Оптический прибор который может давать увеличенное изображение
Перейти к содержимому

Оптический прибор который может давать увеличенное изображение

  • автор:

Оптический прибор который может давать увеличенное изображение

Для невооруженного глаза наименьший угол зрения приблизительно равен 1′. Этот угол определяется мозаичным строением сетчатки, а также волновыми свойствами света (см. § 3.9). Существует ряд приборов, предназначенных для увеличения угла зрения – лупа, микроскоп, зрительная труба. При визуальных наблюдениях глаз является неотъемлемой частью оптической системы, поэтому ход лучей в приборах, вооружающих глаз, зависит от аккомодации глаза (см. § 3.4). При анализе работы оптических приборов для визуальных наблюдений удобнее всего полагать, что глаз наблюдателя аккомодирован на бесконечность . Это означает, что лучи от каждой точки предмета, пройдя через прибор, попадают в глаз в виде параллельного пучка. В этих условиях понятие линейного увеличения теряет смысл. Отношение угла зрения φ при наблюдении предмета через оптический прибор к углу зрения ψ при наблюдении невооруженным глазом называется угловым увеличением :

Угловое увеличение является важной характеристикой оптических приборов для визуальных наблюдений.

Следует отметить, что в некоторых учебниках полагается, что глаз наблюдателя аккомодирован на расстояние наилучшего зрения нормального глаза . В этом случае ход лучей в приборах несколько усложняется, но угловое увеличение прибора приближенно остается таким же, как и при аккомодации на бесконечность.

Лупа . Простейшим прибором для визуальных наблюдений является лупа. Лупой называют собирающую линзу с малым фокусным расстоянием (). Лупу располагают близко к глазу, а рассматриваемый предмет – в ее фокальной плоскости. Предмет виден через лупу под углом

где – размер предмета. При рассматривании этого же предмета невооруженным глазом его следует расположить на расстоянии наилучшего зрения нормального глаза. Предмет будет виден под углом

Отсюда следует, что угловое увеличение лупы равно

Линза с фокусным расстоянием 10 см дает увеличение в 2,5 раза. Работу лупы иллюстрирует рис. 3.5.1.

Рисунок 3.5.1.

Действие лупы: а рассматривается невооруженным глазом с расстояния наилучшего зрения ; б рассматривается через лупу с фокусным расстоянием

Микроскоп . Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива и окуляра (рис. 3.5.2). Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы. Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от любой точки предмета распространяются после окуляра параллельным пучком.

Рисунок 3.5.2.

Ход лучей в микроскопе

Мнимое изображение предмета, рассматриваемое через окуляр, всегда перевернуто. Если же это оказывается неудобным (например, при прочтении мелкого шрифта), можно перевернуть сам предмет перед объективом. Поэтому угловое увеличение микроскопа принято считать положительной величиной.

Как следует из рис. 3.5.2, угол зрения φ предмета, рассматриваемого через окуляр в приближении малых углов,

Приближенно можно положить и , где – расстояние между объективом и окуляром микроскопа («длина тубуса»). При рассматривании того же предмета невооруженным глазом

В результате формула для углового увеличения γ микроскопа приобретает вид

Хороший микроскоп может давать увеличение в несколько сотен раз. При больших увеличениях начинают проявляться дифракционные явления (см. § 3.8).

У реальных микроскопов объектив и окуляр представляют собой сложные оптические системы, в которых устранены различные аберрации.

Телескоп . Телескопы ( зрительные трубы ) предназначены для наблюдения удаленных объектов. Они состоят из двух линз – обращенной к предмету собирающей линзы с большим фокусным расстоянием (объектив) и линзы с малым фокусным расстоянием (окуляр), обращенной к наблюдателю. Зрительные трубы бывают двух типов:

  • Зрительная труба Кеплера , предназначенная для астрономических наблюдений. Одна дает увеличенные перевернутые изображения удаленных предметов и поэтому неудобна для земных наблюдений.
  • Зрительная труба Галилея , предназначенная для земных наблюдений, дающая увеличенные прямые изображения. Окуляром в трубе Галилея служит рассеивающая линза.

