые устройства
На первом этапе устройства гашения импульсов электронные ключи (TVS-тиристоры) находятся в закрытом состоянии. Это состояние длится до тех пор, пока не
будет подано напряжение переключения, замыкающее ключ. По сравнению с ограничителями электронные ключи способны манипулировать большими значениями
токов. Недостатком электронных ключей является то, что для возврата устройства в непроводящее состояние необходимо понижать значение прямого тока до определенного уровня отключения, а так же высокая цена.
TVS-диоды
Ограничитель напряжения – это полупроводниковый диод, работающий на обратной ветви вольтамперной характеристики (ВАХ) с лавинным пробоем или на прямой ветви ВАХ. TVS-диод предназначен для защиты от перенапряжения интегральных и гибридных схем, радиоэлектронных компонентов и др.
У полупроводниковых ограничителей напряжения ВАХ аналогична ВАХ стабилитронов. В условия нормальной работы ограничители являются высокоимпедансной нагрузкой по отношению к защищаемой схеме и служат для защиты цепи. В идеале устройство выглядит как разомкнутая цепь с незначительным током утечки. Когда напряжение переходного процесса превышает рабочее напряжение цепи, импеданс ограничителя понижается, и ток переходного процесса начинает течь через ограничитель. Мощность, образовавшаяся при переходном процессе, рассеивается в пределах защитного устройства и ограничивается максимально допустимой температурой перехода.
Рис. 3. Вольтамперная характеристика (ВАХ) TVS-диода
Когда линейное напряжение достигает нормального уровня, ограничитель автоматически возвращается в высокоимпедансное состояние.
Одним из основных параметров TVS-диодов является время реакции. Время реакции на обратной ветке ВАХ (ветка лавинного пробоя) составляет несколько пикосекунд.
Применение TVS — диодов позволяет упростить схемы устройств защиты и повысить их надежность (например по сравнению с защитными тиристорами).
К сожалению, стандартная технология TVS-диодов не позволяет делать их достаточно эффективными для напряжений ниже 5 вольт.
Как правило защитные диоды – это кремниевые плоскостные диоды намеренно разработанные с большой областью переходя, для того чтобы они могли справляться с высокими скачками напряжения, что делает их бесполезными для использования при низком напряжении. Их емкостное сопротивление напрямую относится к области перехода и растет экспоненциально, в то время как рабочее напряжение снижается.
Влияние емкостной нагрузки, которую создает защитный диод высокочастотному сигналу или передаче через длинную линию, приводит к значительному ухудшению или отражению сигнала. Инновационные разработки TVS-диодов последних лет включают в себя устройства защиты, обладающие низким емкостным сопротивлением. Методы защиты на их основе делятся на три группы: низкоемкостное шунтирование, защита на основе информации о скачках напряжения и низкоемкостной мост.
Низкоемкостное шунтирование
Этот метод имеет преимущество перед другими методами, заключающееся в том, что емкостные элементы соединены последовательно (в качестве емкостных элементов выступают компенсационный и защитный диод) (рис. 4). Величина эффективной емкости двух последовательно соединенных элементов всегда меньше величины емкости наименьшего из них. В таком случае TVS-диод выигрывает за счет наличия соединенного последовательно низкоемкостного компенсационного выпрямителя. Две пары защитный диод плюс выпрямитель соединенных встречно-параллельно для гарантии того, что в условиях переходного процесса компенсационный диод не перейдет в обратное смещение. Устройства, доступные сегодня, включают в себя одну или несколько пар элементов TVS + выпрямитель, в зависимости от сферы применения.
Рис.4. Встречно-параллельное включение
Конфигурация Rail-to-Rail
При защите высокоскоростных устройств передачи данных на основе информации о скачках напряжения используются низкоемкостные регулирующие диоды (рис. 5).
Рис.5. Встречно-параллельное включение выпрямительных диодов
Между двух устройств, размещенных на линии в ряд, проведены два вывода с фиксированным напряжением – «земля» и опорное напряжение.
В тот момент, когда импульс напряжения на линии превысит сумму прямого напряжения диода и опорного напряжения, диоды направят его на питающую шину или «землю». Достоинства этого метода – низкая емкостная нагрузка, быстрое время реакции и двунаправленность (относительно опорного напряжения).
Однако при использовании данного метода, необходимо учитывать:
— первое — дискретные элементы обычно не рассчитаны на высокие скачки токов, связанных электростатическим разрядом (выпрямители обладают маленькой площадью перехода и при превышении номинальной мощности могут выйти из строя),
— второе – перенаправление импульса на питающую шину может привести к повреждению компонентов источника питания.
Проблему перенаправления выброса можно решить с помощью добавления TVS-диода на шину питания, для того что бы волна направлялась на землю, и фиксировать напряжение ниже уровня максимально допустимого для данного источника питания.
Низкоемкостной мост
Третий метод низкоемкостной защиты – мостовая конфигурация, заключается в следующем: мостовые выпрямители работают на уменьшение эффективной емкостной нагрузки, а так же направляют входящий переходный ток через TVS-диод (рисунок 6).
