Физика цвета
В 1676 году сэр Исаак Ньютон с помощью трехгранной призмы разложил белый солнечный свет на цветовой спектр. Подобный спектр содержал все цвета за исключением пурпурного.
Ньютон ставил свой опыт следующим образом (рис. 1) солнечный свет пропускался через узкую щель и падал на призму. В призме луч белого цвета расслаивался на отдельные спектральные цвета. Разложенный таким образом он направлялся затем на экран, где возникало изображение спектра. Непрерывная цветная лента начиналась с красного цвета и через оранжевый, желтый, зеленый, синий кончалась фиолетовым. Если это изображение затем пропускалось через собирающую линзу, то соединение всех цветов вновь давало белый цвет.
Эти цвета получаются из солнечного луча с помощью преломления. Существуют и другие физические пути образования цвета, например, связанные с процессами интерференции, дифракции, поляризации и флуоресценции.
Если мы разделим спектр на две части, например — на красно-оранжево-желтую и зелено-сине-фиолетовую, и соберем каждую из этих групп специальной линзой, то в результате получим два смешанных цвета, смесь которых в свою очередь также даст нам белый цвет.
Два цвета, объединение которых дает белый цвет, называются дополнительными цветами.
Если мы удалим из спектра один цвет, например, зеленый, и посредством линзы соберем оставшиеся цвета — красный, оранжевый, желтый, синий и фиолетовый, — то полученный нами смешанный цвет окажется красным, то есть цветом дополнительным по отношению к удаленному нами зеленому. Если мы удалим желтый цвет, то оставшиеся цвета — красный, оранжевый, зеленый, синий и фиолетовый — дадут нам фиолетовый цвет, то есть цвет, дополнительный к желтому.
Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра.
В смешанном цвете мы не можем увидеть отдельные его составляющие. В этом отношении глаз отличается от музыкального уха, которое может выделить любой из звуков аккорда.
Различные цвета создаются световыми волнами, которые представляют собой определенный род электромагнитной энергии.
Человеческий глаз может воспринимать свет только при длине волн от 400 до 700 миллимикрон:
- 1 микрон или 1μ = 1/1000 мм = 1/1000000 м.
- 1 миллимикрон или 1mμ = 1/1000000 мм.
Длина волн, соответствующая отдельным цветам спектра, и соответствующие частоты (число колебаний в секунду) для каждого спектрального цвета имеют следующие характеристики:
Цвет | Длина волны в н/м |
Частота колебаний в секунду |
---|---|---|
Красный | 800-650 mμ | 400-470 млрд. |
Оранжевый | 640-590 mμ | 470-520 млрд. |
Жёлтый | 580-550 mμ | 520-590 млрд. |
Зелёный | 530-490 mμ | 590-650 млрд. |
Голубой | 480-460 mμ | 650-700 млрд. |
Синий | 450-440 mμ | 700-760 млрд. |
Фиолетовый | 430-390 mμ | 760-800 млрд. |
Отношение частот красного и фиолетового цвета приблизительно равно 1:2, то есть такое же как в музыкальной октаве.
Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом. Каким образом он распознает эти волны до настоящего времени еще полностью неизвестно. Мы только знаем, что различные цвета возникают в результате количественных различий светочувствительности.
Остается исследовать важный вопрос о корпусном цвете предметов. Если мы, например, поставим фильтр, пропускающий красный цвет, и фильтр, пропускающий зеленый, перед дуговой лампой, то оба фильтра вместе дадут черный цвет или темноту. Красный цвет поглощает все лучи спектра, кроме лучей в том интервале, который отвечает красному цвету, а зеленый фильтр задерживает все цвета, кроме зеленого. Таким образом, не пропускается ни один луч, и мы получаем темноту. Поглощаемые в физическом эксперименте цвета называются также вычитаемыми.
Цвет предметов возникает, главным образом, в процессе поглощения волн. Красный сосуд выглядит красным потому, что он поглощает все остальные цвета светового луча и отражает только красный.
