Достоинства и недостатки гидро-, пневмо- и электроприводов
Выбор типа привода важнейшая задача, которая стоит при проектировании любого оборудования, где будет осуществляться линейное перемещение или вращательное движение.
Существуют три распространенных типа привода:
- Электропривод
- Гидропривод
- Пневмопривод
Каждый из них передает энергию исполнительному механизму и преобразуют ее в движение. У каждого — своя рабочая среда, что делает отличными их характеристики.
Выбор типа привода зависит и от изначальных ресурсов производства, его потребностей, а также финансовых и технических возможностей предприятия.
Наша компания ООО «Сервомеханизмы» предлагает устройства линейного перемещения с электроприводом, и мы считаем, что это оптимальный и самый удобный способ передачи усилия.
Различие рабочих сред сказывается на характеристиках приводов и в этой статье мы рассмотрим достоинства и недостатки всех трех типов привода.
Электропривод
Электрический — самый молодой тип привода, среди представленных, он появился во второй половине XIX века, через несколько десятков лет после появления электродвигателя.
Данный тип привода преобразует вращательное движение двигателя в возвратно-поступательное движение исполнительного механизма.
Электропривод потребляет энергию только при движении, что делает его особенно экономичным. Может использоваться электродвигатель любого типа — постоянного, переменного тока, серводвигатель и др.
Применение электроприводов обширно. Благодаря своим компактным размерам, он может монтироваться в составе практически любого оборудования и станков. Из-за доступности источника энергии он применяется во всех отраслях на основных и вспомогательных операциях.
Активно используется для затворов трубопроводной арматуры, т.к. при отключении электропривод не смещается по инерции.
Электропривод идеально подходит для длительной стабильной работы оборудования.
Схема типового электропривода
Достоинства
1. Низкая стоимость энергии.
2. Простота конструкции всей системы (относительно двух других видов привода).
3. Обеспечение стабильной скорости работы.
4. Высокая точность работы
5. Возможность передачи энергии на расстояние без значительных потерь
6. Точное позиционирование и плавное регулирование.
7. Наиболее высокий КПД среди всех типов приводов
8. Простота объединения в синхронизированные системы (подъема или перемещения).
9. Простота автоматизации, широкий спектр дополнительных устройств, контролирующих и регулирующих датчиков.
10. Требуют минимальное тех.обслуживание
11. Низкий уровень шума
12. Экологичность, отсутствие вредного воздействия на окружающую среду.
13. Стабильная работа при относительно высоких и низких температурах +/- 50
Недостатки
1. Сложность применения в пожароопасных зонах и взрывоопасных средах, также при большой влажности.
Отчасти этот недостаток устраняется выбором специального типа двигателя с высокой степенью защиты.
2. Высокая стоимость, т.к. приобретается механизм уже с двигателем.
3. При длительной непрерывной работе возможен перегрев двигателя, износ трущихся частей
4. Электромагнитное поле может создавать помехи в сетях управления помехи в проходящих рядом других сетях (например управления и сигнализации).
Уменьшить негативное влияние недостатков поможет грамотная конструкция привода и оговаривание всех возможных опасных влияний, разработка точной кинематической схемы
Современный электропривод может оснащаться массой дополнительных защитных средств повышающих его срок службы и комфорт работы с ним.
Гидропривод
В гидроприводах движение исполнительного органа осуществляется при помощи движения жидкости (обычно это минеральное масло).
Выделяют две основные группы гидроприводов: гидродинамический и объемный.
В первом используется кинетическая энергия потока жидкости и скорость ее движения прямо пропорциональна развиваемой мощности. В объемном наоборот, важна энергия давления, а скорость движения рабочей жидкости (масла) невелика.
Из-за того, что объемный гидропривод компактнее и легче, чем гидродинамический и может создавать
большие усилия, он и получил большее распространение.
В его работе используется принцип гидравлического рычага, основанный разнице в площадях и объеме первого и второго поршней. Чем меньше первый, и чем больше второй, тем больше усилие получается создать на выходе, приложив гораздо меньшую силу.
Если упростить, то первый поршень — это насос, задающий давление, второй — гидродвигатель, гидропривод — осуществляет перемещение.
Причем разнонаправленные потоки рабочей жидкости (а она циркулирует) не встречаются между собой, а
отделены с помощью обратных клапанов и гидрораспределителей.
Благодаря этому, гидроприводы имеют высокий КПД, малоинерционны и легко меняют направление движения.
По виду движения выходного звена гидродвигатели разделяют на
- гидроцилиндры (возвратно-поступательное движение),
- гидромоторы (вращательное движение),
- гидродвигатели (поворот звена).
Кроме насоса и гидродвигателя в состав гидропривода входят и другие устройства — гидроаккумулятор,
различные измерительные и регулирующие устройства, регуляторы расхода и давления, гидравлические усилители мощности сигналов управления, также часто — электротехнические изделия.
Управление объемным гидроприводом и состоит в управлении скоростью движения поршня путем изменения частоты вращения приводящего двигателя.
Гидропривод обычно используется там, где нужны очень большие, но краткосрочные усилия и ограниченное перемещение или сжатие.
Достоинства
1. Основным достоинство — это способность развивать очень большое усилие при компактных параметрах.
Гидропривод производит силу в 25 раз выше, чем пневмопривод аналогичного размера.