На рис. 3.5.3 изображен ход лучей в астрономическом телескопе. Предполагается, что глаз наблюдателя аккомодирован на бесконечность, поэтому лучи от любой точки удаленного предмета выходят из окуляра в виде параллельного пучка. Такой ход лучей называется телескопическим . В астрономической трубе телескопический ход лучей достигается при условии, что расстояние между объективом и окуляром равно сумме их фокусных расстояний .

Зрительная труба (телескоп) принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя. Если удаленный предмет виден невооруженным глазом под углом ψ, а при наблюдении через телескоп под углом φ, то угловым увеличением называют отношение

Угловому увеличению γ, как и линейному увеличению Γ, можно приписать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Угловое увеличение астрономической трубы Кеплера отрицательно, а земной трубы Галилея положительно.

Угловое увеличение зрительных труб выражается через фокусные расстояния:

Рисунок 3.5.3.

Телескопический ход лучей

В качестве объективов в больших астрономических телескопах применяются не линзы, а сферические зеркала. Такие телескопы называются рефлекторами . Хорошее зеркало проще изготовить, кроме того, зеркала, в отличие от линз, не обладают хроматической аберрацией.

У нас в стране построен самый большой в мире телескоп с диаметром зеркала 6 м. Следует иметь в виду, что большие астрономические телескопы предназначены не только для того, чтобы увеличивать угловые расстояния между наблюдаемыми космическими объектами, но и для увеличения потока световой энергии от слабосветящихся объектов.

Оптические приборы

Лупа. Так называется двояковыпуклая линза, вставленная в оправу с ручкой. Лупу всегда располагают так, чтобы предмет отстоял от нее не дальше фокуса. Именно тогда лупа даст прямое и увеличенное изображение предмета. Лупа – самый древний оптический прибор.

Лучи, испущенные предметом и прошедшие через лупу, становятся расходящимися (рассмотрите направление хода красных или синих лучей). Поэтому лупа не может давать действительных изображений, например, на стене или экране. А мнимое изображение предмета в лупе может видеть лишь один человек, что не всегда удобно.

Проектор. Этот прибор предназначен для получения действительных увеличенных изображений предметов. То есть таких изображений, которые можно спроектировать на экран и, тем самым, сделать видимыми многим людям одновременно.

Схему проектора вы видите на чертеже. Свет лампы 1 при помощи вогнутого зеркала 2 направляется на слайд 3. Он расположен между фокусом и двойным фокусом линзы 4. В результате этого на экране 5 получается увеличенное действительное изображение слайда. Обратите внимание, что изображение слайда является перевернутым. Поэтому слайды в проектор всегда вставляют «вверх ногами».

Глаз. Орган зрения высших животных, в том числе и человека, является сложным оптическим прибором. Основные его части: 1 – склера (плотная оболочка глаза), 2 – роговица (передняя более выпуклая прозрачная часть склеры), 3 – радужная оболочка, 4 – хрусталлик, 5 – мышца, 6 – сетчатка (пронизанная нервными рецепторами внутренняя поверхность склеры), 7 – зрительный нерв.

Свет от рассматриваемого предмета, проходя в глаз, попадает на хрусталлик. Поскольку он является собирающей линзой, то на сетчатке глаза образуется изображение предмета. Светлые и темные части, из которых оно состоит, по-разному воздействуют на нервные рецепторы, пронизывающие сетчатку глаза. Эти воздействия по зрительному нерву попадают в головной мозг человека и воспринимаются им. Так протекает процесс зрения.

Одним из замечательных свойств хрусталлика является его упругость. Если окружающие его мышцы напрягаются, то хрусталлик растягивается и становится тоньше. Его преломляющая способность уменьшается, и мы можем четко видеть более удаленные предметы.

Очки. Этот оптический прибор предназначен для исправления таких дефектов зрения как дальнозоркость, близорукость и астигматизм. Рассмотрим это на примере близорукости. Такой глаз хорошо видит только близкие предметы. Их четкие изображения получаются именно на сетчатке глаза (верхний чертеж). Если же предмет удален, то его четкое изображение получается позади сетчатки, а на ней – нечеткое изображение (средний чертеж).

