Проверка целостности и идентификация жил кабельных линий
Xотя она напрямую и не связана с трассировкой, проверку целостности и идентификацию жил кабельных линий можно отнести к родственным операциям — все эти работы выполняются чаще всего при монтаже или ремонте кабельных линий. Да и приборы используются похожие.
Проще всего проверить целостность и идентифицировать жилы кабеля с помощью омметра. Достаточно образовать посредством искомой жилы и дополнительного проводника (еще одной жилы, экрана или внешнего провода) замкнутую цепь и, поочередно замеряя сопротивление всех жил кабеля, найти нужную, чтобы убедиться, что ее сопротивление отвечает ожиданиям. (см. врезку 1)
Однако то же самое удобнее делать с помощью «прозвонки» — омметра, который выдает световой и/или звуковой сигнал при подключении к линии с сопротивлением ниже определенного. «Прозвонка» — один из самых популярных приборов у телефонистов, электриков и инженеров по обслуживанию любого электронного оборудования.
Производимая сегодня широкая гамма таких омметров отличается конструктивным исполнением, набором функций, степенью защиты от внешних токов и напряжений и т. п. К числу наиболее полезных дополнительных возможностей можно отнести следующие:
- встроенный генератор тональных сигналов (для трассировки);
- качественный омметр и/или измеритель емкости (индикация сопротивления и/или емкости тональным сигналом для оценки параметров абонентского шлейфа);
- инверсный обычный, прямой и инверсный триггерный входы (для фиксации размыканий и кратковременных замыканий и размыканий шлейфов охранно-пожарных сигнализаций при срабатывании датчиков во время их проверки);
- зажимы «крокодил» и модульный соединитель для подключения сигнала, встроенный адаптер (для выбора нужных контактов модульного разъема);
- схема питания разговорного тракта (для организации переговоров с помощью двух тестовых трубок);
- индикатор полярности напряжения в абонентском шлейфе;
- индикатор типа подключенного к линии оборудования локальной сети (сетевая карта, порт концентратора или коммутатора).
Современная «прозвонка» становится неизменным спутником перечисленных выше категорий специалистов, a разнообразие исполнений дает возможность подобрать прибор со всеми необходимыми для выполнения работ функциями.
Проще всего идентифицировать жилы кабелей с помощью цветовой маркировки изоляции. Однако такой способ не гарантирует от ошибок (особенно в случае применения российского кабеля ТПП или отсутствия у монтажника достаточного опыта). Чтобы надежно идентифицировать все жилы (например, при сращивании двух отрезков), сигнал нужно подать поочередно на каждую из них на одной стороне и найти пару с таким сигналом на другой. Если речь идет о кабеле с витыми парами, то их следует идентифицировать аналогичным образом (конечно, если они разобраны правильно, без нарушения повива).
Для упрощения именно этой работы большинство «прозвонок» совмещается с генератором тональных сигналов, что при наличии приемника с датчиком-антенной (пробника) позволяет быстро обнаружить на удаленном конце кабеля жилу, к которой на ближнем конце подключен генератор. Двух названных приборов уже достаточно для последовательной идентификации жил многожильного кабеля двумя монтажниками. Один из них на ближнем конце должен подключать генератор поочередно ко всем жилам, а другой на дальнем конце — искать нужную жилу с помощью пробника. Причем первому необходимо иметь возможность фиксировать факт идентификации жилы со стороны второго, после чего сигнал можно подавать на другую жилу.
Для организации такого взаимодействия используются специальные возможности пары генератор-пробник, проводной разговорный тракт или радиосвязь. Если генератор индицирует замыкание цепи, на которую подан сигнал (т. е. работает и как «прозвонка»), то для сигнализации о завершении идентификации жилы цепь достаточно замкнуть металлическим щупом пробника. После получения звукового сигнала монтажник отключает генератор (сигнал на дальней стороне исчезает) и затем подключает его к очередной жиле. Появление слабого сигнала означает, что он подан на следующую жилу, и можно приступить к ее поиску пробником по максимуму значения. (см. врезку 2)
Более широкие возможности предоставляет голосовая связь между монтажниками. Проводной разговорный тракт организуется за счет использования замкнутой цепи, в которую последовательно включаются батарея питания и две микротелефонные гарнитуры или тестовые телефонные трубки.