2. Гидроприводы могут быть удалены друг от насосной станции на большое расстояние, но с некоторой потерей мощности (макс. расстояние 250-300 м.)
3. Малое время для развития значительного усилия и плавное его регулирование
4. Широкий диапазон рабочей температуры от -50 до +100, но стоит помнить что при низких температурах увеличивается вязкость масла, что усложняет и замедляет работу. Нагрев же наоборот — разжижает и способствует возникновению утечек.
5. Достаточно высокий КПД, но не выше чем у электромеханических передач
Недостатки
1. Грязное применение: возможны утечки рабочей жидкости, особенно при высоком давлении.
2. Рабочая жидкость может нагреваться, охлаждаться, загрязняться, что усложняет работу системы и требует
превентивных мер.
2. Высокая стоимость самого оборудования и его техобслуживания.
3. Громоздкое размещение — требуется насосная станция (а в некоторых случаях даже две), РВД для транспортировки масла.
4. Постоянное потребление энергии — и во время движения и в покое.
5. Сложно отслеживать точность работы, требуется дополнительное оборудование.
Пневмопривод
Пневматический — самый древний вид привода, известный еще древним грекам. Также этот принцип передачи энергии ученные вспомнили в 17 веке. В 18 веке в Европе курсировала подземная пневматическая почта — насосы приводили в движение паровые машины. В России она появилась в 20 веке и до сих пор используется для отправки грузов на некоторых предприятиях. В 19 веке в Париже была создана промышленная компрессорная станция протяженностью 48 км под давлением 0,6 МПа и имеющая мощность до 18500 кВт, она снабжала местные заводы и фабрики, но с появлением более выгодных электропередач ее эксплуатация стала невыгодной.
Однако потребность в пневматической энергии до сих пор актуальна. Пневматическая техника развивается, появляютеся новые виды передающих устройств, например, воздушные мыщцы.
Схема системы пневмопривода довольна сложна, и включается в себя управляющие, распределительные и исполнительные устройства. В общем виде можно описать ее следующим образом. Воздух в пневмопривод поступает через воздухозаборник, затем он фильтруется, с помощью компессора сжимается (и соответственно, по закону Шарля, нагревается), затем охлаждается и уже сжатый очищенный охлажденный воздух поступает в пневмоцилиндр (или иной пневмодвигатель) производит необходимую механическую работу.
Для сглаживания скачков давления используется ресивер — он делает плавным движение поршня, затем отработанный воздух выбрасывается в окружающую среду.
Пневматика в основном используется в производствах с повышенным уровнем запыленности, температуры, пожарной опасности. Пневмоцилиндры рекомендуются для активных, скоростных операций малой продолжительности, с малым рабочим циклом.
По конструкции пневмоприводы делятся на поршневые, мембранные и сильфонные.
Наиболее распространены поршневые — к ним и относятся пневмоцилиндры. По типу движения рабочего органа подразделяются на вращательные и поступательные. Второй тип наиболее распространен.
По точности работы подразделяются на двухпозиционные и многопозиционные, в которых используется позиционер.
Достоинства
1. Простота конструкции и легкий вес пневмоцилиндров.
2. Низкая цена, особенно в случае если есть пневмопровод или компрессор. Получается самый экономичный вариант. (Однако высока стоимость самой энергии).
3. Пожаро/взрывобезопасны — сжатый воздух не образует горючих и взрывоопасных смесей.
4. При соблюдении рабочего режима — большой срок службы.
6. Возможность подключения большого числа потребителей от одного источника.
7. Возможность передачи воздуха на очень большие расстояния, пневмопровод на больших предприятиях часто используется как основной, правда при этом могут быть потери в доставляемом усилии и запаздывание в выполнении операций.
8. Нечувствительность к радиационному и электромагнитному излучению.
9. «Проветривание» помещений за счет отработанного воздуха, полезно в шахтах, на металлургических, химических и других вредных производствах.
Недостатки
1. Низкий КПД (максимум 30%)
2. Сложность точного регулирования, низкая точность позиционирования (фактически 2 положения штока), требуется применение позиционеров.
3. Высокий уровень шума при работе.
4. Имеет некоторые пределы в грузоподъемности и выдерживаемой нагрузке. Д ля значительных нагрузок требуются большие габариты пневмооборудования, поэтому чаще пневмопривод можно встретить на участках, где не нужно прикладывать большое усилие.
5. Как и гидропривод, п. требует регулярного техобслуживания. Очень важно очищение и кондиционирование воздуха — комплекс мер для придания ему смазывающих свойств (маслораспыление) и снижения влажности, т.к. при работе привода происходят термодинамические процессы и конденсируется водяной пар.
6. Не пригоден для использования при низкой и высокой температуре, может обмерзать.
7. Трудность обеспечения стабильной скорости.
8. Сложно обеспечить плавность, особенно при колебаниях нагрузки.
9. Возможность разрывов в пневмотрубопроводе, а это может быть травмоопасно, поэтому обычно используются низкое давление до 1МПа .
Пневмопривод практически всегда используется в ручном инструменте на промышленных производствах — дрели, гайковерты, степлеры, отбойные молотки и прессы на промышленном пожароопасном производстве (например, кузнечно-прессовом), при изготовлении мебели, при деревообработке, на вспомогательных операциях -упаковка, сборка), используется в приводах трубопроводной арматуры.