Поместим перед глазом рассеивающую линзу (нижний чертеж). Она сделает пучок лучей от предмета более расходящимся, чем прежде. В результате он станет похож на тот пучок, который попадал в глаз на верхнем чертеже. Следовательно, четкое изображение рассматриваемого предмета (красной точки) вновь окажется на сетчатке глаза. Таким образом очки с рассеивающими линзами помогают близоруким людям четче видеть удаленные предметы.

Опубликовано в разделах: 8 класс, Световые явления

Еще статьи в этой категории:
  • Цвета тел
  • Разложение света в спектр
  • Изображения в линзах
  • Линзы
  • Закон преломления света
  • Преломление света
  • Сферическое зеркало
  • Плоское зеркало

Оптические приборы. Фотоаппарат.

Оптические приборы, представляющие собой совокупность нескольких призм или линз, нескольких зеркал или одновременно линз, призм и зеркал, предназначены для преобразования световых пучков. С их помощью могут изменяться направления хода световых лучей, или телесные углы, в пределах которых распространяются световые пучки. Последнее обстоятельство связано с получением изображений, размеры которых отличаются от размеров предметов.

Первое, на что нужно обращать внимание при анализе действия оптической системы, — это назначение и реальные условия ее работы. Где может располагаться предмет перед системой? Какое изображение (увеличенное, уменьшенное, обратное или прямое) должна давать система? С помощью чего регистрируется полученное изображение (на экране, фотопленке, рассматривается невооруженным глазом или глазом через какую-нибудь линзовую систему)?

Все оптические приборы можно разделить на две группы:

1) приборы, при помощи которых получают оптические изображения на экране. К ним относятся проекционные аппараты , фотоаппараты , киноаппараты и др.

2) приборы, которые действуют только совместно с человеческими глазами и не образуют изображений на экране. К ним относится лупа , микроскоп и различные приборы системы телескопов . Такие приборы называются визуальны ми.

Фотоаппаратом называется оптико-механический прибор, предназначенный для получения на фотопленке или фотопластинке изображения фотографируемого предмета.

Фотография была изобретена в 30–х годах XIX века и прошла долгий путь развития. Современная фотография, ставшая малоформатной, моментальной, цветной, стереоскопической, нашла широчайшее применение во всех областях нашей жизни. Велика её роль в исследовании природы. Фотография позволяет рассматривать различные объекты (от микроскопических до космических), невидимые излучения и т.д. Всем известное значение художественной фотографии, детищем которой является кино.

Основными частями фотоаппарата являются непрозрачная камера и система линз, называемая объективом. Простейший объектив представляет собой одну собирающую линзу. Объектив создаёт вблизи задней стенки камеры действительное перевёрнутое изображение фотографируемого предмета. В большинстве случаев предмет находится на расстоянии, большем двойного фокусного, поэтому изображение получается уменьшенным. В том месте, где получается изображение, помещается фотоплёнка или фотопластинка, покрытая слоем светочувствительного вещества – фотоэмульсией.

http://www.physbook.ru/images/thumb/d/d9/Aksen-16.48.jpg/250px-Aksen-16.48.jpg

схема хода лучей в фотоаппарате

ход лучей в фотоаппарате

Фотографируемые предметы могут находиться на разных расстояниях от аппарата, следовательно, расстояние между объективом и плёнкой также необходимо изменять, что осуществляется обычно перемещением объектива.

Световая энергия, попадающая на светочувствительный слой, дозируется фотографическим затвором, который даёт доступ свету лишь на определённое время – время экспозиции. Время экспозиции зависит от чувствительности фотоэмульсии и от освещённости плёнки, которая зависит, в частности, от диаметра объектива. Диаметр действующей части объектива можно менять с помощью диафрагмы и этим регулировать освещённость фотоплёнки. Уменьшая отверстие диафрагмы, можно добиться того, что изображение предметов, находящихся на различных расстояниях от аппарата, будут достаточно чёткими. Возрастёт, как говорят, глубина резкости.