Рис.6. Встречно-параллельное включение выпрямительных диодов
Использование данного метода позволяет защитить линии передач данных, как от помех общего вида, так и от помех при дифференциальном включении. Однако применение данного метода выполненного на дискретных компонентах не рекомендуется в силу выше перечисленных причин.
Предпочтительным решением в этом случае будет применение интегрированного устройства, включающего в одном корпусе корректирующий всплески диодный мост и TVS-диод.
Выбор и применение TVS-диодов
Для обеспечения требуемых технических и эксплуатационных характеристик аппаратуры основную роль играет выбор и правильность применения полупроводниковых защитных диодов (супрессоров). От этого зависит надежность аппаратуры и самих диодов. Таким образом, полупроводниковые TVS-диоды для любого устройства должны удовлетворять следующим требованиям:
— технические характеристики и параметры диодов должны быть такими, что бы при отсутствии переходных процессов они не оказывали влияния на характеристики
функциональных блоков и устройств в которых они используются;
— уровень напряжения во время действия импульса переходного процесса в точках подключения защитных диодов должен быть как можно ближе к уровню напряжения, действующему до перегрузки;
— надежность TVS-диодов должна быть выше надежности защищаемых устройств;
— быстродействие супрессоров должно быть максимально возможным, для возможности обеспечения качественной защиты при больших скоростях изменения напряжения переходных процессов;
— габариты и масса защитных диодов должны быть меньше габаритов и массы защищаемой аппаратуры;
— параметры и характеристики TVS-диодов должны соответствовать требованиям, по устойчивости к воздействию внешних факторов, предъявляемым к аппаратуре и иметь срок службы соответствующий данному классу аппаратуры.
Схемы защиты аппаратуры
При выборе защитных диодов в первую очередь определяются параметры импульса переходного процесса, то есть амплитуду напряжения, длительность импульса и его форму. Параметры защищаемой цепи выбираются из следующих условий: активное сопротивление и/или индуктивность цепи, и характеристики напряжения действующего в цепи при отсутствии импульса переходного процесса, а так же допустимую амплитуду напряжения в цепи в момент воздействия импульса переходного процесса.
Защитный диод выбирается исходя из расчетного значения пиковой мощности P PPM с учетом длительности импульса переходного процесса t p и его формы (рис.1) и постоянного обратного напряжения V WM , которое должно быть равно напряжению, действующему в цепи или несколько превышать его с учетом максимального допуска.
При не достаточной мощности P PPM одного TVS-диода соответствующей заданному требованию, защитные диоды устанавливаются последовательно, пиковая мощность установленных последовательно защитных диодов суммируется. Возможна установка неограниченного числа защитных диодов, но при этом необходимо учитывать, что разброс по напряжению пробоя V BR каждого диода не должен быть более 5%. Это требование необходимо учитывать для равномерного распределения нагрузки на последовательно соединенных элементах. При невозможности достичь требуемой пиковой мощности последовательно соединенных диодов допускается их параллельное включение. При рассмотрении схемы так же необходимо точное согласование диодов по импульсному напряжению ограничения V C , что обеспечит равномерную загруженность диодов по мощности, оно не должно отличаться более чем на 20 мВ. На практике зачастую необходимо применять смешанное соединение диодов, что вполне допустимо.
Защищаемые цепи подразделяются на цепи постоянного тока, переменного тока (симметричные или асимметричные), а так же сигнальные цепи, несущие информацию посредством одно- или двухполярных импульсных сигналов (высокой или низкой частоты), исходя из этого, необходимо выбирать требуемую схему защиты и ее элементы.
Одноуровневые схемы защиты
Защита цепей питания переменного тока
Защита цепей переменного тока может осуществляться путем включения двух несимметричных TVS-диодов, как показано на рисунке 7 и 8. Включение элементов
Рис.7 Схема защиты цепи с несимметричными TVS-диодами | Рис.8 Схема защиты цепи с несимметричными TVS-диодами |
защиты на входе и выходе трансформатора позволит снизить уровень напряжения на его выходе. При наличии в цепи переменного тока выпрямительных диодов включенных по мостовой схеме их защита может быть осуществлена одним симметричным TVS-диодом при его включении в диагональ моста рисунок 9.
Рис.9 Схема защиты с симметричными TVS-диодом включенным в диагональ моста
Однако быстродействие защиты в этом случае будет определяться временем отключения выпрямительных диодов.
Защита цепей постоянного тока
Для защиты цепей постоянного тока от различного рода перегрузок по напряжению используются несимметричные защитные диоды.
Рис.10. Типовая схема включения TVS-диодов для защиты ИП
Несимметричность TVS-диодов позволяет осуществить защиту на разных потенциальных уровнях, что характерно для цепей постоянного тока. Пороговое напряжение этих приборов ниже уровня ограничителя и позволяет обеспечивать автоматическое отключение от цепи постоянного тока после прохождения импульса напряжения. Время их включения меньше самых быстрых переходных процессов, что также определяет предпочтительность их применения в цепях постоянного тока. Типовая схема TVS-диодов для защиты источников питания постоянного тока от электрических перегрузок по напряжению приведена на рисунке 10. Защитные диоды в таком случае должны включаться на входе каждого потребителя и выходе источника питания.