Также отметим, что сейчас появляются более сложные, комбинированные виды привода, а также все перечисленные виды оснащаются различной электроникой и внешними устройствами управления.
Информация взята из открытых источников. Статья приведена для ознакомления.
Просмотров: 67363 | Дата публикации: Понедельник, 31 октября 2016 07:28 |
ЧПУ привод. Какую передачу выбрать?
В приводе оси с ЧПУ передача используется для преобразования вращательного движения вала двигателя в поступательное движение вдоль оси. Ниже перечислены наиболее широко используемые виды передач в станках ЧПУ. Мы оставим за пределами нашей статьи экзотические для DIY-сектора передачи, как линейный серводвигатель и линейный шаговый двигатель по причинам практического характера, и рассмотрим самые распространенные.
Передача винт-гайка
Под передачей винт-гайка подразумевается пара стальной винт с трапецеидальной или метрической резьбой и гайка. Данный вид передачи является передачей с трением скольжения и на практике в свою очередь имеет несколько разновидностей.
- Строительная шпилька и гайка.
Самый бюджетный вариант. Строительная шпилька вообще не предназначена для использования в станкостроении, техпроцесс её изготовления нацелен на применение в строительной сфере, вследствие чего данный вид передачи обладает самым полным набором недостатков — высокой погрешностью, низкой прямолинейностью, малыми нагрузочными характеристиками, малой износостойкостью, высоким трением и т.д. Однако, все же применяется в DIY-станках, изготавливаемых в учебных целях, вследствии низкой себестоимости. Если Вы решили во что бы то ни стало сэкономить на передаче и поставить строительную шпильку, обязательно предусмотрите возможность замены её на трапецеидальный винт или ШВП! Скорее всего, станок на строительной шпильке не оправдает Ваших надежд.
- Приводной винт с трапецеидальной или прямоугольной резьбой.
Винт с трапецеидальной резьбой — наиболее распространный вид передачи в металлообрабатывающих станках в прошлом веке и по настоящее время. Трапецеидальные винты производятся их разных видов конструкционных углеродистых сталей путем нарезки резьбы на стальном прутке или её накатки. Накатные винты имеют существенно лучшие характерстики, чем нарезные. Широкое применение трапецеидальных винтов обусловливается их широкой номенклатурой, доступностью на рынке винтов разных классов точности, от C10 до С3. Гайка на винт изготавливается из износостойких материалов, таких, как полиамиды(капролон, нейлон), тефлон, бронза. Правильно рассчитанные и изготовленные трапецеидальные передачи отличаются высокой износостойкостью, т.к. трение идет с малым давлением(вследствие сравнительно большой поверхности трения). На многих все еще работающих станках советского производства пары стоят с момента выпуска станка, и не менялись уже 30-40 лет. Также на таких ходовых винтах возможно использование разрезных гаек, что позволяет с помощью сжатия гайки регулировать натяг и выбирать появляющийся со временем люфт. Из минусов стоит отметить, как ни странно, простоту изготовления винта, что автоматически означает наличие множества производителей, с очень широким разбросом показателей качества. Бюджетные серии винтов изготавливаются из стали #45 без закалки поверхности, что может привести к нарушению прямолинейности винта(иначе говоря, винты малого диаметра мягкие и часто гнутся в процессе транспортировки). К минусам и плюсам одновременно относится высокое трение в передаче. С одной стороны, это снижает КПД, требуется более мощный двигатель для вращения винта. С другой — трение несколько демпфирует вращательные колебания винта, что может быть полезным в случае использования шаговых двигателей(см. резонанс шаговых двигателей). Данный эффект, правда, проявлен достаточно слабо, и для борьбы с резонансом нужны другие способы. Подводя итог, можно сказать, что трапецеидальный винт еще не утратил своего значения в качестве передачи станка с ЧПУ и с успехом используется в станках всех классов.
- Шарико-винтовая передача (см. основную статью: ШВП)
ШВП, или шарико-винтовая передача(также называют «шарико-винтовая пара»), в настоящий момент является стандартом де-факто при строительстве станков с ЧПУ. Стальной винт с беговыми дорожками для шариков, подвергнутый индукционной закалке и последующей шлифовке, и специальным образом подогнанная гайка с циркулирующими внутри шариками. При вращении винта гайки катятся по беговым дорожкам, передавая усилие на корпус гайки. Такая передача отличается высокой точностью, высокими КПД (80, 90% и более) и ресурсом. ШВП чаще используется в станках с ЧПУ, так как его использование позволяет использовать двигатели меньшей мощности(не требуются столь существенные усилия страгивания, как в случае с передачей винт-гайка). ШВП поставляется как законченная пара, не требует подгонки гайки и зачастую не требует обработки концов для установки в опоры — это делает производитель, т.е. ШВП зачастую соответствует принципу plug and play, тогда как в случае использования трапецеидальных винтов гайки и винты зачастую изготавливаются в разных местах, и могут потребовать тщательной подгонки, без которой могут возникнуть зазоры, люфты, повышенное трение, износ и т.п. ШВП хуже переносит опилки,пыль и отсутствие смазки, чем передача винт-гайка, при попадании инородного тела даже очень малого размера передача может подклинивать, т.к. соседние шарики в канале вращаются в противоположном направлении. Часто требуется дополнительная защита винта с помощью гофроматериалов. ШВП, также как и трапецеидальный винт, имеют ограничения по длине — слишком длинный винт провисает под собственным весом и при вращении винта(скорость вращения винта с шагом 5 мм в портальных станках достигает 10-15 об/сек и выше) ведет себя как скакалка, от чего станок вибрирует, а узлы, фиксирующие винт, испытывают ударные нагрузки, их ресурс быстро снижается, в посадочных местах появляются зазоры, что в свою очередь усиливает вибрацию станка и снижает качество производимых изделий. Опыт показывает, что отношение диаметра ШВП к его длине не должно быть менее числа 0.022, а также не рекомендуется превышать длину винта в 2000 мм. Для устранения эффекта «скакалки» применяются конструкции с неподвижным винтом и вращающейся гайкой, но такие узлы, как правило, существенно дороже и сложней в изготовлении, а также требуют места, что не всегда возможно реализовать на компактных порталах. Если Вы планируете иногда отключать двигатели приводов и работать на станке в ручном режиме, то лучше не использовать ШВП — передача без самоторможения может доставить Вам уйму хлопот. О разновидностях ШВП и их особенностях смотрите основную статью.