Диафрагма регулирует световой поток, который попадает на пленку. Фотоаппарат дает уменьшенное, обратное, действительное изображение, которое фиксируется на пленке. Под действием света состав пленки изменяется и изображение запечатлевается на ней. Оно остаётся невидимым до тех пор, пока пленку не опустят в специальный раствор — проявитель. Под действием проявителя темнеют те места пленки, на которые падал свет. Чем больше было освещено какое-нибудь место пленки, тем темнее оно будет после проявления. Полученное изображение называется негативом (от лат. negativus — отрицательный), на нем светлые места предмета выходят темными, а темные светлыми.

Чтобы это изображение под действием света не изменялось, проявленную пленку погружают в другой раствор — закрепитель. В нем растворяется и вымывается светочувствительный слой тех участков пленки, на которые не подействовал свет. Затем пленку промывают и сушат.

С негатива получают позитив (от лат. pozitivus — положительный), т. е. изображение, на котором темные места расплолжены так же как и на фотографируемом предмете. Для этого негатив прикладывают к бумаге тоже покрытой светочувствительным слоем (к фотобумаге), и освещают. Затем фотобумагу опускают в проявитель, потом в закрепитель, промывают и сушат.

После проявления пленки при печатании фотографий пользуются фотоувеличителем, который увеличивает изображение негатива на фотобумаге.

Проекционный аппарат (проектор) предназначен для получения на экране действительного увеличенного изображения. Следовательно, и здесь объектив представляет собой собирающую линзу, только предмет помещают между F и 2F (F , а изображение получается на расстоянии, большем 2F (f>2F) .

Проекционные аппараты — это хорошо известные фильмоскопы, эпипроекторы, диапроекторы, эпидиаскопы, киноаппараты, кодаскопы и др.

http://www.physbook.ru/images/thumb/1/16/Aksen-16.49.jpg/180px-Aksen-16.49.jpg

Схема оптического устройства диапроектора изображена на рисунке 1, а. Главная часть аппарата — объектив О . Предметом служит прозрачный рисунок или фотоснимок на стеклянной пластинке (или прозрачной пленке) Д . Такую пластинку называют диапозитивом .

Размеры диапозитива обычно больше размеров объектива. Поэтому чтобы направить в объектив весь свет, идущий от диапозитива, применяют конденсор К , который представляет собой короткофокусную систему линз значительного размера. Располагают конденсор так, чтобы свет от него сходился в оптическом центре объектива. В качестве источников света Л используют мощные (300, 500 и 1000 Вт) лампы накаливания (или дуговые лампы) с рефлектором Р , источник света помещен в фокусе рефлектора.

Для проецирования на экран непрозрачных предметов (чертежей, рисунков из книг и др.) используют эпипроектор (рис. 1, б). Предмет освещается сбоку светом, отраженным от вогнутого зеркала, в фокусе которого расположен источник света Л. Отраженный от предмета свет с помощью плоского зеркала З направляется на объектив О .

Аппараты, в которых устройство обыкновенного проекционного аппарата (диаскопа) и эпископа совмещено, называют эпидиаскопами (рис. 1, в).

http://www.physbook.ru/images/thumb/4/46/Aksen-16.50.jpg/850px-Aksen-16.50.jpg

Эпидиаскоп имеет два объектива О и O 1 откидную ширму Ш , отражатель и столик С для непрозрачных предметов. Когда ширма Ш опущена (рис. 1), эпидиаскоп действует как проекционных аппарат.

При поднятии ширмы закрываются конденсатор К и объектив О , и открывается столик С , на котором помещают непрозрачный предмет, освещаемый тем же повернутым источником света Л с рефлектором Р . Свет, отраженный от предмета, падает на зеркало 3 и от него отражается на второй объектив O 1 .

Лупа. Чтобы увидеть мелкие детали предмета, их нужно рассматривать под большим углом зрения, но увеличение этого угла ограничено пределом аккомодационных возможностей глаза. Увеличить угол зрения (сохраняя расстояние наилучшего зрения d 0 ) можно, используя оптические приборы (лупы, микроскопы) .