Когда мы говорим: «эта чашка красная», то мы на самом деле имеем в виду, что молекулярный состав поверхности чашки таков, что он поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создается при ее освещении.
Если красная бумага (поверхность, поглощающая все лучи кроме красного) освещается зеленым светом, то бумага покажется нам черной, потому что зеленый цвет не содержит лучей, отвечающих красному цвету, которые могли быть отражены нашей бумагой.
Все живописные краски являются пигментными или вещественными. Это впитывающие (поглощающие) краски, и при их смешивании следует руководствоваться правилами вычитания. Когда дополнительные краски или комбинации, содержащие три основных цвета — желтый, красный и синий, — смешиваются в определенной пропорции, то результатом будет черный, в то время как аналогичная смесь невещественных цветов, полученных в ньютоновском эксперименте с призмой, дает в результате белый цвет, поскольку здесь объединение цветов базируется на принципе сложения, а не вычитания.
ПОЧЕМУ МИР РАЗНОЦВЕТНЫЙ
Представьте, что вы стоите на залитом солнцем лугу. Сколько вокруг ярких красок: зелёная трава, жёлтые одуванчики, красная земляника, сиренево-синие колокольчики! Но мир ярок и красочен только днём, в сумерках все предметы становятся одинаково серыми, а ночью и вовсе невидимыми. Именно свет позволяет увидеть окружающий мир во всём его разноцветном великолепии.
Главный источник света на Земле — Солнце, громадный раскалённый шар, в глубинах которого непрерывно идут ядерные реакции. Часть энергии этих реакций Солнце посылает нам в виде света.
Что же такое свет? Учёные спорили об этом на протяжении столетий. Одни считали, что свет — поток частиц. Другие проводили опыты, из которых с очевидностью следовало: свет ведёт себя как волна. Правы оказались и те и другие. Свет — это электромагнитное излучение, которое можно представить как бегущую волну. Волна создаётся колебаниями электрического и магнитного полей. Чем выше частота колебаний, тем большую энергию несёт излучение. И в то же время излучение можно рассматривать как поток частиц — фотонов. Пока нам важнее, что свет — это волна, хотя в конце концов придётся вспомнить и о фотонах.
Человеческий глаз (к сожалению, а может быть, и к счастью) способен воспринимать электромагнитное излучение только в очень узком диапазоне длин волн, от 380 до 740 нанометров. Этот видимый свет излучает фотосфера — относительно тонкая (менее 300км толщиной) оболочка Солнца. Если разложить «белый» солнечный свет по длинам волн, получится видимый спектр — хорошо известная всем радуга, в которой волны разной длины воспринимаются нами как разные цвета: от красного (620—740 нм) до фиолетового (380—450 нм). Излучение с длиной волны больше 740 нм (инфракрасный) и меньше 380—400 нм (ультрафиолетовый) для человеческого глаза невидимо. В сетчатке глаза есть специальные клетки — рецепторы, отвечающие за восприятие цвета. Они имеют коническую форму, поэтому их называют колбочками. У человека три типа колбочек: одни лучше всего воспринимают свет в сине-фиолетовой области, другие — в жёлто-зелёной, третьи — в красной.
Что же определяет цвет окружающих нас вещей? Для того чтобы наш глаз увидел какой-либо предмет, нужно, чтобы свет сначала попал на этот предмет, а уже затем на сетчатку. Мы видим предметы, потому что они отражают свет, и этот отражённый свет, пройдя через зрачок и хрусталик, попадает на сетчатку. Свет, поглощённый предметом, глаз, естественно, увидеть не может. Сажа, например, поглощает почти всё излучение и кажется нам чёрной. Снег, напротив, равномерно отражает почти весь падающий на него свет и потому выглядит белым. А что будет, если солнечный свет упадёт на выкрашенную синей краской стену? От неё отразятся только синие лучи, а остальные будут поглощены. Поэтому мы и воспринимаем цвет стены как синий, ведь у поглощённых лучей просто нет шанса попасть на сетчатку глаза.