Зубчатая передача
Зубчатые передачи, применяемые в станках с ЧПУ, бывают 2 видов
- Ременная передача
Ременная передача используется в тех случаях, когда масса движимой части невелика. Зубчатый ремень растягивается вдоль оси и фиксируется по концам специальными пластиками. Зубчатый шкив надевается непосредственно на вал двигателя, закрепленного на движимой части(портале), плотных обхват шкива ремнем обеспечивается натяжными роликами, которые обычно изготавливаются из подходящих по размеру радиальных шарикоподшипников. Главный минус ременной передачи — свойства ремня. Несмотря на то, что все приводные ремни армированы стальным или стекловолоконным кордом, это не спасает его от растяжения, и чем длиннее ремень, тем сильней он будет тянуться. Чем сильнее тянется ремень, тем меньше точность и ниже частота собственных колебаний — передача может попадать в мощнейший резонанс на самых необходимых частотах перемещений. Этот эффект можно снизить, закрепив отрезок ремня на станке зубцами вверх, и наложив на него зубец-в зубец еще один ремень, приподняв петлю, в которую размещается шкив. Как видно из схемы, растяжению подвергается его незначительный по длине отрезок, что нивелирует указанные выше недостатки. Ременная передача дает мягкое движение, если нет резонанса, в отличие от ШВП практически не боится пыли и стружки, а также позволяет регулировать натяг ремня для выборки люфта, из-за чего в первом приближении зачастую ременные редукторы рассматриваются как безлюфтовые. Ремни используются, как правило, там, где нет высоких требований по точности и мала масса портала и нагрузка на рабочий инструмент — раскроечные станки плазменной резки, пенорезки.
Стальная зубчатая рейка используется на широкоформатных раскроечных станках плазменной и лазерной резки, портальных фрезерных станках широкого формата, форматно-раскроечных станках, где использование ШВП невозможно по причине провисания винта, а также где нужна высокая скорость перемещения. Передачи шестерня-рейка, также как и ШВП, изготавливаются с определенным классом точности. Наибольшее распространение получили зубчатые передачи классов С5, С7 и С8. Зубчатая рейка, также как и ремень, «не боится» пыли и стружки, но лишена недостатка растяжимости. Однако, при установке шестерни непосредственно на вал двигателя передача лязгает и вибрирует, что в сочетании с резонансом шагового двигателя может превратить Ваш станок в отличный вибростенд. Чтобы этого избежать, между двигателем и рейкой можно установить ременной редуктор, выполняющий демпфирующую функцию, или использовать двигатель с планетарным редуктором — тогда основную часть времени шаговый двигатель будет работать на высоких скоростях вращения, где резонанс практически не проявляется. Также возможным вариантом является применение серводвигателей. Зубчатая рейка классов С5 и С7 за редким исключением производится короткими отрезками длиной около 1000 мм, и для сборки станка её стыкуют специальным образом.
Выбор передачи для станка
Выбор передачи для станка должен базироваться на тех характеристиках, которые для Вашего станка наиболее критичны. Передачи винт-гайка применяются там, где нет высоких требований по точности и скорости перемещений, если от передачи требуется самоторможение, а также в случае жестких ограничений по бюджету. ШВП обладает наибольшим спектром применения, вы можете купить ШВП с нужным Вам классом точности, шагом, возможностью создания преднатяга и без неё. Единственный случай, когда ШВП не может быть использовано — если от передачи требуется самоторможение, однако если речь о торможении передачи в целях безопасности(удержание шпиндельной бабки), то вопрос решается использованием электромагнитного тормоза на двигателе, противовесом и т.п. Рейка и ремень применяются в станках с большим рабочим полем — от 1.5 квадратных метров и больше — прежде всего для достижения большой скорости раскроя и холостых перемещений. На станках таких размеров не ставится цель достигнуть точности в десятки микрон, 0.2-0.3 мм в большинстве случаев более чем достаточно, поэтому растяжимость ремня и точность реечной передачи не являются препятствием для их применения. Итого, если у вас большой раскроечный станок — первыми кандидатами на рассмотрение будут зубчатая рейка и ременная передача. Если у вас настольный фрезерно-гравировальный станок для учебных или хоббийных целей, Вам подойдет передача винт-гайка. Если вы строите станок среднего формата для бизнеса, на производство, оптимальным выбором будет ШВП. После выбора типа, вам следует определиться с конкретными параметрами передачи.