Некоторые генераторы и пробники имеют встроенные средства для ведения переговоров между монтажниками. Замкнутая цепь разговорного тракта может быть организована, например, по паре жил кабеля или с использованием его экранной оболочки и искомой жилы.
Высокую производительность, наряду с возможностью выполнения работы одним монтажником, обеспечивают специализированные приборы для одновременной идентификации большого количества пар кабеля. Их работа организуется в соответствии с различными принципами, но всегда прибор состоит из удаленного блока (маркера) и считывающего устройства (индикатора). Для обозначения номера пар в маркере могут применяться взвешенные добавочные сопротивления, разночастотные тональные сигналы (например, DTMF), цифровые кодовые последовательности, а также голосовые идентификаторы (речевое сообщение, содержащее номер жилы). В последнем случае в качестве индикатора выступает микротелефонная гарнитура.
На одном из концов кабельной линии несколько жил одновременно подключается к выходам маркера, а на другом — поочередно к индикатору. Если жила связана с маркером, то на дисплее индикатора отображается ее номер. Число идентифицируемых жил за одно подключение маркера зависит от числа выходов маркера и возможности одновременного использования нескольких маркеров (от четырех до 50). Наиболее удобны те модели, где предусмотрена возможность совместной работы с пробником для трассировки линии и быстрого поиска жил, к которым подключен маркер. Это особенно важно в тех случаях, когда работа ведется с телефонными кабелями большой емкости.
В заключение стоит упомянуть и о некоторых малоизвестных, но очень удобных приборах. Прежде всего отметим систему для дистанционного манипулирования удаленным окончанием кабельной линии в процессе проведения измерений. Она состоит из двух блоков, один из них (блок переключения) устанавливается на дальнем конце линии и выполняет команды другого (блока управления). С ее помощью, например, выехавший к абоненту линейный монтер может дистанционно подключать измерительное оборудование к рабочему абонентскому шлейфу на стороне АТС.(см. врезку 3) Причем подключение будет осуществляться только на время измерения, а перебои в сервисе окажутся минимальными.
Еще одна группа устройств — автоматизированные системы верификации абонентских кабельных линий. Это оборудование представляет собой управляемую компьютером систему. Выходы системы подключаются посредством специальных многопарных групповых соединителей к плинтам кросса в распределительных шкафах. На каждом из них поочередно осуществляется занятие линии с набором номера, где установлен станционный комплект АОН. Он фиксирует номер абонента, который осуществил вызов, и передает его в систему. В ходе последовательного опроса система формирует базу данных, где хранится информация о том, какие абоненты обслуживаются указанными парами кабеля конкретного распределительного шкафа. Последовательное подключение системы ко всем кроссам обеспечит полную верификацию базы данных по абонентским кабельным линиям. . На какие только ухищрения не приходится идти с единственной целью — устранить результаты разгильдяйства нерадивых сотрудников.
Проверка целостности и идентификация жил кабельных линий
Проверка целостности и идентификация жил кабельных линий, хотя она напрямую и не связана с трассировкой, можно отнести к родственным операциям — все эти работы выполняются чаще всего при монтаже или ремонте кабельных линий. Да и приборы используются похожие.
Проще всего проверить целостность и идентифицировать жилы кабеля с помощью (мегаомметра). Достаточно образовать посредством искомой жилы и дополнительного проводника (еще одной жилы, экрана или внешнего провода) замкнутую цепь и, поочередно замеряя сопротивление всех жил кабеля, найти нужную, чтобы убедиться, что ее сопротивление отвечает ожиданиям.
Однако то же самое удобнее делать с помощью «прозвонки» — омметра, который выдает световой и/или звуковой сигнал при подключении к линии с сопротивлением ниже определенного. «Прозвонка» — один из самых популярных приборов у телефонистов, электриков и инженеров по обслуживанию любого электронного оборудования.
Производимая сегодня широкая гамма таких омметров отличается конструктивным исполнением, набором функций, степенью защиты от внешних токов и напряжений и т. п. К числу наиболее полезных дополнительных возможностей можно отнести следующие:
- встроенный генератор тональных сигналов (для трассировки);
- качественный омметр и/или измеритель емкости (индикация сопротивления и/или емкости тональным сигналом для оценки параметров абонентского шлейфа);
- инверсный обычный, прямой и инверсный триггерный входы (для фиксации размыканий и кратковременных замыканий и размыканий шлейфов охранно-пожарных сигнализаций при срабатывании датчиков во время их проверки);
- зажимы «крокодил» и модульный соединитель для подключения сигнала, встроенный адаптер (для выбора нужных контактов модульного разъема);
- схема питания разговорного тракта (для организации переговоров с помощью двух тестовых трубок);
- индикатор полярности напряжения в абонентском шлейфе;
- индикатор типа подключенного к линии оборудования локальной сети (сетевая карта, порт концентратора или коммутатора).