Разные предметы, в зависимости от того, из какого вещества они сделаны (или какой краской покрашены), поглощают свет по-разному. Когда мы говорим: «Мячик красный», то имеем в виду, что отражённый от его поверхности свет воздействует только на те рецепторы сетчатки глаза, которые чувствительны к красному цвету. А это значит, что краска на поверхности мячика поглощает все световые лучи, кроме красных. Предмет сам по себе не имеет никакого цвета, цвет возникает при отражении от него электромагнитных волн видимого диапазона. Если вас попросили отгадать, какого цвета бумажка лежит в запечатанном чёрном конверте, вы нисколько не погрешите против истины, если ответите: «Никакого!». И если красную поверхность осветить зелёным светом, то она покажется чёрной, потому что зелёный свет не содержит лучей, отвечающих красному цвету. Чаще всего вещество поглощает излучение в разных частях видимого спектра. Молекула хлорофилла, например, поглощает свет в красной и голубой области, а отражённые волны дают зелёный цвет. Благодаря этому мы можем любоваться зеленью лесов и трав.
Почему одни вещества поглощают зелёный свет, а другие — красный? Это определяется структурой молекул, из которых вещество состоит. Взаимодействие вещества со световым излучением происходит таким образом, что за один приём одна молекула «заглатывает» только одну порцию излучения, иначе говоря, один квант света или фотон (вот нам и пригодилось представление о свете как о потоке частиц!). Энергия фотона напрямую связана с частотой излучения (чем выше энергия — тем больше частота). Поглотив фотон, молекула переходит на более высокий энергетический уровень. Энергия молекулы повышается не плавно, а скачком. Поэтому молекула поглощает не любые электромагнитные волны, а только те, которые подходят ей по величине «порции».
Вот и получается, что ни один предмет не окрашен сам по себе. Цвет возникает из выборочного поглощения веществом видимого света. А поскольку способных к поглощению веществ — и природных, и созданных химиками — в нашем мире великое множество, мир под Солнцем расцвечен яркими красками.
Частота колебаний ν, длина волны света λ и скорость света c связаны между собой простой формулой:
Cкорость света в вакууме постоянна (300млнм/с).
Длину волны света принято измерять в нанометрах.
1 нанометр (нм) — единица измерения длины, равная одной миллиардной доле метра (10 -9 м).
В одном миллиметре содержится миллион нанометров.
Частоту колебаний измеряют в герцах (Гц). 1 Гц — это одно колебание в секунду.
Научный форум dxdy
Почему белый цвет больше отражает, чем поглощает
На страницу 1 , 2 След. |
Почему белый цвет больше отражает, чем поглощает
06.06.2020, 11:33
Здравствуйте! Помогите, пожалуйста, разобраться — почему белый цвет больше отражает, чем поглощает, но чёрный цвет наоборот больше поглощает, чем отражает ? Почему в жарких странах люди, в основном, ходят в белых одеяниях Видимо что было не так жарко, Как это объяснить
Re: Почему белый цвет больше отражает, чем поглощает
06.06.2020, 11:47
Вопрос, IMHO, для гуманитарного раздела (а не для ПРР(Ф), и у же тем более ПРР(М)).
Бывают поверхности, которые (сильно) больше отражают, чем поглощают, при этом коэффициент отражения слабо зависит от длины волны. Про такие поверхности принято говорить, что они белого цвета .
Бывают поверхности, которые (сильно) больше поглощают, чем отражают, при этом коэффициент отражения слабо зависит от длины волны. Про такие поверхности принято говорить, что они черного цвета .
Re: Почему белый цвет больше отражает, чем поглощает
06.06.2020, 11:56
Последний раз редактировалось unlcle-benc 06.06.2020, 12:00, всего редактировалось 1 раз.