КПД солнечных батарей подбирается к верхней границе
Альтернативная энергетика становится очень эффективной и конкурентоспособной
Совокупная установленная мощность солнечных модулей на Земле за последние десять лет возросла более чем в 15 раз, достигнув 700 ГВт. Но этот сегмент энергетики совсем небольшой — в 2020 году солнечные панели на Земле произвели всего около 3% мирового электричества. А десять лет назад было на порядок меньше — около 0,2%.
Выйти из полноэкранного режима
Развернуть на весь экран
Фото: Артем Краснов, Коммерсантъ
В 1883 году американский инженер Фриттс создал прототип солнечной батареи из позолоченного селена с КПД 1%.
Итальянский ученый армянского происхождения Джакомо Чамичан в 1912 году представил проект своей солнечной батареи.
В 1930-х годах в СССР сернисто-таллиевые фотоэлементы были созданы под руководством академика Абрама Иоффе.
Близкие к современным солнечные батареи на основе кремниевых полупроводников впервые изготовили в компании BellLaboratories. КПД их батарей составлял всего 4%. Тем не менее и с такими батареями в 1958 году в космос отправился американский спутник Vanguard 1. В том же году полетел в космос советский «Спутник-3» с кремниевыми солнечными батареями на борту.
Коэффициент полезного действия (КПД) серийных промышленных солнечных батарей (оснащенных электроникой кремниевых модулей) за последние 10–15 лет вырос от 16% до 20%, а в лабораторных экземплярах (не инкапсулированных элементах) — до 24–26%. Теоретический предел кремниевых монокристаллических батарей — 29,4%. Этот тип солнечных элементов по-прежнему остается самым популярным, как и десятки лет назад. Он занимает около 95% современного рынка фотовольтаических элементов для преобразования солнечной энергии.
Самые «солнечные» страны
Оценивать развитие солнечной энергетики в среднем на планете очень непросто. В одних странах ее нет совсем, в других она присутствует чисто символически, зато в некоторых уже составляет заметную долю от общей выработки энергии. Лидером в этой области, несомненно, является Китай, где с 2010 по 2020 год суммарная номинальная электрическая мощность всех модулей источников преобразования солнечной энергии составила 253 ГВт. Это в полтора раза больше, чем во всех странах ЕС, вместе взятых. Почти вчетверо меньше составляет установленная мощность солнечных элементов, появившихся за тот же период в США (73,8 ГВт) и Японии (67 ГВт). Недалеко от них Германия (53,8 ГВт), Индия (39 ГВт), Италия (21,6 ГВт), Австралия (17 ГВт), Вьетнам (16,5 ГВт), Франция (11,7 ГВт). Остальные страны, включая солнечные Бразилию и Таиланд, произвели за десять лет оборудования с номинальной мощностью солнечных электростанций менее 10 ГВт, а некоторые, например Аргентина,— менее 1 ГВт. Докладывая о развитии сектора солнечной энергетики, эксперты редко прибегают к абсолютным значениям, поскольку в большинстве государств эти цифры выглядят очень невыгодно. Чаще всего называют рекордные темпы роста, которые действительно такими являются во многих государствах. Так, например, с 2015 года Россия увеличила выработку энергии на солнечных элементах в 14 раз — с 0,1 ГВт до 1,4 ГВт. Причем только за 2020 год это значение выросло на 39% (с 1,1 ГВт до 1,4 ГВт). Цифры пока крошечные, зато темпы отличные.
Солнечные элементы монокристаллического типа (тонкие пластины из куска кремния) — надежные, «кондовые», долговечные, со своими очевидными плюсами и минусами. Недолгое время они проигрывали в цене тонкопленочным солнечным элементам, где слои из аморфного (без кристаллической структуры атомов) кремния, нанесенного на обычное стекло или другую подложку. Но КПД таких элементов составлял всего 10%, а цены на монокристаллический кремний снижались, и вскоре тонкопленочные солнечные элементы заняли свою небольшую нишу — дешевый сегмент легких мобильных батарей, например, для подзарядки телефонов на природе. Основной упор по усовершенствованию технологии в качестве перспективной зеленой альтернативы углеводородным топливам сегодня делается на монокристаллическую технологию, где центральный элемент представляет собой тонко нарезанные пластины-слайсы из цельного кремниевого «бруска».
Весь покрытый пленками
Лаборатории экспериментируют с разными соединениями, каждое со своими преимуществами и недостатками. Получая превосходный результат по одним параметрам, исследователи неизбежно проигрывают по другим, и этот бесконечный процесс борьбы за техническое превосходство при сохранении экономической целесообразности похож на мировую гонку — кто быстрее и дешевле придумает оптимальное решение. Сейчас основная ставка в этой гонке — на гетероструктуры. Они относятся к подложечным устройствам, поскольку в них в качестве подложки используется пластина монокристаллического кремния. Она покрыта с обеих сторон множественными пленками из разных материалов, у каждого из которых своя функция. Обычно с обеих сторон монокристалла тонкие пленки из аморфного кремния. Кристаллический и аморфный кремний — это два материала с различной структурой, отсюда и термин «гетеро».