Лупой называют короткофокусную собирающую линзу или систему линз, действующих как одна собирающая линза (обычно фокусное расстояние лупы не превышает 10 см).

Ход лучей в лупе показан на рисунке. Лупу помещают близко к глазу, а рассматриваемый предмет АВ=А 1 В 1 располагают между лупой и ее передним фокусом, чуть ближе последнего. Подбирают положение лупы между глазом и предметом так, чтобы видеть резкое изображение предмета. Это изображение А 2 В 2 получается мнимым, прямым, увеличенным и находится на расстоянии наилучшего зрения OB 2 = d 0 от глаза, а сам глаз находится непосредственно перед лупой.

http://www.physbook.ru/images/thumb/a/ad/Aksen-16.55.jpg/180px-Aksen-16.55.jpg

Использование лупы приводит к увеличению угла зрения, под которым глаз рассматривает предмет. Действительно, когда предмет находился в положении А 1 В 1 и рассматривался невооруженным глазом, угол зрения был ϕ 1 . Предмет поместили между фокусом и оптическим центром лупы в положение АВ , и угол зрения стал ϕ 2 . Поскольку ϕ 1 > ϕ 2 , то с помощью лупы на предмете можно рассмотреть более мелкие детали, чем невооруженным глазом.

Из рисунке видно также, что линейное увеличение лупы:

LaTeX: \Gamma = \frac<A_2B_2></p>
<p> = \frac. » width=»150″ height=»60″ /></p>
<p><img decoding=

Микроскоп. Для получения больших угловых увеличений (от 20 до 2000) используют оптические микроскопы. Увеличенное изображение мелких предметов в микроскопе получают с помощью оптической системы, которая состоит из объектива и окуляра.

Простейший микроскоп — это система с двух линз: объектива и окуляра. Предмет АВ размещается перед линзой, которая является объективом, на расстоянии F 1 < d < 2F 1 и рассматривается через окуляр, который используется как лупа. Увеличение Г микроскопа равно произведению увеличения объектива Г 1 на увеличение окуляра Г 2 :

Принцип действия микроскопа сводится к последовательному увеличению угла зрения сначала объективом, а затем — окуляром.

Лекция 49. Линзы. Оптические приборы.

Оптические приборыустройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете.

При первичной оценке качества прибора рассматриваются лишь основные его характеристики:

  • светосила — способность концентрировать излучение;
  • разрешающая сила — способность различать соседние детали изображения;
  • увеличение — соотношение размеров предмета и его изображения.
  • Для многих приборов определяющей характеристикой оказывается поле зрения — угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила (способность)характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта.

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения.

Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:

Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.

Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga , где a — угол, под которым наблюдатель видит предмет невооруженным глазом, а b — угол, под которым глаз наблюдателя видит предмет через прибор.

Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.

Линзаоптически прозрачное тело, ограниченное двумя сферическими поверхностями.

Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.

    • выпуклые:
      • двояковыпуклые (1)
      • плосковыпуклые (2)
      • вогнуто-выпуклые (3)
      • вогнутые:
        • двояковогнутые (4)
        • плосковогнутые (5)
        • выпукло-вогнутые (6)

        Основные обозначения в линзе:

        Прямая, проходящая через центры кривизны O1 и O2 сферических поверхностей, называется главной оптической осью линзы.

        В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления.

        Оптический центр линзы – точка, сквозь которую световые лучи проходят не преломляясь в линзе.

        Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.

        Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

        Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые.

        Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F’, которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.

        Фокальная плоскость – прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.

        Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F.

        Преломление параллельного пучка лучей в собирающей линзе.

        Преломление параллельного пучка лучей в рассеивающей линзе.

        Точки O1 и O2 – центры сферических поверхностей, O1O2 – главная оптическая ось, O – оптический центр, F – главный фокус, F’ – побочный фокус, OF’ – побочная оптическая ось, Ф – фокальная плоскость.