Современная «прозвонка» становится неизменным спутником перечисленных выше категорий специалистов, a разнообразие исполнений дает возможность подобрать прибор со всеми необходимыми для выполнения работ функциями.
Проще всего идентифицировать жилы кабелей с помощью цветовой маркировки изоляции. Однако такой способ не гарантирует от ошибок (особенно в случае применения российского кабеля ТПП или отсутствия у монтажника достаточного опыта). Чтобы надежно идентифицировать все жилы (например, при сращивании двух отрезков), сигнал нужно подать поочередно на каждую из них на одной стороне и найти пару с таким сигналом на другой. Если речь идет о кабеле с витыми парами, то их следует идентифицировать аналогичным образом (конечно, если они разобраны правильно, без нарушения повива).
Для упрощения именно этой работы большинство «прозвонок» совмещается с генератором тональных сигналов, что при наличии приемника с датчиком-антенной (пробника) позволяет быстро обнаружить на удаленном конце кабеля жилу, к которой на ближнем конце подключен генератор. Двух названных приборов уже достаточно для последовательной идентификации жил многожильного кабеля двумя монтажниками. Один из них на ближнем конце должен подключать генератор поочередно ко всем жилам, а другой на дальнем конце — искать нужную жилу с помощью пробника. Причем первому необходимо иметь возможность фиксировать факт идентификации жилы со стороны второго, после чего сигнал можно подавать на другую жилу.
Для организации такого взаимодействия используются специальные возможности пары генератор-пробник, проводной разговорный тракт или радиосвязь. Если генератор индицирует замыкание цепи, на которую подан сигнал (т. е. работает и как «прозвонка»), то для сигнализации о завершении идентификации жилы цепь достаточно замкнуть металлическим щупом пробника. После получения звукового сигнала монтажник отключает генератор (сигнал на дальней стороне исчезает) и затем подключает его к очередной жиле. Появление слабого сигнала означает, что он подан на следующую жилу, и можно приступить к ее поиску пробником по максимуму значения.
Более широкие возможности предоставляет голосовая связь между монтажниками. Проводной разговорный тракт организуется за счет использования замкнутой цепи, в которую последовательно включаются батарея питания и две микротелефонные гарнитуры или тестовые телефонные трубки.
Некоторые генераторы и пробники имеют встроенные средства для ведения переговоров между монтажниками. Замкнутая цепь разговорного тракта может быть организована, например, по паре жил кабеля или с использованием его экранной оболочки и искомой жилы.
Высокую производительность, наряду с возможностью выполнения работы одним монтажником, обеспечивают специализированные приборы для одновременной идентификации большого количества пар кабеля. Их работа организуется в соответствии с различными принципами, но всегда прибор состоит из удаленного блока (маркера) и считывающего устройства (индикатора). Для обозначения номера пар в маркере могут применяться взвешенные добавочные сопротивления, разночастотные тональные сигналы (например, DTMF), цифровые кодовые последовательности, а также голосовые идентификаторы (речевое сообщение, содержащее номер жилы). В последнем случае в качестве индикатора выступает микротелефонная гарнитура.
На одном из концов кабельной линии несколько жил одновременно подключается к выходам маркера, а на другом — поочередно к индикатору. Если жила связана с маркером, то на дисплее индикатора отображается ее номер. Число идентифицируемых жил за одно подключение маркера зависит от числа выходов маркера и возможности одновременного использования нескольких маркеров (от четырех до 50). Наиболее удобны те модели, где предусмотрена возможность совместной работы с пробником для трассировки линии и быстрого поиска жил, к которым подключен маркер. Это особенно важно в тех случаях, когда работа ведется с телефонными кабелями большой емкости.
В заключение стоит упомянуть и о некоторых малоизвестных, но очень удобных приборах. Прежде всего отметим систему для дистанционного манипулирования удаленным окончанием кабельной линии в процессе проведения измерений. Она состоит из двух блоков, один из них (блок переключения) устанавливается на дальнем конце линии и выполняет команды другого (блока управления). С ее помощью, например, выехавший к абоненту линейный монтер может дистанционно подключать измерительное оборудование к рабочему абонентскому шлейфу на стороне АТС. Причем подключение будет осуществляться только на время измерения, а перебои в сервисе окажутся минимальными.
Еще одна группа устройств — автоматизированные системы верификации абонентских кабельных линий. Это оборудование представляет собой управляемую компьютером систему. Выходы системы подключаются посредством специальных многопарных групповых соединителей к плинтам кросса в распределительных шкафах. На каждом из них поочередно осуществляется занятие линии с набором номера, где установлен станционный комплект АОН. Он фиксирует номер абонента, который осуществил вызов, и передает его в систему. В ходе последовательного опроса система формирует базу данных, где хранится информация о том, какие абоненты обслуживаются указанными парами кабеля конкретного распределительного шкафа. Последовательное подключение системы ко всем кроссам обеспечит полную верификацию базы данных по абонентским кабельным линиям. На какие только ухищрения не приходится идти с единственной целью — устранить результаты разгильдяйства нерадивых сотрудников.
Когда проводится проверка кабельных линий лабораторией?
Испытания кабельных линий проводятся со следующей периодичностью:
- ежегодно — для силовых питающих и распределительных линий с резиновой изоляцией, обслуживающих объекты жизнеобеспечения населенных пунктов и других важных потребителей;
- каждые 3 года — для основных питающих линий 6–35 кВ;
- каждые 5 лет — для резервных линий.
- Внеочередные – при аварийном отключении электрооборудования.
Испытание кабеля повышенным напряжением проводится для оценки соответствия величины сопротивления, коэффициента абсорбции и других параметров изолирующей оболочки установленным нормам. В процессе испытательных мероприятий выявляются дефекты, способные спровоцировать аварию и выход из строя дорогостоящего электрооборудования.
Определяемые характеристики.
- Проверка целостности и фазировки жил кабеля;
- Измерение сопротивления изоляции;
- Испытание повышенным напряжением выпрямленного тока;
- Испытание повышенным напряжением переменного тока частотой 50Гц.
- Измерение распределения тока по одножильным кабелям;
Порядок проведения испытаний и измерений.
- Изучение проектной документации.
- Ознакомление с паспортами проверяемого оборудования.
- Выполнение организационных и технических мероприятий при проведение измерений в действующих электроустановках.
- Проверка работоспособности измерительных приборов в соответствие с инструкциями по эксплуатации.
- Проведение испытаний в объеме требований главы 1.8 ПУЭ.
Методы испытаний.
1. Проверка целости и фазировки жил кабеля.
Определение целости жил и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля в процессе эксплуатации.
Определение целости жил кабелей напряжением до 10кВ производится мегаомметром. После включения КЛ под напряжение производится проверка правильности ее фазировки.
Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка. Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением рисунок №1. Целость и совпадение обозначений фаз подключаемых жил кабеля должна соответствовать.
Рис. №1 Фазировка кабельных линий под напряжением.
а – соответствие фаз кабеля и шин; б – разные фазы шин и кабеля в месте присоединения последнего; 1 – указатель напряжения; 2 – трубка сопротивления; 3 – провод; 4 – шина; 5 – концевая заделка; 6 – кабель; 7 – разъем спуска шин.
Измерение сопротивления изоляции.
Измерение сопротивления изоляции высоковольтных кабелей проводят на полностью отключенном кабеле.
Перед проверкой необходимо проверить надёжность заземления кабельных воронок, брони и подключить к переносному заземлению со специальными зажимами (крокодилами). Второй конец кабеля остаётся свободным, жилы должны быть разведены на достаточное расстояние (примерно 150 — 200 мм).
В случае невозможности обеспечить требуемое расстояние между жилами и жил кабеля до заземлённых частей оборудования, на жилы надеваются изолирующие колпаки или накладки.
Перед началом измерений необходимо убедиться, что на испытываемом объекте нет
напряжения, тщательно очистить изоляцию от пыли. Измерения следует производить при устойчивом положении стрелки прибора; для этого нужно быстро, но равномерно, вращать ручку генератора (120 об/мин) в течение 60 сек. Сопротивление изоляции определяется показанием стрелки прибора мегаомметра. Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (не менее 100 мОм).
Мегаомметром поочерёдно измеряется сопротивление жил, при этом на свободные от измерения жилы устанавливается переносное заземление. Схема для измерения сопротивления изоляции силовых кабельных линий изображена на рисунке №2
Рис. №2 Схема измерения сопротивления изоляции силового кабеля.
Измерение сопротивления изоляции силовых и контрольных кабелей напряжением до 1000В проводят аналогично, при этом измерения производятся между каждыми двумя проводами (между фазами, между фазными жилами и нулем, между фазными жилами и защитным проводником и между нулевым и защитным проводником). При измерении разрешается объединять нулевой рабочий и нулевой защитный проводники. У четырехжильных кабелей измерение сопротивления изоляции нулевого проводника производится относительно заземленных частей электрооборудования.
Перед первыми или повторными измерениями КЛ должна быть разряжена путем соединения всех металлических элементов между собой и землей не менее чем на 2 мин. Сопротивление изоляции кабелей до 1 кВ должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.
Испытание повышенным напряжением выпрямленного тока.
Испытание изоляции кабельных линий повышенным напряжением выпрямленного тока производится с целью выявления местных сосредоточенных дефектов, которые не обнаруживаются при измерении мегаомметром, путем доведения их в процессе испытания до пробоя. Такое испытание повышенным напряжением выпрямленного тока производится от специальной установки типа: АИД-70, СКАТ-70 и т.п.
Напряжение от установки прикладывается поочередно к каждой фазе кабеля, при заземлении двух других фаз и оболочки кабеля (аналогично проведению измерения изоляции мегаомметром). Схема испытания кабеля повышенным напряжением выпрямленного тока изображена на рисунке №3.
Рис. №3 Испытание кабеля повышенным напряжением выпрямленного тока.
Изоляция одножильных кабелей без металлического экрана (оболочки, брони),
проложенных на воздухе, не испытываются. Изоляция одножильных кабелей с металлическим экраном (оболочкой, броней) испытываются между жилой и экраном. Изоляция многожильных кабелей без металлического экрана (оболочки, брони) испытываются между каждой жилой и остальными жилами, соединенными между собой и землей.
Изоляция многожильных кабелей с общим металлическим экраном (оболочкой, броней) испытывается между каждой жилой и остальными жилами, соединенными между собой и экраном (оболочкой, броней). При всех указанных выше видах испытаний металлические экраны (оболочки, броня) должны быть заземлены. Пластмассовые оболочки (шланги) кабелей, проложенных в земле, испытываются между отсоединенными от земли экранами (оболочками) и землей. Пластмассовые оболочки (шланги) кабелей, проложенных на воздухе не испытываются. Значение испытательного напряжения принимается в соответствии с таблицей №2
Испытательное напряжение кВ, для силовых кабелей.
Вид испытаний | Испытательное напряжение (кВ) для кабельных линий | ||
---|---|---|---|
Кабели с бумажной изоляцией | |||
До 1кВ | 6кВ | 10кВ | |
П | 6 | 36 | 60 |
К | 2,5 | 36 | 60 |
М | — | 36 | 60 |
Вид испытаний | Кабели с пластмассовой изоляцией | ||
До 1кВ* | 6кВ | 10кВ | |
П | 3,5 | 36 | 60 |
К | — | 36 | 60 |
М | — | 36 | 60 |
Вид испытаний | Кабели с резиновой изоляцией | ||
До 3кВ | 6кВ | 10кВ | |
П | 6 | 12 | 20 |
К | 6 | 12 | 20 |
М | 6** | 12** | 20** |
* — испытание повышенным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных в воздухе, не производится.
** — после ремонтов, не связанных с перемонтажом кабеля, изоляция проверяется мегаомметром на напряжение 2500В, а испытание повышенным выпрямленным напряжением не производится.
Для кабелей на напряжение до 10кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения при приёмосдаточных испытаниях 10 минут, в эксплуатации 5 минут. Для кабелей с резиновой изоляцией на напряжение 6-10кВ длительность приложения полного испытательного напряжения 5 минут.
Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в таблице №3. абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытаний ток утечки должен уменьшаться. Если не происходит уменьшения тока утечки, а также при его увеличении или нестабильности, испытание производится до выявления дефекта, но не более чем 15 минут.
Допустимые токи утечки и значения коэффициента ассиметрии для силовых кабелей.
Кабели напряжением (кВ) | Испытательное напряжение (кВ) | Допустимые значения токов утечки (мА) | Допустимые значения коэфф. ассиметрии |
---|---|---|---|
6 | 36 | 0,2 | 8 |
10 | 45 | 0,3 | 8 |
50 | 0,5 | 8 | |
60 | 0,5 | 8 |
Разрешается техническому руководителю предприятия в процессе эксплуатации (М) исходя их местных условий как исключение уменьшать уровень испытательного напряжения для кабельных линий напряжением 6-10кВ до 0,4Uн.
Периодичность испытаний в процессе эксплуатации.
Кабели напряжением 2-35кВ:
а) 1 раз в год – для кабельных линий в течение первых 2 лет после ввода в эксплуатацию, а в дальнейшем:
- 1 раз в 2 года – для кабельных линий, у которых в течение первых 2 лет не наблюдалось аварийных пробоев и пробоев при профилактических испытаниях, 1 раз в год для кабельных линий, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции;
- 1 раз в 3 года – для кабельных линий на закрытых территориях (подстанции, заводы и т.д.);во время капитальных ремонтов оборудования для кабельных линий, присоединённых к агрегатам, кабельных перемычек 6-10кв между сборными шинами и трансформаторами в ТП и РП;
б) Допускается не проводить испытание:
- Для кабельных линий длиной до 100 метров, которые являются выводами из РУ и ТП на воздушные линии и состоящих из двух параллельных кабелей;
- Для кабельных линий со сроком эксплуатации более 15 лет, на которых удельное число отказов из-за электрического пробоя составляет 30 и более отказов на 100 километров в год;
- Для кабельных линий, подлежащих реконструкции или выводу из работы в ближайшие 5 лет;
в) Допускается распоряжением технического руководителя предприятия устанавливать
другие значения периодичности испытаний и испытательных напряжений:
- Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет при числе соединительных муфт более 10 на 1 километр длины;
- Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет, на которых смонтированы концевые заделки только типов КВВ и КВБ и соединительные муфты местного изготовления, при значении испытательного напряжения не менее 4Uн и периодичности не реже 1 раза в 5 лет.
- Для кабельных линий напряжением 20-35кВ в течение первых 15 лет испытательное напряжение должно составлять 5Uн, а в дальнейшем 4Uн.
6.3.8 Кабели на напряжение 3-10кВ с резиновой изоляцией:
- в стационарных установках – 1 раз в год;
- в сезонных установках – перед наступлением сезона;
- после капитального ремонта агрегата, к которому присоединен кабель.
Измерение распределения тока по одножильным кабелям
На силовом кабеле измеряются токи, протекающие как в жилах, так и в металлических оболочках и броне. Измерения производятся токоизмерительными клещами.
В зависимости от материала оболочки, брони и положения кабеля в пространстве токи в них могут достигать 100% по отношению к току жилы и сильно влиять на нагрев кабелей. Одновременно с измерением токов при нагрузках, близких к номинальной, должны быть проведены измерения температуры наружных покровов кабелей, по которой может быть вычислена температура жилы. Эта температура должна измеряться в самом нагретом месте КЛ и не должна превосходить допустимую для данного места измерения. При неравномерности распределения токов более 10%, когда отдельные кабели лимитируют пропускную способность всей группы кабелей, должны быть приняты меры по выравниванию токов по фазам.
Порядок проведения работ.
- Организационные мероприятия согласно ПОТЭУ-2014 (правила техники безопасности) гл.4, п.4.1; гл.5., п.5.1
- Технические мероприятия (согласование с заказчиком о времени отключении эл.энергии для производства необходимых работ).
- Отключение поочередно фидера с обеих сторон в РУ-6/10кВ с видимым разрывом, проверка отсутствия напряжения.
- Производство измерительных работ.
- Выдача соответствующей документации (технический отчет).
Проверка целостности жил и фазировки кабеля
Марина
Объект: . Квартира
Площадь: . 62
Здравствуйте! Хотелось бы оставить свой отзыв благодарности! Обратились с супругом в компанию Энерджи. Нужно было в кротчайшие сроки.
Алена Председатель ТСН Мой Дом
Объект: . Офис
Площадь: . 42 м.кв
Необходимо было переоборудовать одну из квартир в нашем доме под офис ТСЖ. По рекомендациям было принято решение обратиться в Энерджи.
Екатерина Довольная домохозяйка
Объект: . Квартира
Площадь: . 58 м.кв
Я-мама трех дочек. С переездом в новую квартиру в Москве столкнулись с проблемой, как разместить троих детей в одной комнате и при этом.
Галина Руководитель отдела ООО «Улыбка»
Объект: . Дом
Площадь: . 680 м.кв
Моя детская мечта, обзавестись своим большим домом, и вот этот момент наступил! Мы с мужем начали думать над проектом, как все будет, что.
Антон Менеджер по продажам
Объект: . Дом
Площадь: . 280 м.кв
С женой решили переехать и заняться строительством нового дома. Понадобилась помощь в проектировании инженерных систем. Долго искали.
Анна Домохозяйка
Объект: . Квартира
Площадь: . 156 м.кв
Заказывала дизайн-проект проект, для квартиры с инженерными проектами в комплекте. Сама не хотела ничего подобного делать и вообще в этом.
Юлия Юлия
Объект: . Дом
Площадь: . 64 м.кв
Давно с мужем мечтали о загородном доме. Купили участок с домом, но дизайн интерьера в нем нам совсем не нравился, мы решили сделать ремонт.
Vladimir Собственник
Объект: . Квартира
Площадь: . 68 м.кв
После приобретения квартиры столкнулись с необходимостью ремонта. По совету знакомых мы обратились в ENERGY-SYSTEM. В минимально сжатые.
Елена Клиент
Объект: . Дом
Площадь: . 98 м.кв
Срочно понадобился проект перепланировки загородного дома. Перебрала кучу компаний, но везде дорого, либо не успевают сделать в назначенный.
Дарья Домохозяйка
Объект: . Квартира
Площадь: . 64 м.кв
Родители на свадьбу подарили нам трехкомнатную квартиру. Но сама квартира была в таком ужасном состоянии, что я даже не знала с чего начать.
Статьи / Электролаборатория / Проверка целостности жил и фазировки кабеля
Проверка целостности жил и фазировки кабеля
Содержание показать
С помощью какого оборудования производится проверка целостности жил и фазировки кабеля?
Наиболее простой вариант, который используется для анализа правильности подключения кабеля и его целостности – использование двух неоновых ламп, которые соединяются с различными концами установки. При начале работы осветительного прибора делают запись о нахождении соответствующей фазы. Однако современные лаборатории используют специализированное оборудование, с помощью которого выполняется проверка целостности жил и фазировки кабеля.
Пример технического отчета
Оно представлено специальными тестерами, соединяющимися поочередно с двумя концами установки. Если анализу подвергается электроснабжение офиса с большим количеством линий, то применение тестеров является полностью оправданным – оно позволяет избавиться от неудобства работы в замкнутом пространстве, а также сократить время, необходимое на проведение исследования.
Как осуществляется проверка целостности жил и фазировок кабеля?
Чтобы проверить кабель на наличие разрывов, специалисты рекомендуют использовать классическую методику, разработанную еще более 50 лет назад. Для этого кабель полностью отсоединяется от электрической установки и к нему подключается источник питания на 9-18 В. Кроме того, непосредственным инструментом проверки выступают две телефонные трубки, которые соединяются с различными выводами данного провода. Проверка целостности жил и фазировки кабеля считается успешной, если при соединении трубок с жилой и изоляцией провода в них слышен отчетливый шум, позволяющий говорить об установлении связи между двумя концами провода.
Если в процессе работы найдена линия, которая не пропускает электрический ток, все работы с данным проводом следует прекратить до нахождения и полного устранения неисправности. В противном случае нарушение правил техники безопасности может привести к утечке тока большого напряжения, способного вызвать поражение человека и ухудшение его здоровья.
Окончание проверки целостности жил и фазировок кабеля
Если установка является неповрежденной, можно переходить к следующему этапу, на котором выполняется проверка правильности чередования фаз. Как и замер сопротивления цепи фаза-нуль, данное исследование призвано установить степень безопасности системы. Если фазы чередуются неправильно, нагрузка на кабель будет осуществляться неравномерно, что приведет к уничтожению его изоляции. Кроме того, ошибка фазировки способна и разрушить дорогостоящее оборудование в составе установки.
Подобное обследование выполняется исключительно с помощью специального электронного приспособления, позволяющего установить подачу напряжения на одну из фаз. Подобные работы проводятся на установке, подключенной к источнику тока – пользоваться иными контрольными приспособлениями запрещается.
Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.