«Счет в индустрии в терминах эффективности идет на единицы и даже на десятые доли процента. В качестве примера — увеличение средней эффективности солнечной панели стандартного размера с 15% до 20% привел к росту ее номинальной мощности с 250 Вт до 370 Вт, то есть в полтора раза»,— объяснил кандидат физико-математических наук, старший научный сотрудник Института теплофизики им. С. С. Кутателадзе Сибирского отделения РАН Александр Замчий взаимосвязь «небольших» побед по увеличению КПД солнечного элемента с революционными практическими результатами.
Александр работал над повышением эффективности солнечных элементов в Институте энергетических исследований исследовательского центра Юлиха в Германии в рамках стажировки по стипендии DAAD в составе большой международной группы. Работа, опубликованная в NatureEnergy, выполнена с коллегами из Нидерландов, России, Китая и Эквадора. Исследователям удалось выяснить, что слои из карбида и диоксида кремния, используемые в качестве лицевой пленки-контакта для солнечных элементов из монокристаллического кремния, могут сочетать исправление абсолютно большей части структурных дефектов, которые снижают проводимость поверхности кремниевой пластины и обеспечивают высокую оптическую прозрачность.
Прозрачнее невидимого
Пластина кремния толщиной 200 микрон (производители стараются сделать потоньше, чтобы снизить себестоимость) — это моноструктура, в которой происходит поглощение фотонов (частиц света) и рождение носителей заряда. Пока промышленность (в основном китайская) улучшает качественные характеристики серийной продукции, ведущие лаборатории мира заняты экспериментами с совершенно новыми подходами к архитектуре солнечных элементов. Три главных параметра, за которые ведется упорная борьба,— прозрачность, проводимость и пассивация лицевых тонкопленочных покрытий. Ученые подбирают сочетания материалов, покрывая ими пластину монокристалла кремния с разных сторон.
Например, за счет пленок полупроводника с обеих сторон кристалла ученые научились корректировать дефекты на поверхности кристалла кремния, где в кристаллической решетке часто не хватает атома кремния, что затрудняет протекание тока. Пленочные покрытия из различных полупроводниковых соединений прекрасно решают эту проблему — физики называют пассивацией эффект «коррекции» проводимости монокристалла с помощью пленок. Для пассивации на лицевой (верхней) стороне панели солнечного элемента исследователи использовали вместо традиционного аморфного кремния пленку из диоксида и двухслойного карбида кремния, где один слой — с высоким содержанием водорода (гидрогенизированный). Тонкий слой (1,5 нм) из диоксида кремния (стекло) отлично пассивирует контакты. Невидимая глазу пленка диоксида — это вынужденная мера, поскольку толстое стекло не проводит электричество.
Водород в слое карбида кремния выполняет функцию пассивации или связывания, то есть «ремонтирует» оборванные связи для протекания тока. Конечно, не так хорошо, как с этим справляется аморфный кремний, но в отличие от него карбидная пленка имеет еще и высокую прозрачность и проводимость. Однако водородсодержащий слой карбидной пленки не обладает требуемой электропроводимостью и прозрачностью. Для решения этой проблемы ученые сделали двухслойную структуру карбидно-кремниевой пленки. Одна, совсем тоненькая (3 нм), отвечает за хорошую пассивацию, другая (25 нм) — за сверхвысокую прозрачность и отличную электропроводимость. Для этого при выращивании слоя пленки температуру металлической нити (активатора газовой смеси, из которой осаждается пленка) поднимают с 1775 до 2000 градусов, и в итоге получается единая двухслойная структура со всеми необходимыми свойствами.
Для человеческого глаза все покрытия пластины кремния кажутся прозрачными. Но в оптике прозрачное прозрачному рознь. Чем больше фотонов от солнечного света попадет на пластину, тем больше электронов побегут по ее электродам и тем выше КПД солнечного элемента. Итак, прозрачность обеспечила максимальный захват энергии, а пассивация помогла току не оборваться и по электродам выйти из солнечного элемента без потерь.
Доля рынка устройств на основе пассивирующего контакта сегодня составляет единицы процентов, но, по прогнозу экспертов, к концу десятилетия возрастет до 20% и более. В нашей стране производством солнечных батарей занимается компания «Хевел», которая в 2009 году в Новочебоксарске запустила завод по выпуску фотоэлектрических модулей на основе гетероструктурной технологии. В 2020 году мощность завода увеличилась с 260МВт до 340 МВт солнечных панелей в год, что примерно равно текущей совокупной мощности всех солнечных батарей Оренбургской области. Солнечные панели этого производителя покрывают обширные территории Республики Алтай, Бурятии, Башкирии, Калмыкии, Саратовской и Астраханской областей, а также Адыгеи и Казахстана. В конце 2021 года солнечная электростанция мощностью 30 МВт была открыта в Омской области, а в 2022 году планируется построить еще две солнечные электростанции, Читинскую и Черновскую, по 35 МВт в Забайкалье.
Борьба за каждый электрон
Новые прозрачные пассивирующие пленки-контакты из карбида и диоксида кремния, покрывающие солнечные элементы с фронтальной стороны, повысили КПД солнечной батареи до 24%. На графиках в статье видно, что в определенных диапазонах энергии, поступающей на солнечный элемент, уровень прозрачности пленки из карбида кремния в десять раз превышает параметры пленок из аморфного кремния, то есть при одинаковой толщине пленки она пропустит в десять раз больше солнечного света, который преобразуется в электрическую энергию. Это не повысит КПД в десять раз, разумеется, поскольку КПД складывается не только из прозрачности, но еще из пассивации и проводимости. Меняя один параметр, к сожалению, нельзя зафиксировать все остальные. У пленок из аморфного кремния пассивация выше, а с прозрачностью не очень хорошо, поэтому этот слой размещен снизу пластины.
За последние полгода со времени выхода статьи в NatureEnergy ученые провели целый ряд расчетов с различными покрытиями, пытаясь не потерять прозрачность и увеличить пассивацию пленки из карбида кремния. Проанализировав все результаты своих экспериментов, они создали целую «дорожную карту», согласно которой у них есть все шансы гарантированно повысить КПД солнечных элементов еще на 1% в ближайшие полтора года, то есть довести его до 25%.
Поверх уже имеющихся пленок ученые нанесли антиотражающие антибликовые покрытия из фторида магния, стараясь, чтобы еще меньше фотонов отразилось от поверхности солнечного элемента.
Помимо увеличения многослойности авторы работы приняли решение сократить занимаемую площадь мельчайших металлических электродов, густая сеть из которых покрывает солнечный элемент, разделяя его на узенькие сегменты. Снизу солнечного элемента электрод выглядит как сплошная серебряная пленка из термопасты, которую наносят методом трафаретной печати, раскаляя ее до 200 градусов. Тем же методом поверх всей тонкопленочной структуры наносят узенькие серебряные дорожки. Авторы статьи посчитали, что дорожки существенно затеняют панель, занимая слишком много «места под солнцем». Оптимизировав процесс металлизации, они вдвое сократят ширину проводящих серебряных контактов (от 60 до 30 микрон) и тем самым еще немного повысят КПД.
Солнце на дне океана
Проект стоимостью свыше $22 млрд предусматривает прокладку кабеля длиной 4,2 тыс. км по дну Индийского океана. Через этот кабель энергия, выработанная на солнечных станциях в Австралии, будет передаваться в Сингапур. Преодолено очередное бюрократическое препятствие на пути этого кабеля: Индонезия выдала разрешение на работу в ее территориальных водах.
Северные территории Австралии — это бескрайние просторы и жаркое солнце; в Сингапуре места мало, но ему хотелось бы перевести энергоснабжение на возобновляемые источники. Эти две страны вскоре смогут объединиться в одном из крупнейших и самых амбициозных проектов в области возобновляемых источников энергии из когда-либо предпринимавшихся.
Проект называется PowerLink, ведет его австралийская компания Sun Cable, она собирается создать гигантский энергетический парк в районе Пауэлл-Крик. Солнечные батареи займут 12 тыс. га засушливых земель примерно в 800 км к югу от города Дарвина — это одно из самых солнечных мест на Земле.
Эта солнечная станция будет на пике вырабатывать 17–20 ГВт энергии, которую можно будет накопить в аккумуляторах емкостью 36–42 ГВт.
Станция Пауэлл-Крик будет почти в десять раз больше, чем нынешний рекордсмен — солнечный парк Бхадия в Индии с мощностью всего 2,245 ГВт. А емкость будущих аккумуляторов превышает предыдущий рекордный проект более чем в 30 раз!
Австралия явно мотивирована огромным успехом гигантской батареи Tesla емкостью 150 МВт, построенной в Южной Австралии в 2017 году. Соседний штат Виктория объявил, что в конце 2021 года начнет работать установка емкостью 300 МВт. Следом штат Новый Южный Уэльс анонсировал строительство самой большой батареи — 1,2 ГВт. Но все эти аккумуляторы выглядят гномиками в сравнении с PowerLink.
Высоковольтный кабель с солнечной энергией будет удовлетворять 15% всей потребности Сингапура в электричестве. Кроме того, солнечная станция будет снабжать светом и город Дарвин, через который пройдет электропередача.
Ожидается, что в эксплуатацию кабель будет введен в 2028 году. Пока же Дэвид Гриффин, гендиректор Sun Cable, поблагодарил индонезийское руководство: «Одобрение проекта приближает нас к началу новой эпохи, когда начнутся генерация и передача доступной, управляемой возобновляемой энергии в гигантских количествах».
Это не первая, но, видимо, наиболее продвинутая идея транснациональных поставок энергии из возобновляемых источников. В частности, известны проекты генерации солнечной энергии в Северной Африке с передачей ее в Южную Европу, а также в Монголии с передачей в Японию и Южную Корею.
- Журнал «Коммерсантъ Наука» №3 от 24.02.2022, стр. 18
Типы двигателей для строительной техники
Эффективность работы строительной техники во многом зависит от мощности, надежности и безопасности установленного в ней двигателя. Его тип и характеристики выбирают в зависимости от функционального назначения стройтехники, условий ее эксплуатации, требуемых производительности и времени непрерывного функционирования. Современные типы двигателей для строительной техники: ДВС (бензиновые и дизельные), электрические (постоянного и переменного тока), гибридные. Наиболее широко для комплектации строительной техники используются двигатели внутреннего сгорания – дизельные и бензиновые. Основные их преимущества – автономность и широкий диапазон мощностей.