Спасибо большое. Извините за корявое текст Дело в том что у меня сломалась клавиатуры с помощью голосового помощника набираю текст
Давайте рассмотрим белую машину и чёрную машину одинаковые марки отличается только цвет. Правильно ли я понимаю что белая Машина будет больше отражать будет меньше нагревается на солнце чем черная. Если да то почему? это всё будет связано с материалом краски или нет? Хорошо давайте будем называть поверхности которые хорошо отражают белыми которые плохо отражает чёрными: вопрос почему именно так визуально выглядит белый цвет чёрный тоже соответствующим образом Как так получается
Вот давайте рассмотрим две майки белые и чёрные а будут они отличаются только цветом если мы выйдем на солнце будет реально по ощущениям казаться теплее в майки чёрные чем в беЛой это будет реально по ощущениям Понятно или это различия несущественны
Re: Почему белый цвет больше отражает, чем поглощает
06.06.2020, 12:18
unlcle-benc в сообщении #1467311 писал(а):
Извините за корявое текст Дело в том что у меня сломалась клавиатуры с помощью голосового помощника набираю текст
Подозреваю, что модераторы снесут тему в Карантин для починки клавиатуры и исправления других замечаний.
Но попытаюсь ответить.
Летел себе фотон, а потом поглотился майкой. Что стало с энергией фотона? Она же не пропала в никуда.
Энергия фотона пошла на нагрев майки, температура её повысилась.
Потом прилетел еще фотон, еще и еще. Но температура майки не может расти бесконечно. Дело в том, что майка (так как у нее температура не нулевая) сама излучает фотоны. Для тел в нормальных условиях (температура около 20 градусов Цельсия) пик излучения лежит в инфракрасной области, и мы его (излучение) не видим глазами.
И так, в какой-то момент времени, установится равновесная температура — сколько энергии пришло со светом, столько же и излучилось (но уже в инфракрасном диапазоне). Понятно, что чем больше энергии пришло со светом, тем больше больше будет равновесная температура.
Вывод: да, черная майка нагревается на солнце больше, чем белая, и сильно больше.
Но этот вывод справедлив для «сферических маек в вакууме», так как в атмосфере кроме излучения тепловая энергия может уноситься и конвекцией (потоками воздуха), поэтому равновесная температура черной майки будет существенно меньше, чем посчитанная только по балансу излучения. Но все таки несколько выше, чем белой.
Белее белого: стены, отражающие до 98% солнечного света
Холодными зимними днями, когда муконазальный секрет превращается в сосульки, многие из нас мечтают, чтоб лето наступило быстрее. Но, когда лето неминуемо наступает, и жара раскаляет асфальт, машины и людей, наши желания меняются в противоположную сторону. Спасаться от жары можно разными методами: тень, чай, купание в водоеме, переезд на Северный полюс и т.д. Но самый распространенный и самый технологичный метод это кондиционеры. Проблема в том, что эти устройства потребляют немало энергии и сопутствуют выделению углекислого газа в атмосферу. Ученые из Калифорнийского университета (США) решили разработать новый метод охлаждения помещений, в котором нет нужды в кондиционерах, а всю работу выполняет определенная краска, нанесенная на внешние стены помещения. Какие физические законы эксплуатирует данная разработка, как именно она сопутствует охлаждению, и насколько эффективна охлаждающая краска? Об этом мы узнаем из доклада ученых. Поехали.
Основа исследования
Одним из самых широко известных физических явлений является способность разных материалов по-разному взаимодействовать с электромагнитными излучениями. Все мы знаем, что в солнечный день лучше надеть белую футболку, нежели черную, ибо белые поверхности лучше отражают солнечный свет, чем черные. За этим известным фактом стоит сразу несколько физических явлений (поглощение, отражательная способность и т.д.).
Эти процессы происходят и со зданиями. Большинство современных белых красок способны отражать до 85% солнечного излучения. Однако этот показатель можно улучшить, по словам ученых, реализовав достаточно простые модификации химического состава краски.
В рассматриваемом нами сегодня исследовании ученые предложили так называемый метод пассивного дневного радиационного (излучательного) охлаждения (PDRC от passive daytime radiative cooling), который включает в себя отражение солнечного света (длина волны l = 0.3–2.5 мкм) и излучение длинноволнового инфракрасного (LWIR; l = 8–13 мкм) тепла через соответствующие окна атмосферной передачи в космическое пространство (1А).
Изображение №1
Когда поверхность под открытым небом имеет достаточно высокий коэффициент отражения солнечного света (Rsolar) и коэффициент излучения LWIR (ϵLWIR), солнечное нагревание перевешивается радиационными потерями тепла в космическое пространство, поэтому поверхность самопроизвольно охлаждается даже при сильном солнечном освещении. Если данные принципы реализовать в виде краски, которой будут покрыты наружные стены и крыши зданий, то эффективность охлаждения будет намного лучше, чем от классических кондиционеров (не говоря уже о снижении негативного воздействия на экологию).
Использование отражения света в качестве основы для охлаждения изучается уже достаточно давно. Еще в 1960-ых годах ученые рассматривали охлаждающие свойства полимеров, диэлектриков и полимерных композитов. Позднее интерес к такого рода исследованиям снизился, однако в последние годы, когда вопросы энергоэффективности и экологической безопасности стали одними из важнейших, исследования начались заново. В новых разработках большое внимание уделялось фотонным и полимерным охладителям.
Например, фотонные многослойные пленки, которые могут обеспечивать высокий Rsolar и селективный LWIR, достигают температур ниже температуры окружающей среды, что делает их полезными для систем HVAC с водяным охлаждением, холодильников и термоэлектрических устройств. Однако, несмотря на хорошие показатели, данная методика не может стать массовой, ввиду своей сложности и дороговизны. Следовательно, применение определенных покрасочных материалов для охлаждения помещений является самым перспективным направлением в этой области. Тем не менее для полноценной реализации «краски-охладителя» необходимо учитывать несколько важных факторов и переменных.
Результаты исследования
С физической точки зрения требования к ограждающим конструкциям PDRC четко определены (1B): высокий Rsolar для минимизации солнечного нагрева и высокий LWIR для максимизации радиационных потерь тепла в космос.
Авторы сего труда отмечают, что в литературе по радиационному охлаждению подчеркивается необходимость селективного излучения LWIR для максимизации охлаждения, однако это необходимо только для достижения оптимальных характеристик при температурах, существенно ниже температуры окружающей среды. В реальности же экстерьер зданий имеет температуру, близкую или превышающую температуру окружающей среды, из-за их контакта с воздухом и тепловыделения внутри помещений. Следовательно, широкополосный тепловой эмиттанс* є (в диапазоне l 2.5–40 мкм), составляющий длины волн LWIR, может быть столь же эффективным при охлаждении, что и селективный эмиттанс LWIR (1A и 2B).
Изображение №2
Тепловой эмиттанс* (тепловая испускательная способность) — отношение излучаемого тепла конкретного объекта или поверхности к излучению стандартного черного тела.
Не стоит забывать и о том, что данная система охлаждения должна соответствовать определенным практическим нормам. Технология PDRC охлаждения должна быть:
- применима на поверхностях с различными формами, размерами и текстурами;
- устойчива к химическим веществам окружающей среды, солнечному излучению и погоде;
- экономична и доступна в различных социально-экономических условия.
Морфологически краски представляют собой композиты, содержащие оптические рассеиватели, обычно диэлектрические пигменты, встроенные в полимер. Типичная белая краска содержит пигменты TiO2, диспергированные в акриле или силиконе в массовом соотношении 1: 1, с дополнительными компонентами, такими как SiO2 и CaCO3. Эти изначально излучающие материалы придают краскам почти единичный, широкополосный є 0.95.
Однако Rsolar красок ниже, чем у конструкций PDRC на основе серебра (0.92–0.97), так как промышленность предпочла использовать именно рутиловый TiO2 в качестве белого пигмента. Высокий показатель преломления наночастиц TiO2 (n > 2.5) относительно показателя полимерных связующих (n = 1.5) позволяет им рассеивать солнечный свет более эффективно, чем такое же количество других белых пигментов, что делает TiO2 экономически эффективным.
Тем не менее, благодаря ширине запрещенной зоны 3.0 эВ (l = 0.413 мкм), TiO2 по своей природе поглощает ультрафиолетовый (0.3–0.4 мкм) и фиолетовый* (0.4–0.41 мкм) свет, которые несут 7% солнечной энергии (2А).