Для защиты от перенапряжений ключевых элементов, в цепях которых имеется индуктивная нагрузка, TVS-диоды включаются параллельно защищаемому элементу как показано на рисунке 11а, либо параллельно нагрузке рис.11б.
Для надежной защиты ключевого элемента от опасных перегрузок по напряжению используется схема защиты, приведенная на рис.11в.
Рис.11. Схемы защиты ключевых элементов
Одной из наиболее частых причин выхода из строя электронных устройств, включающих в себя MOSFET транзисторы, является превышение допустимого значения напряжения сток-исток V DS . Так при переключении индуктивной нагрузки происходит перенапряжение, в результате которого превышается максимально допустимое напряжение V DS MOSFET транзистора, что вызывает лавинный пробой полупроводника и разрушение транзистора. Одним из методов защиты MOSFET является схема включения защитного диода между стоком и истоком.
Переходные процессы в затворе MOSFET транзистора часто происходят из-за разрядов электростатического электричества (ESD). Установка супрессора между затвором и истоком позволит защитить транзистор от входных переходных процессов (рисунок 12). В таком случае рекомендуется устанавливать защитный диод со значением обратного напряжения, превышающим входное напряжение MOSFET транзистора.
Рис.12. Защита MOSFET транзистора
Защита цепей передачи данных и цепей переменного тока высокой частоты
Применение TVS-диодов – это хорошее решение для защиты подобных цепей. Выбор защитного диода зависит от характера сигналов действующих в цепях (одно- или двухполярных) и частоты их повторения.
Рис.13. Защита линии передачи данных
Для защиты цепей с однополярными сигналами может быть использована схема включения несимметричных TVS-диодов, приведенная на рисунке 13. Защитные диоды включаются в каждую сигнальную цепь передачи данных. При наличии в цепи двухполярных сигналов, вместо, несимметричных защитных диодов используются симметричные TVS-диоды.
Рис.14. Защита USB
На рисунке 14 приведена схема защиты для портов USB, в качестве защитного элемента в схеме можно применить сборку защитных диодов серии PRTR5V0U2X (NXP), обладающую низкой емкостью и высокой скоростью реакции, выполненных в едином 4-выводном корпусе SOT4. Диодная сборка позволяет обеспечить защиту двух высокоскоростных шин без потерь сигнала.
Рис.15. Защита CAN шины
Особую роль играют схемы защиты в автомобильной электронике. На рисунке 15 приведена схема защиты для автомобильной системы передачи данных, построенной на высокоскоростном CAN-трансивере серии TJA1042. В качестве элемента защитной схемы применена диодная сборка серии PESD1CAN обеспечивающая защиту двух линий. Сборка, выполненная в корпусе SOT23 разработанная компанией NXP для применения в автомобильной электронике.
Рис.16. Защита высокочастотных линий
Аналогичную схему защиты можно применять и для LIN шин, например с использованием диодной сборки в корпусе SOD323 серии PESD1LIN. Асимметричная конструкция диода позволяет максимально эффективно защитить электронику автомобиля. Для защиты высокоскоростной автомобильной шины стандарта FlexRay компания NXP рекомендует применять защитные диоды серии PESD1FLEX выполненных в маленьком корпусе для SMD монтажа SOT23.
В цепях высокой частоты рекомендуется использовать супрессоры с маленькой емкостью, а для уменьшения емкости как уже отмечалось ранее, последовательно включается импульсные диоды с малой емкостью (диоды с барьером Шоттки), как показано на примере защиты схемы симметричных линий связи рисунок 16 а и б.
Многоуровневые схемы защиты
Многоуровневые схемы защиты используются в том случае, когда величина энергии защитного диода превышает установленный для него допустимый уровень. Типичным примером использования многоуровневой защиты является двухступенчатая защита в симметричных линиях связи, где TVS-диоды включают в каждую цепь линии симметрично относительно общей шины заземления, как показано на рисунке 17 а и б, для случаев защиты низкочастотных и высокочастотных цепей. Время прохождения импульса тока через TVS-диоды равно времени запаздывания пробоя разрядников, которое не превышает 0,5-1 мкс, поэтому
Рис.17. Многоуровневые схемы защиты
поглощаемая диодом энергия не велика, и основная доля энергии напряжения поглощается разрядником. При наличии второй ступени защиты в цепь должен быть включен дополнительно ограничивающий резистор.
Необходимо учитывать!
При проектировании защиты на TVS — диодов необходимо учитывать их высокую емкость, которая обуславливается их конструкцией и принципом работы.
Эта емкость может существенно влиять на сигнальные цепи шунтируя сигнал, искажая его.
Рис. 18. Зависимость С от V(BR) для серий дискретных TVS-диодов серии 1.5KE6.8 — 1.5KE440CA (1N6267 — 1N6303A)
Для снижения влияния емкости применяются методы описанные выше.
Сравнение элементов защиты от перенапряжений
Как отмечалось ранее, основными элементами активной защиты являются, TVS-диоды (transient voltage suppressors), варисторы, TVS-тиристоры, разрядники и др.
Сравним их функциональные характеристики для применения в схемах защиты от перенапряжений.
Защитный элемент | Преимущество | Недостатки | Варианты использования |
Разрядник | Высокое значение допустимого тока. Низкая емкость. Высокое сопротивление изоляции. |
Высокое напряжение возникновения разряда. Малый срок службы. Низкая надежность. Значительное время срабатывания. Шунтирование защищаемой цепи после прохождения импульса. Высокая цена. |
Первичная защита телекоммуникационных и силовых цепей. Первая ступень комбинированной защиты. |
Варистор | Высокое значение допустимого тока. Низкая цена. Широкий диапазон рабочих токов и напряжений. |
Ограниченный срок службы. Высокое напряжение ограничения. Большая собственная емкость. Проблема SMD монтажа. |
Вторичная защита. Защита силовых цепей и автомобильной электроники. Защита электронных компонентов печатной платы. Первая и вторая ступень комбинированной защиты. |
TVS-тиристор | Не подвержен деградации. Высокое быстродействие. Высокий управляющий ток. |
Ограниченный диапазон рабочих напряжений. Шунтирование защищаемой цепи. Необходимость понижения значения прямого тока для возврата устройства в непроводящее состояние. Высокая цена. |
Первичная и вторичная защита в телекоммуникационных цепях |
TVS-диод | Низкие уровни напряжения ограничения. Высокая долговечность и надежность. Широкий диапазон рабочих напряжений. Высокое быстродействие. Низкая собственная емкость. Удобные корпуса для SMD монтажа. Низкая стоимость. |
Низкое значение номинального импульсного тока. |
Оптимален для защиты полупроводниковых компонентов на печатной плате. Вторичная защита. Защита от электростатического разряда и переходных процессов. Оконечная ступень в комбинированных защитных устройствах. |
Производители защитных диодов
На рынке производителей защитных полупроводниковых электронных компонентов работают: Vishay, NXP , STMicroelectronics, Diotec, Fairchild и др.
Наиболее известна компания Vishay . Компания за счет приобретения ряда производителей или их подразделений по производству полупроводниковых элементов таких как Siliconix, Telefunken, Infineon, General Semiconductor, Dale, Draloric, Sprague, Vitramon, Sfernice, BCcomponents, Beyschlag, росла и развивала направления своей продукции.
STMicroelectronics – одна из крупнейших компаний производящая полупроводниковые компоненты, образованная в результате слияния двух компаний по производству микроэлектроники: итальянской Società и Generale Semiconduttori (SGS) Microelettronica и французской Thomson Semiconducteurs.
Infineon , немецкая компания, образовавшаяся путем выделения в самостоятельную компанию подразделения корпорации Siemens, заняла свою нишу на
рынке силовых электронных компонентов.
Fairchild – американская компания до недавнего времени принадлежавшая компании National Semiconductor, и в 1997 году ставшая самостоятельным предприятием со штаб-квартирой в штате МЭН.
ON-Semiconductors – еще один американский производитель электронных компонентов. Штаб-квартира компании находится в городе Феникс (штат Аризона) была
выделена из компании Motorola в августе 1999 года.
NXP Semiconductors одна из ведущих компаний по производству полупроводниковых компонентов, основанная компанией Philips Semiconductors, и выделена в самостоятельную компанию в 2006 году имеет более 50 заводов по всему миру. В продукции выпускаемой компанией NXP можно найти практически все полупроводниковые компоненты от диодов, транзисторов общего назначения и MOSFET транзисторов, одну из наибольших линеек микроконтроллеров (более 300), микросхем для бесконтактных охранных систем (HITAG, MIFARE, I-CODE, UCODE, NFC) и заканчивая мультимедийными микросхемами аудио и видео кодеров и декодеров, и Hi-END процессором Nexperia. В каталогах компании NXP насчитывается около 300 наименований защитных диодов. TVS-диоды выпускаются в различных модификациях исполнения и вариантах корпусов, от простых SOT23, до 20-выводных SOIC. В таблице 1 перечислены некоторые линейки защитных диодов и их краткие характеристики. В сочетании с передовыми технологиями и европейским подходом к организации производства продукция компании NXP позволяет применять ее в различных отраслях электроники, где предъявляются повышенные требования к надежности аппаратуры.
Так же на Российском рынке электронных компонентов распространены электронные компоненты различных Восточных производителей с сомнительным качеством выпускаемой продукции, например Diodes, DC Components, Pan Jit и другие.
Наименование | Упаковка | I RM макс (мА) |
Число линий защиты |
Pимп (Вт) |
Vтип (В) |
Vобр (В) |
BZA100 | SO20 | 2 | 18 | — | 6,8 | 5,25 |
BZA408B | SC-74 | 0,1 | 4 | — | 5,5 | 5 |
BZA820A | SC-88A | 0,1 | 4 | — | 20 | 15 |
BZA956A | SO5 | 1 | 4 | — | 5,6 | 3 |
BZA956A VL | SO5 | 0,2 | 4 | — | 5,6 | 3 |
MMBZ12V AL | TO-236AB | 0,005 | 1 | 40 | 12 | 8,5 |
PESD12VL1BA | SOD323 | 0,05 | 1 | 200 | 15,9 | 12 |
PESD1CAN | SOT23 | 0,05 | 2 | 200 | 27,8 | 24 |
PESD1FLEX | SOT23 | 50 | — | 200 | 27,8 | 24 |
PESD1LIN | SOD323 | 0,05 | 1 | 160 | 27,8 | 24 |
PESD24VL1BA | SOD323 | 0,05 | 1 | 200 | 27,8 | 24 |
PESD2CAN | SOT23 | 10 | 2 | 230 | 28 | 24 |
PESD3V3L1BA | SOD323 | 2 | 1 | 500 | 6,4 | 3,3 |
PESD5V0L1BA | SOD323 | 1 | 1 | 500 | 7,6 | 5 |
PESD5Z12 | SOD523 | 10 | — | 200 | — | 12 |
PRTR5V0U1T | SOT23 | 0,1 | 1 | — | — | 3 |
PTVS10VS1UR | SOD123 | 0,6 | — | 400 | 18 | 3,3 |
Таблица 1, Защитные диоды NXP
Еще одним из ведущих производителей полупроводниковых элементов является компания Diotec. Компания Diotec Semiconductor AG (Diotec) – была образована в 1973 году в городе Хайтерсхайм (Германия). На сегодняшний день компания является ведущим производителем стандартных и силовых полупроводниковых диодов и выпрямителей. Благодаря применению собственной уникальной технологии Plasma EPOS, не имеющей аналогов в мире, обеспечивающей высокое качество производимой продукции.
В сочетании с передовыми технологиями и немецким подходом к организации производства продукция Diotec позволяет применять ее в различных отраслях электроники, где предъявляются повышенные требования к надежности.
Одной из наиболее сильных и многочисленных линеек продукции Diotec являются TVS-диоды (transient voltage suppressors) в этой линейке насчитывается более 1500 наименований, в таблице 2 приведены некоторые линейки защитных диодов и их краткие характеристики.
Таблица 2. TVS-диоды Diotec
P/N | Корпус | ||||||
Импульсная мощность макс | Напряжение стабилизации | Обратный ток макс | Напряжение пробоя | ||||
P PPM Вт |
VWM В |
ID @ VWM мА | VBRмин В | VBRмакс В | @ IT мА | ||
1.5KE10 | D5,4×7,5 | 1500 | 8,1 | 10 | 9 | 11 | 1 |
1.5KE100 | D5,4×7,5 | 1500 | 81 | 5 | 90 | 110 | 1 |
1.5SMCJ10 | SMC | 1500 | 10 | 5 | 11,1 | 13,5 | 1 |
1.5SMCJ100 | SMC | 1500 | 100 | 5 | 111 | 135 | 1 |
5KP10 | D8x7,5 | 5000 | 10 | 10 | 11,1 | 14,1 | 1 |
5KP100 | D8x7,5 | 5000 | 100 | 10 | 111 | 141 | 1 |
BYZ35A22 | D13x10,7 | — | — | — | 19,8 | 24,2 | 100 |
BZW04-10 | DO-15 | 400 | 10,2 | 5 | 11,4 | 12,6 | 1 |
BZW04-102 | DO-15 | 400 | 102 | 5 | 114 | 126 | 1 |
BZW04-10B | DO-15 | 400 | 10,2 | 5 | 11,4 | 12,6 | 1 |
BZW06-10 | DO-15 | 600 | 10,2 | 5 | 11,4 | 12,6 | 1 |
BZW06-102 | DO-15 | 600 | 102 | 5 | 114 | 126 | 1 |
BZW06-10B | DO-15 | 600 | 10,2 | 5 | 11,4 | 12,6 | 1 |
P4KE10 | DO-15 | 400 | 8,1 | 10 | 9 | 11 | 1 |
P4KE100 | DO-15 | 400 | 81 | 5 | 90 | 110 | 1 |
P4SMAJ10 | SMA | 400 | 10 | 5 | 11,1 | 13,5 | 1 |
P4SMAJ100 | SMA | 400 | 100 | 5 | 111 | 135 | 1 |
P6KE10 | DO-15 | 600 | 8,1 | 10 | 9 | 11 | 1 |
P6KE100 | DO-15 | 600 | 81 | 5 | 90 | 110 | 1 |
P6SMBJ10 | SMB | 600 | 10 | 5 | 11,1 | 13,5 | 1 |
P6SMBJ100 | SMB | 600 | 100 | 5 | 111 | 135 | 1 |
SDA2AK | DO-213 | 300 | 0,5 | 1000 | 0,8 | 1 | 1 |
SDA4AK | DO-213 | 300 | 1 | 1000 | 1,6 | 2 | 1 |
TGL34-10 | DO-213 | 150 | 8,1 | 10 | 9 | 11 | 1 |
TGL34-100 | DO-213 | 150 | 81 | 5 | 90 | 110 | 1 |
Маркировка TVS-диодов Diotec основано на различных системах обозначения:
Обозначение, основанное на напряжении пробоя : V BR : P4KE…, P6KE…, 1.5KE…, BYZ35…, BYZ50…, TGL34…, TGL41…, SDA2AK, SDA4AK, наименование таких позиции основано на номинальном напряжении пробоя. Номинальное напряжение допускается ±5% или ±10%, в дополнение к этому Diotec устанавливает максимальное значение напряжения стабилизации для каждого типа.
Обозначение, основанное на напряжении стабилизации : V WM : BZW04…, BZW06…, 5KP…, P4AMAJ…, P6SMBJ…, 1.5SMCJ…, наименование таких позиции основано на максимальном значении напряжения стабилизации. Соответствующее напряжение пробоя так же определяется спецификацией, но не номинальной величиной, а минимальным значением.
При выборе схем защиты электронных устройств следует учитывать некоторые рекомендации, описанные выше, одной из важных составляющих при защите
электронных устройств является качество элементов. Установленный некачественный защитный элемент может повлиять на функциональность дорогой аппаратуры, или вовсе вывести ее из строя. При выборе защитных элементов не стоит руководствоваться только ценой, и закупать электронные компоненты только проверенных производителей.
В таблице 5 приведены примеры аналогов защитных диодов различных производителей.
Таблица 3, Примеры аналогов TVS-диодов различных производителей
Тип | Производитель | Макс V WMВ | Мин V BR В | V C В | I PPM А |
P6SMBJ8.5A | Diotec | 8,5 | 9,4 | 14,4 | 41,7 |
P6SMB10A | ON-Semiconductors | 8,55 | 9,5 | 14,5 | 41 |
SMBJ8.5A | Microsemi | 8,5 | 9,44 | 14,4 | 41,7 |
SM6T10A | STMicroelectronics | 8,55 | 9,5 | 14,5 | 41 |
Опыт применения компонентов компаний NXP и Diotec показал, что их легко можно применять в электронике, где ранее применялись электронные компоненты других известных производителей, таких как Infineon, STMicroelectronics, Fairchaild, ON-Semiconductors, Vishay, а зачастую и превосходить качественные и ценовые параметры этих производителей.
Газонаполненный разрядник (GDT — Gas Discharge Tube)
Газонаполненный разрядник (GDT — Gas Discharge Tube) — устройство, предназначенное для ограничения перенапряжений, возникающее в электрических цепях при коммутации электроустройств, при атмосферных явлениях (в частности грозовой разряд) и др. Обычно состоит из керамической трубки, заполненной инертными газами. В сравнении с другими устройствами защиты от перенапряжений газоразрядники способны рассеивать большую энергию и выдерживать токи до десятков килоампер. Главный минус газоразрядников — достаточно большое время срабатывания (до единиц микросекунд) делает их не самым лучшим решением для защиты скоростных интерфейсов. Эта проблема решается созданием комплексных цепей защиты, т.е. комбинированием газоразрядника и, например, TVS диода .
![]() а |
![]() б |
Схема работы
При нахождении газоразрядника в состоянии покоя (напряжении ниже напряжения пробоя) внутренне сопротивление газоразрядника велико и он не проводит ток.
При увеличении напряжения выше напряжения пробоя сопротивление резко падает и газоразрядник переходит в проводящее состояние. Это состояние тлеющего разряда, при котором газоразрядник потребляет ток около 0,5 А и напряжение между электродами достигает около 100 В. Далее внутри газоразрядника возникает разряд (световая дуга), напряжение которого составляет примерно 20 В, а протекающий ток достигает десятков килоампер. Через некоторое время напряжение дуги ослабевает, ток прекращается и разрядник переходит в нормальное состояние.
Стоит заметить, что собственная емкость газонаполненного разрядника мала, т.е. он не вносит существенных изменений в сигнал.
Основные применения
Газонаполненный разрядники находят применеие в телекомуникационной аппаратуре, телефонии, передающем оборудовании.
Преимущества разрядников
- Малая емкость
- Способность рассеивать большую энергию
- Стойкость к воздействию внешних факторов
Littelfuse предлагает линейку газонаполненных разрядников на большой диапазон напряжений, для поверхностного и навесного монтажа (двух- и трех — электродные). Также Littelfuse изготавливает газонаполненные разрядники с термической защитой (Failsafe), которая представляет из себя термоактивную внешнюю скобу. При перегревании корпуса скоба замыкает все электроды и заряд «стекает» в землю, тем самым сохраняя работоспособность устройства.
Серия | Корпус | Uном проб, В (DC) | Imax DC, A | Iпик, А (8х20 мкс) | Сmax, пФ | Кол-во электродов | Выводы |
CG5 | ![]() |
90-600 | 5 | 5000 | 1.5 | 2 | Безвыводные Аксиальные |
SL0902A | 90-600 | 5 | 5000 | 1.5 | 2 | Безвыводные | |
SL1002A | ![]() |
75-600 | 5 | 5000 | 1.2 | 2 | Безвыводные |
SL1003A | ![]() |
90-500 | 10 | 10000 | 1.2 | 3 | Безвыводные Радиальные |
SL1011A | ![]() |
75-600 | 5 | 5000 | 1.5 | 2 | Безвыводные Аксиальные |
Пример применения разрядников
Основные источники перегрузок с кабельных сетях — грозовые (электромагнитная наводка от грозового разряда и токи растекания разряда) и индустриальные (коммутация мощных потребителей и источников, перегрузки сети, переходные процессы в ЛЭП).
Удар молнии в телевизионную башню вызывает, за счет конечного сопротивления цепей заземления, бросок напряжения на земле башни (и, следовательно, передатчика и модулятора) по отношению к удаленной земле (например, земле аппаратно-студийного комплекса /АСК/). Величина перегрузки зависит от энергии молнии и сопротивления грозозащитного заземления башни, определяемого типом и влажностью грунтов. Как показывает статистика ремонта, наихудшее сочетание (высокоэнергичные грозы и сухой грунт) обычно достигается во второй половине лета.
В зависимости от энергии и протяженности разряда, длины линии между АСК и передатчиком и способа ее прокладки, перегрузка, вызванная грозовым разрядом на линиях между башней и АСК, обычно составляет от десятков до сотен вольт в течении нескольких десятков микросекунд. В ряде случаев (скалистый грунт, сухое лето, длинная воздушная линия) перегрузки могут достигать многих киловольт в течении сотен микросекунд.
Рисунок 19. Формирование грозового импульса
а). эквивалентная схема телевизионной башни и АСК
б). форма напряжения грозового импульса в магистральном кабеле
На рисунке 19 а приведена эквивалентная схема телевизионной башни, соединенной с АСК,
где: L – индуктивность башни, С 2 – емкость башни относительно земли, С 1 – распределенная емкость элементов башни, R i – сопротивление заземления башни, R r – сопротивление заземления АСК.
На рисунке 1.1б приведена форма огибающей импульса напряжения в магистральном кабеле, соединяющим телевизионную башню и АСК при грозовом разряде. Первый пик импульса обусловлен емкостью C 1 , второй – контуром LС 1 C 2.
В зависимости от параметров башни и линии, длительность первого импульса, обусловленного прямой электромагнитной наводкой на линию, может составлять от сотен наносекунд до единиц микросекунд, а длительность второго импульса – во много раз больше.
Рисунок 20. Эквивалентная схема распределения грозовых токов и
напряжений.
На рисунке 20 приведена эквивалентная схема распределения грозовых токов, протекающих по цепям заземления и оплеткам кабелей, и соответствующих напряжений,
где: R k – сопротивление магистрального кабеля, Rб – сопротивление башни, RАСК – эквивалентное сопротивление цепей сигнального заземления АСК, i 0 – ток грозового разряда, i k – ток грозового импульса в линии, i a – ток заземляемый грозозащитой, i e – ток грозового импульса в линии после прохождения грозозащиты, ΔU – разница потенциалов между землями башни и АСК, Uвх – напряжение, поступающее на вход АСК.
При ударе молнии в башню, ток разряда i 0 частично заземляется через сопротивление заземления башни R i , а частично поступает в линию (i k ). Разность потенциалов между землями башни и аппаратно-студийного комплекса определится потенциалом земли башни в момент разряда молнии и составит ΔU = i 0 R i. При типичном значении тока грозового разряда 20-100 кА (пиковое значение) и сопротивлении заземления башни 0.1 Ом (например), разность потенциалов между землями составит 2-10 кВ, что способно вывести из строя и кабельные системы и устройства формирования и передачи сигнала.
Потенциал грозового импульса на выходе АСК определится, в основном, током разряда, попавшем в линию и входным сопротивлением АСК:
и будет тем меньше, чем меньше сопротивление цепей заземления и чем больше сопротивление кабеля и разделительных/защитных устройств в кабельной цепи.
Типовая схема защиты симметричной линии (рис. 21) складывается из токовой защиты и защиты от перенапряжения. В качестве токовой защиты применяют различные типы предохранителей, мощные резисторы. В качестве защиты от перенапряжения применяют разрядники, полупроводниковую защиту: стабилитроны, тиристоры.
Рисунок 21. Типовая схема защиты.
Газовый разрядник (GDT – Gas Discharge Tube) является первичной относительно быстродействующей (80-200 нс) защитой, способной погасить значительные (до 20 кА) импульсные токи и обеспечивает разряд импульса напряжения на землю при достижении U gdt .(90-120В).
Полупроводниковая защита (D) является вторичной защитой и обеспечивает поглощение импульсов с напряжением ниже U gdt и ограничение выходного напряжения на уровне 20-30В, что безопасно для большинства аналоговых устройств.
Полупроводниковая защита обладает высоким быстродействием (20-100 нс) и способна оперативно реагировать на короткие импульсы.
Компоненты полупроводниковой защиты имеют заметную емкость (многие сотни пФ), что ограничивает их применение цепями аналогового звука.
Пример работы устройства защиты серии TRZ
Рисунок 22. Формы напряжения в различных участках устройства грозозащиты TRZ-41AS:
а). входное воздействие, U in = 450 В; б). напряжение на газовом разряднике, U gdt = 90 В;
в). напряжение на стабилитроне, U d = 25 В; г). напряжение на выходе.
Конечно проблема защиты электронных устройств от перенапряжений много шире чем это описано здесь и каждый конкретный случай требует особого рассмотрения и своего оптимального решения. И здесь невозможно описать все.
Но цель этой подборки ознакомить Вас с возможными решениями с применением рассмотренных компонентов.
Собрал, обобщил и добавил А.Сорокин, 2013 г.
Электрника. Какие физические явления вынуждают ограничить обратное напряжение на диоде?
Пробой диода — это явление резкого увеличения обратного тока через диод при достижении обратным напряжением некоторого критического для данного диода значения. В зависимости от физических явлений, приводящих к пробою, различают лавинный, туннельный, поверхностный и тепловой пробои.
Лавинный пробой (ударная ионизация) является наиболее важным механизмом пробоя p-n-перехода. Напряжение лавинного пробоя определяет верхний предел обратного напряжения большинства диодов. Пробой связан с образованием лавины носителей заряда под действием сильного электрического поля, при котором носители приобретают энергии, достаточные для образования новых электронно-дырочных пар в результате ударной ионизации атомов полупроводника.
Туннельным пробоем электронно-дырочного перехода называют электрический пробой перехода, вызванный квантовомеханическим туннелированием носителей заряда сквозь запрещённую зону полупроводника без изменения их энергии. Туннелирование электронов возможно при условии, если ширина потенциального барьера, который необходимо преодолеть электронам, достаточно мала. При одной и той же ширине запрещённой зоны (для одного и того же материала) ширина потенциального барьера определяется напряжённостью электрического поля, то есть наклоном энергетических уровней и зон. Следовательно, условия для туннелирования возникают только при определённой напряжённости электрического поля или при определённом напряжении на электронно-дырочном переходе — при пробивном напряжении. Значение этой критической напряжённости электрического поля составляет примерно 8*10^5 В/см для кремниевых переходов и 3*10^5 В/см — для германиевых. Так как вероятность туннелирования очень сильно зависит от напряжённости электрического поля, то внешне туннельный эффект проявляется как пробой диода.
Поверхностный пробой (ток утечки) . Реальные p-n-переходы имеют участки, выходящие на поверхность полупроводника. Вследствие возможного загрязнения и наличия поверхостных зарядов между p- и n- областями могут образовываться проводящие плёнки и проводящие каналы, по которым идёт ток утечки Iут. Этот ток увеличивается с ростом обратного напряжения и может превысить тепловой ток I0 и ток генерации Iген. Ток Iут слабо зависит от температуры. Для уменьшения Iут применяют защитные плёночные покрытия.
Тепловой пробой — это пробой, развитие которого обусловлено выделением в выпрямляющем электрическом переходе тепла вследствие прохождения тока через переход. При подаче обратного напряжения практически всё оно падает на p-n-переходе, через который идёт, хотя и небольшой, обратный ток. Выделяющаяся мощность вызывает разогрев p-n-перехода и прилегающих к нему областей полупроводника. При недостаточном теплоотводе эта мощность вызывает дальнейшее увеличение тока, что приводит к пробою. Тепловой пробой, в отличие от предыдущих, необратим.
Остальные ответы
наверное ближе будет — электроника
draven9490Мастер (1418) 13 лет назад
я просто случайно пропустила букву
Александр Профи (744) та я сам хорош. Букву «н» как «и» прочитал.
Принцип работы и назначение диодов
Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.
Устройство
Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:
- Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
- Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
- Внутри катодакосвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
- Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
- Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
- Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.
Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.
Назначение
Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:
- Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
- Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
- Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
- Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
- Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.
Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.
Прямое включение диода
На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.
Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:
- Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
- Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
- Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
- Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
- Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
- Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
- Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.
Обратное включение диода
Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:
- Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
- Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
- По мере ростаобратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
- В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.
Прямое и обратное напряжение
Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:
- Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
- Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.
Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.
Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.
Работа диода и его вольт-амперная характеристика
Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.
Подобный график можно описать следующим образом:
- Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
- Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
- Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
- Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
- По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
- Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
- Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.
Основные неисправности диодов
Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.
Всего выделяют 3 основных типа распространенных неисправностей:
- Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
- При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
- Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.
Пробой p-n-перехода
Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.
Обычно различается несколько видов:
- Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
- Электрические пробои, возникающие под воздействием тока на переход.
График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.
Электрический пробой
Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.
При этом, пробои такого типа делятся на две разновидности:
- Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
- Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.
Тепловой пробой
Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.
Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:
- Рост колебания атомов, входящих в состав кристалла.
- Попадание электронов в проводимую зону.
- Резкое повышение температуры.
- Разрушение и деформация структуры кристалла.
- Полный выход из строя и поломка всего радиокомпонента.