Виды бензиновых двигателей для строительной техники – особенности конструкции
Бензиновые двигатели для вибротрамбовок, виброплит, глубинных вибраторов могут быть двухтактными или четырехтактным:
- двухтактные – используются для установки на легких и маневренных агрегатах;
- четырехтактные – предназначены для более тяжелой и мощной техники.
По способу запуска бензиновые агрегаты бывают с ручным запуском, электрическим стартером, комбинированной системой запуска.
В конструкции современных бензиновых двигателей реализованы различные способы защиты агрегата от выхода из строя:
- система защиты от низкого уровня масла – датчик подает сигнал на отключение при недостаточном количестве масла;
- фильтр двойной очистки – предотвращает попадание в ДВС посторонних механических частиц;
Как выбрать бензиновый двигатель для строительной техники – рекомендации профессионалов
При выборе нового двигателя на строительную технику необходимо учитывать следующие характеристики:
- Основной критерий – мощность. При замене двигателя необходимо приобретать агрегат такой же мощности, как и старый, или немного мощнее, но не более чем на 1-2 л.с. Мотор с меньшей мощностью не сможет обеспечить эффективную работу строительного оборудования. Но покупка слишком мощного мотора ускорит износ или выход из строя узлов и механизмов, конструкция которых не рассчитана на такие интенсивные нагрузки. Редуктор, привод вала и даже силовая рама могут не выдержать.
- Моторесурс. Если двигатель меняется на технике, узлы которой выработали большую часть своего ресурса, то покупать дорогостоящий агрегат с большим моторесурсом не имеет смысла. В этом случае можно обойтись недорогими китайскими моделями.
- Для какой техники предназначен ДВС. Часто моторы покупают для установки на самодельное оборудование. В этом случае не рекомендуется приобретать дорогую модель, поскольку есть вероятность, что и качественный ДВС от известного бренда может не выдержать работу с такой техникой. Отремонтировать недорогой китайский двигатель менее затратно, чем качественный дорогостоящий агрегат.
- Комплектация бензодвигателя. Большую роль в функциональности двигателя играет конструкция его фильтра, очищающего воздух, который попадает в камеру сгорания. При работе в условиях значительной запыленности, отрицательных температур, высокой влажности рекомендуется выбирать модели с воздушным фильтром в масляной ванне.
Обзор популярных брендов бензиновых двигателей для строительной техники
При комплектации строительной техники популярны бензиновые двигатели брендов Honda и Kipor.
Двигатели Хонда выпускаются в нескольких странах на собственных заводах этого концерна и они являются лидерами на рынке моторов для небольшой механизированной техники, в том числе строительной.
Агрегаты серии Honda GX предназначены для комплектации оборудования профессионального применения и приспособлены для эксплуатации в самых сложных условиях, при интенсивных нагрузках. Они просты в эксплуатации, экономичны, долговечны. Модели до GX 390 – одноцилиндровые.
Для таких моторов характерны:
- верхнее расположение клапанов и нижнее размещение распредвала;
- металлический штатный топливный бак;
- вынесенные в общий блок рычаги, управляющие бензиновым краном и воздушной заслонкой;
- возможность комплектации агрегата датчиком, определяющим уровень масла в картере.
Kipor – крупнейшая китайская компания, специализирующаяся на производстве электростанций, генераторов, дизельных и бензиновых двигателей. Для бензиновых двигателей Kipor характерны:
- компактные габариты;
- надежность;
- стабильная работа в сложных эксплуатационных условиях;
- экономный расход топлива;
- длительный рабочий ресурс.
Все перечисленные выше положительные характеристики сочетаются с бюджетной стоимостью. Двигатель может иметь горизонтальную или вертикальную установку. Агрегаты оснащены системами быстрого старта, автоматического отключения при низком уровне масла, опционно – глушителями для снижения уровня шума при работе.
Модель Kipor KG690 – самый мощный силовой агрегат в этой линейке: двухцилиндровый, с системой воздушного охлаждения. Способен длительно работать без перерыва. Предназначен для установки на мощную строительную технику.
Дизельные двигатели для строительной техники
В мощных моделях строительной техники, предназначенных для эксплуатации при высоких нагрузках в течение длительного времени без перерыва, выбирают дизельные двигатели. Их преимущества по сравнению с бензиновыми:
- повышенная экономичность в плане расходования топлива;
- более высокий моторесурс;
- длительный беспрерывный период работы;
- более высокий КПД;
- экологичность благодаря эффективному сжиганию топлива, что существенно снижает токсичность выхлопов.
Минусы таких агрегатов по сравнению с бензиновыми аналогами: более высокая стоимость, сложность эксплуатации в зимних условиях, необходимость использования сезонного топлива, большая масса.
Электродвигатели для строительной техники
Для комплектации строительной техники используются следующие разновидности электрических двигателей:
- постоянного тока;
- переменного тока синхронные;
- переменного тока асинхронные.
Для комплектации электроприводной строительной техники чаще всего используются асинхронные электродвигатели, функционирующие на одно- или трехфазном переменном токе. Их преимущества:
- относительно простая производственная технология;
- бюджетная стоимость;
- хорошие эксплуатационные характеристики.
Асинхронные электродвигатели обеспечивают плавное регулирование скорости вращения вала, но они менее надежны и стоят дороже. В зависимости от назначения выпускают электродвигатели открытого, закрытого (влаго-, пылезащищенного, полностью герметичного) и взрывобезопасного типа.