Фиолетовый свет* находится на верхнем конце видимого спектра, с длиной волны ~ 380-450 нм. Свет с более короткой длиной волны, чем фиолетовый, но длиннее, чем рентгеновские и гамма-лучи, называется ультрафиолетовым.
Это ограничивает Rsolar до < 0.95 (2B). Ранее проведенные исследования позволили оптимизировать размер частиц TiO2 для улучшения рассеяния и приближения к этому пределу. Однако поглощение солнечного света в ближней инфракрасной области (NIR, l 0.7–2.5 мкм) полимерными связующими (2А) и неоднородность отражения на других длинах волн означают, что даже при оптимизации Rsolar имеет реалистичный предел в 0.92 и составляет < 0.86 для лучших на рынке красок на основе TiO2 (2В).
Эти показатели описывают мировой стандарт «охлаждающего покрытия» для экстерьера зданий, и позволяют крышам и стенам с таким покрытием быть значительно холоднее, чем без покрытия. Но они не могут обеспечить охлаждение в условиях окружающей среды при сильном солнечном освещении (1С).
Повышение Rsolar, однако, может превратить краски в радиационные охладители, которые непрерывно отдают тепло в атмосферу независимо от времени суток, и, следовательно, снижают охлаждающую нагрузку на здания (1C).
Повысить Rsolar белых красок вполне реально за счет материальных изменений. Поскольку краски являются оптически неоднородными рассеивающими средами, удаление любых источников поглощения усиливает Rsolar. Есть два способа достичь этого:
- заменить TiO2 на УФ-неабсорбирующие пигменты;
- использовать полимерные связующие с низким показателем преломления с низкой УФ- и ИК-абсорбцией.
Более новым, недавно исследованным вариантом является использование микроскопических воздушных пустот в качестве «пигментов» для рассеивания солнечного света. В этом случае эмиттанс є возникает исключительно от самого пористого полимера.
Второй способ может быть достигнут за счет использования фторполимеров, таких как P(VdF-HFP) или коммерчески доступных водных P(VdF) вариантов. По сравнению с акриловым или силиконовым, фторполимеры имеют меньше связей C-H или O-H, которые поглощают солнечный свет при l = 1.2, 1.4, 1.7 и 2.3 мкм, и больше связей C-F, которые слабо поглощают свет при 2.1 мкм. Кроме того, фторполимеры поглощают меньше ультрафиолета, чем акрил, еще больше усиливая Rsolar.
Поглощающая способность может быть дополнительно снижена путем уменьшения количества полимера в краске. Наконец, поскольку фторполимеры имеют более низкие показатели преломления (1.38–1.43), чем акрилы (1.495), они усиливают рассеяние на пигментах и, следовательно, показатель Rsolar.
На 2А и 2В показаны результаты, касающиеся коэффициентов отражения белых красок на основе TiO2, стандарта отражения на основе сверхбелого ПТФЭ (Spectralon SRM-99) и посеребренных излучателей.
В отсутствие собственного поглощения УФ-излучения рассеяние на пигментах приводит к высокой отражательной способности УФ-синего. Снижение содержания полимера приводит к аналогичным результатам для длин волн NIR (в ближней инфракрасной области).
Для BaSO4 и P(VdF-HFP) лакокрасочных покрытий Rsolar достигает 0.98, а для покрытий на основе Al2O3 и PTFE — более 0.94 (2C).
Как показали вышеописанные расчеты, слегка измененные краски действительно обладают большим потенциалом в области радиационного охлаждения экстерьера зданий, однако существует ряд проблем и сложностей.
Изображение №3
Ученые выделяют пять основных проблем, которые могут возникнуть в ходе полноценной разработки PDRC, а также предлагают методы их решения.
Проблема I: максимизация Rsolar и WLWIR с минимальным использованием материала. Затраты остаются главной проблемой для любой технологии радиационного охлаждения, включая краски, где более высокие материальные затраты могут стать препятствием.
Решение проблемы достижения высоких значений LWIR кроется в использовании собственных эмиссионных пигментов с определенными размерами в микромасштабе или нанесения красок на излучающие субстраты. А вот высокий Rsolar может быть достигнут путем включения воздушных пустот в краски для увеличения оптического рассеяния. Другой возможностью являются двухслойные системы, в которых реализуется более мелкое проникновение солнечных лучей при более коротких длинах волн. Тонкий слой УФ-отражающей краски (2А) может быть нанесен на пленку TiO2 краски, обеспечивая высокую эффективность рассеяния пигментов TiO2 при отражении ультрафиолетового света.
Проблема II: долговечность и устойчивость к загрязнению. Многие белые краски со временем испытывают падение отражательной способности солнечных лучей. Такие материалы, как фторполимерные связующие, могут увеличить срок службы отражательной способности и, следовательно, снизить среднегодовые затраты. Загрязнение также представляет собой проблему для всех технологий PDRC, так как снижает солнечную отражательную способность. Следовательно, системы, устойчивые к загрязнению, такие как гидрофобные, стойкие к биологическому обрастанию покрытия, которые могут выдерживать физическую очистку, могут поддерживать эффективность охлаждения и увеличивать срок службы.
Проблема III: блики. Хотя отражение от белых красок рассеянное и менее интенсивное, чем от серебристых, оно может негативно влиять на зрение и нагревать темные объекты, расположенные в области отражения света от белой краски. Решить эту проблему можно посредством ретрорефлекторных* сфер, однако предстоит изучить их влияние на показатели Rsolar и ϵLWIR.
Ретрорефлектор* — устройство для отражения лучей света обратно в сторону источника с минимальным рассеиванием.
Проблема IV: эстетика. Белые краски это хорошо, но вряд ли будет эстетично, если все здания в городе будут одного цвета. Чтобы сохранить необходимый уровень Rsolar и ϵLWIR, при этом разнообразив палитру цветов, можно использовать флуоресцентные пигменты, которые преобразуют поглощенный свет в видимом диапазоне в излучение в ближней инфракрасной области.
Проблема V: экология. Полноценная PDRC система может снизить негативное воздействие на окружающую среду, однако использованные в системе краски должны быть экологически чистыми, что не всегда истинно. Следовательно, необходимо заменить те опасные составляющие на экологически безопасные (например, варианты на базе фторполимера на водной основе), что может дополнительно повысить долговечность краски.
Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.
Эпилог
Человеческая натура такова, что мы всегда рады сэкономить. Однако экономия порой приводит к определенным печальным последствиям, о которых мы часто и не задумываемся в нужный момент. С одной стороны — использование кондиционеров это просто, быстро, эффективно и не так уж и дорого. С другой стороны — это влияет на экологию, что в долгосрочной перспективе выльется в дополнительные расходы на «разгребание» последствий.
Предложенная в данном труде технология охлаждения учитывает как наше желание сэкономить, так и экологические ограничения. Реализация незначительных изменений состава лакокрасочных материалов позволяет увеличить их отражательную способность с 0.85 до 0.98. Поскольку солнечный свет не будет поглощаться поверхностью экстерьера зданий, они не будут так нагреваться, следовательно, использование кондиционеров (и других классических методов охлаждения) можно будет сократить. Во-первых, это выгодно, а во-вторых, это не так влияет на окружающую среду.
Конечно, остается ряд проблем, которые нуждаются в решении, о чем честно признаются сами авторы сего труда. Экономическая, экологическая и даже эстетическая составляющие будут рассматриваться более детально в последующих исследованиях. В данном же ученые высказали теорию и описали концепцию, которая, к слову, выглядит крайне привлекательно и перспективно, несмотря на ранний этап разработки.
Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂
Немного рекламы
Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).
Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 — 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
- краска
- солнечный свет
- тепло
- экология
- энергосбережение
- энергопотребление
- энергоэффективность
- кондиционер
- охлаждение
- Блог компании ua-hosting.company
- Научно-популярное
- Физика
- Химия
- Экология