        На чертежах тонкие линзы изображают в виде отрезка со стрелками:

        собирающая: рассеивающая:

        Основное свойство линз – способность давать изображения предметов . Изображения бывают прямыми и перевернутыми, действительными и мнимыми, увеличенными и уменьшенными.

        Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:

        Луч, падающий на линзу параллельно оптической оси, после преломления идет через фокус линзы.
        Луч, проходящий через оптический центр линзы не преломляется.
        Луч, проходя через фокус линзы после преломления идет параллельно оптической оси.

        Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

        Величину D, обратную фокусному расстоянию называют оптической силой линзы.

        Единицей измерения оптической силы является диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = м –1

        Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

        Величины d и f также подчиняются определенному правилу знаков:
        d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
        d < 0 и f < 0 – для мнимых источников и изображений.

        Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями. Главные из них – сферическая и хроматическая аберрации.

        Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

        Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

        В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

        Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

        При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик — светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

        Микроскоп, лупа, увеличительное стекло.

        Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом.

        Из оптической схемы можно определить размер увеличенного изображения.

        Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения: M = tgb /tga = (H/f)/(H/v) = v/f, где f — фокусное расстояние линзы, v — расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат.

        Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы.

        Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на схеме), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b. Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы можно получить выражение для видимого увеличения M телескопа: M = -tgb /tga = -F/f’ (или F/f). Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.

        Бинокль.

        Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего — Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45°), ориентированные навстречу прямоугольными гранями.

        Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9°), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, — его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8*40 или 7*50.

        Оптический прицел.

        В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.

        Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм.

        МОНОКУЛЯРНЫЙ ДАЛЬНОМЕР. A — прямоугольная призма; B — пентапризмы; C — линзовые объективы; D — окуляр; E — глаз; P1 и P2 -неподвижные призмы; P3 — подвижная призма; I 1 и I 2 — изображения половин поля зрения

        В схеме монокулярного дальномера, показанной на рисунке, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90°, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.

        Осветительные и проекционные приборы. Прожекторы.

        В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.

        В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране. В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.

        СХЕМА ДИАСКОПА. A — диапозитив; B — линзовый конденсор; C — линзы проекционного объектива; D — экран; S — источник света

        Спектральные приборы.

        Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.

        Спектрометр.

        В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.

        Спектрограф.

        Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.

        Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом. Специальный затвор позволяет открывать объектив на время экспозиции.

        Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

        В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F. Это приводит к увеличению глубины резкости.

        Объектив современной фотокамеры состоит из нескольких линз, объединенных в оптические системы (например, оптическая схема Тессар). Число линз в объективах самых простых фотокамер — от одной до трех, а в современных дорогих фотоаппаратах их бывает до десяти или даже восемнадцати.

        Оптическая схема Тессар

        Оптических систем в объективе может быть от двух до пяти. Практически все оптические схемы устроены и работают одинаково – они фокусируют проходящие через линзы лучи света на светочувствительной матрице.

        Только от объектива зависит качество изображения на снимке, будет ли фотография резкой, не исказятся ли на снимке формы и линии, хорошо ли она передаст цвета — все это зависит от свойств объектива, поэтому объектив и является одним из самых важных элементов современной фотокамеры.

        Линзы объектива делают из специальных сортов оптического стекла или оптической пластмассы. Создание линз одно из самых дорогостоящих операций создания фотокамеры. В сравнении стеклянных и пластмассовых линз стоит отметить, то пластмассовые линзы дешевле и легче. В настоящее время большинство объективов недорогих любительских компактных камер изготавливается из пластмассы. Но, такие объективы подвержены царапинам и не так долговечны, примерно через два-три года они мутнеют, и качество фотографий оставляет желать лучшего. Оптика камер подороже изготавливается из оптического стекла.

        В настоящее время большинство объективов компактных фотокамер изготавливается из пластмассы.

        Между собой линзы объектива склеивают или соединяют при помощи очень точно рассчитанных металлических оправ. Склейку объективов можно встретить намного чаще, нежели металлические оправы.

        Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D) на удаленном экране Э. Система линз K, называемая конденсором, предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *