Как работает электродвигатель в автомобиле
Перейти к содержимому

Как работает электродвигатель в автомобиле

  • автор:

Устройство электромобиля. Технические отличия от обычного автомобиля

Сейчас электромобилестроение развивается огромными темпами (особенно внесла вклад в эту тему компания Tesla Motors, запустив в серийное производство свои имеющие оглушительный успех электрокары и заставив таким образом шевелиться конкурентов). Инженеры частенько балуют нас особенными схемами работы электрокаров, например, оборудуя машины двумя электродвигателями или изобретая новые гибридные силовые установки. В этой статье я опишу устройство электромобиля и то, чем средний современный электромобиль технически отличается от классических авто с ДВС. Напомню, из каких частей состоит любой автомобиль:

  • двигатель, который создает механическую энергию, приводящую в конечном итоге в движение транспортное средство;
  • кузов, к которому крепятся все элементы конструкции;
  • шасси, основной задачей элементов которого является передача крутящего момента с двигателя на колеса;
  • электрооборудование, которое пронизывает весь автомобиль: тут и стартер, и подогрев, и свет и множество других вещей, в зависимости от комплектации.

Пройдемся по каждой из них и выясним, почему электрокары такие особенные.

Двигатель

В электромобиле он электрический. В нем нет коленвала, поршней, камер сгорания, клапанов и много чего еще, что есть в двигателях внутреннего сгорания. За то есть статор, внутри которого благодаря электромагнитной силе вращается ротор. Подробнее об электродвигателе электромобиля можно прочесть здесь. Немаловажной особенностью электродвигателя является возможность не только производить вращательную энергию, но и создавать ток для заряда батареи, то есть работать в режиме генератора. Это основной принцип так называемой рекуперации: грубо говоря, при нажатии на педаль газа электродвигатель вращает колеса, и энергия батареи тратится, а если педаль отпустить, на движущейся машине уже колеса будут вращать вал двигателя, создавая в обмотке напряжение и генерируя ток, заряжающий батарею.

Благодаря простоте и почти полному отсутствию трущихся частей в электромоторе (кроме подшипников), в отличие от ДВС, ресурс его намного превышает ресурс классического бензинового или дизельного двигателя.

Кузов

Кузов электромобиля отличается наличием отсека для аккумуляторной батареи (чаще всего располагающейся в днище автомобиля). При этом благодаря трансмиссии, занимающей в электрокаре значительно меньший объем, чем в обычном авто, водителю и пассажирам, электрической машины доступно больше пространства в салоне при тех же внешних габаритах.

Шасси

Шасси состоит в свою очередь из ходовой части, механизмов управления и трансмисси. Ходовая часть электромобиля, включающая мосты, подвеску и колеса, не имеет принципиальных отличий от ходовой привычных нам авто. О рулевом управлении и тормозной системе так же сказать особо нечего, кроме того, что благодаря существенному торможению двигателем (как раз когда происходит рекуперация), тормозные колодки и диски электромобиля изнашиваются значительно меньше. Главное же отличие шасси электрического от шасси классического авто кроется в трансмиссии. Конкретно — в коробке передач. В электрокаре её нет :). Вместо нее устанавливается очень простой понижающий редуктор (в котором практически нечему ломаться), имеющий огромный ресурс по сравнению даже с механическими коробками передач, не говоря уже об автоматических коробках и вариаторах. Сцепление, соответственно, тоже отсутствует.

Электрооборудование

Электрическое оборудование электромобиля имеет значительные отличия от электрооборудования автомобиля, приводимого в движение двигателем внутреннего сгорания. Отличия эти касаются электрооборудования мотора; в салоне всё примерно одинаково. В электромобиле отсутствует стартер и нет системы зажигания рабочей смеси, за то там есть аккумуляторная батарея, инвертор (согласующий токи подаваемый от батареи в электродвигатель и генерируемый электродвигателем во время рекуперации), а также модулем, питающим батарею во время зарядки и рекуперации и двигатель через инвертор во время ускорения. Подробнее об аккумуляторной батарее для электромобиля можно прочесть тут. Еще в электромобиле отсутствует система охлаждения двигателя, но часто присутствует система контроля температуры батареи (с подогревом или охлаждением) и электрическая печка.

Посмотрите это видео, которое показывает устройство электромобиля на примере Tesla Model S.

Гибриды

О том, какие бывают электромобили и гибриды, я написал в Часто Задаваемых Вопросах. Гибридами они называются за то, что имеют и электродвигатель, и двигатель внутреннего сгорания в своей силовой установке. Соответственно, механизмы их значительно сложнее, так как включают в себя системы, необходимые для передачи крутящего момента и работы обоих моторов.

Устройство двигателя электромобиля

Электродвигатель – устройство, которое занимается преобразованием электроэнергии в механическую. Он работает, используя принцип электромагнитной индукции.В последнее время он все сильнее популяризируется на автомобильном рынке в качестве перспективного направления развития автопромышленности. Поэтому есть смысл подробнее ознакомиться с устройством электромобиля, его двигателя, за которым может быть будущее отрасли.

Принцип работы и устройство

Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

устройство электродвигателя

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с двигателем внутреннего сгорания (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

Виды

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

  • устройства переменного тока;
  • конструкции постоянного тока;
  • решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

  • асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
  • синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

электродвигатель шевроле вольт

Силовая установка Chevrolet Volt

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

  • Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
  • Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

коллекторный ротор

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

бесколлекторный двигатель

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

мотор-колесо

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Преимущества и недостатки электродвигателей

Выделим достоинства электрических агрегатов:

  • высокий коэффициент полезного действия – до 95 процентов;
  • компактность, малый вес;
  • простота использования;
  • экологичность;
  • долговечность;
  • создается максимальный показатель крутящего момента на любой отметке скорости;
  • воздушное охлаждение;
  • способны функционировать в режиме генератора;
  • не нужна коробка передач;
  • возможность рекуперации энергии торможения.

В качестве примера удачной разработки модели с высокими характеристиками можно привести мотор от Yasa Motors. Инженеры компании создали агрегат, который при весе 25 кг способен выдавать до 650 Нм крутящего момента.

электродвигатель от yasa motors

Электродвигатель Yasa Motors

Что касается недостатков непосредственно электродвигателя, то их нет. Больше вопросов вызывает питание агрегата, что, собственно, и тормозит распространение, широкое использование технологии. Поэтому на данный момент большей популярностью пользуются гибридные авто, нежели электромобили. Благодаря такой схеме увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Устройство электромобиля

Если сравнивать электромобиль с авто, где используется ДВС, он характеризуется более простой схемой, минимальным числом движущихся элементов. Следовательно, такое решение является более надежным.

Главные составляющие электромобиля:

  • непосредственно электродвигатель;
  • питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора;
  • упрощенная трансмиссия;
  • инвертор;
  • зарядное устройство на борту;
  • электронная система управления элементами конструкции;
  • преобразователь.

Питание мотора в этой схеме организовывает, конечно же, тяговая аккумуляторная батарея. Зачастую задействуется литий-ионный тип, включающий в себя несколько модулей, подключенных последовательно. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В. Пример – автомобили Lola-Drayson, разработанные для гонок. Они оснащаются батареями напряжением 700 (В) и емкостью 60 кВт⋅ч.

электрический спорткар

Для корректного взаимодействия емкость батареи подбирается с учетом мощности двигателя. Этот показатель в подавляющем большинстве конструкций составляет от 15 до 200 (кВт). Если сравнить электрический двигатель с ДВС, то у первого КПД составляет 95%, а у другого – 25%. Разница существенна.

Имеются примеры в автомобилестроении, когда в конструкции используется несколько агрегатов. Они могут приводить в движение определенные колеса. Такой принцип организации позволяет увеличить тяговую мощность авто. Двигатель, интегрированный в колесо, имеет массу преимуществ, однако такое устройство тягового электродвигателя характеризуется ухудшенной управляемостью транспортного средства. Поэтому разработчики продолжают вести активную деятельность в этом направлении.

электродвигатель с редуктором

Электродвигатель с редуктором (вид снизу)

Что касается трансмиссии, то у электромобиля она имеет упрощенный вид. Многие конструкции оснащены одноступенчатым редуктором. Благодаря инвертору происходит преобразование высокого напряжения постоянного тока батареи. За счет наличия в конструкции бортового зарядного устройства гарантируется зарядка аккумулятора от электросети бытового назначения.

Обеспечением зарядки дополнительной батареи на 12 (В) занимается преобразователь. Эта батарея задействуется в качестве питающего элемента различных устройств транспортного средства:

  • аудиосистемы;
  • климат-контроля;
  • освещения;
  • отопительной системы;
  • прочих элементов.

Система управления организовывает такие процессы:

  • мониторинг используемой энергии;
  • управление рекуперацией энергии торможения;
  • оценка уровня заряда;
  • управление динамикой движения;
  • обеспечение необходимого режима перемещения транспортного средства;
  • регулировка тяги;
  • управление напряжением.

Система объединяет блок управления, датчики и прочие элементы других систем авто. Благодаря датчикам оценивается уровень давления в тормозной системе, разряда батареи, а также положение селектора переключения передач, тормозной педали и педали газа. По данным этих устройств обеспечивается оптимальное перемещение электромобиля с учетом текущих условий. На панели приборов традиционно отображаются основные показатели функционирования транспортного средства.

панель приборов автомобиля tesla

панель приборов Tesla

Внешне электромобиль не имеет отличий от традиционного автомобиля с ДВС, однако основные расхождения находятся в области эксплуатации: высокая стоимость, необходимость длительной зарядки, ограниченный ход. Поэтому устройство электромобиля имеет определенные расхождения с составом традиционного транспортного средства.

Высокая стоимость авто формируется в основном из-за цены на аккумуляторы, которые еще и имеют небольшой срок службы – до 7 лет. Это вынуждает специалистов искать новые решения для совершенствования технологии: литий — полимерные батареи, суперконденсаторы, топливные составляющие и прочие.

Затраты на содержание электромобиля зачастую ниже, чем авто с ДВС, особенно в тех государствах, где стоимость электроэнергии низкая.

Слабым местом электромобиля является также невысокий уровень автономного функционирования, вызванный коротким километражем без подзарядки. Этот параметр определяется многими факторами:

  • стилем вождения;
  • условиями и скоростью передвижения;
  • емкостью используемых аккумуляторов;
  • уровнем использования дополнительного оборудования.

К примеру, при скорости 80 км/ч средний показатель дальности передвижения электрического транспортного средства составит около 140 км. Если же повысить скорость до 120 км/ч, этот показатель резко упадет до 80 км. Благодаря внедрению систем рекуперативного торможения степень автономности может повышаться до показателя в 300 км и более.

Как отмечалось, зарядка аккумулятора требует много времени, поэтому этот недостаток решается несколькими подходами:

  • замена батареи на заряженную (услугу могут предоставлять на специальных станциях);
  • ускоренная зарядка – за полчаса может зарядиться 80% емкости аккумулятора;
  • нормальный режим – продолжительность зарядки может составить 8 часов.

Устройство и особенности гибридных систем

Применение гибридных автомобилей не только имеет свои преимущества, например, экологические, но и преследует определенные цели действующих игроков автомобильного рынка. Компании намерены сохранить налаженное конвейерное производство двигателей внутреннего сгорания. А постоянное ужесточение норм выброса вредных веществ – лишнее тому подтверждение.

По сути, гибридные системы подразумевают использование электродвигателя как дополнительного элемента, который способствует повышению мощности и экономии топлива. Ведь все подобные машины начинают движение именно благодаря ДВС.

Гибридные системы условно можно разделить на подвиды:

  • Интегрированное содействие мотору.
  • Интегрированный генератор стартера. Система, как и предыдущая, позволяет начинать движение машине, только в этом случае используется меньший электродвигатель.
  • Система остановки/старта двигателя. Происходит отключение мотора, когда его мощность не используется, а затем он запускается моментально, как только это необходимо.

Различают также три вида «гибридов»:

  • Параллельный. В этом случае батареи передают энергию электродвигателю, а бак – топливо для ДВС. Оба агрегата способны создать условия для перемещения транспортного средства.
  • Последовательный. ДВС поворачивает генератор, который может или завести электродвигатель, или зарядить аккумуляторы.
  • Последовательно-параллельная. ДВС, электродвигатель и генератор соединены с колёсами через планетарный редуктор.

типы гибридных автомобилей

Большинство существующих сейчас гибридных автомобилей относятся к параллельным. Хорошим решением является транспортное средство с подзарядкой. Оно открывает новые эксплуатационные возможности, нивелируя недостаток ограниченности пробега. При исчерпании заряда аккумулятора в работу вступает ДВС малой мощности.

Гибридная система существенно снижает уровень выводимых газов и увеличивает продуктивность расхода топлива, что особо актуально в условиях крупного населенного пункта. А рекуперативная система аккумулирует энергию.

Управление гибридным транспортным средством похоже на управление обычным автомобилем с автоматической коробкой передач. Только в этом случае обеспечивается низкий уровень шума, лучшая управляемость и повышенная мощность. При этом не нужно специально подзаряжать аккумуляторную батарею, это происходит при работе автомобиля.

Перспективы применения электродвигателей в автомобилях

Судя по текущим тенденциям, мировые лидеры автомобильной промышленности, политики и другие влиятельные лица всерьез взялись за то, чтобы развивать отрасль производства электрических автомобилей. Это видно по регулярно внедряемым нормам, которые постоянно повышают планку по выбросу максимального уровня вредных газов в атмосферу, и по мощной рекламной кампании, которая развернулась в медиапространстве в поддержку такого типа транспортных средств. В развитых странах с каждым годом растет количество заправочных станций, обеспечивающих зарядку электромобилей.

Поэтому открываются большие возможности инженерам для развития отрасли. И для этого есть два основных направления – адаптировать серийные автотранспортные средства или вести разработку новых моделей. Конечно, менее затратным мероприятием является усовершенствование существующих моделей.

Как раз европейские специалисты и занимаются улучшением нынешних гибридных двигателей, в то время как японские компании занялись совершенствованием обычного двигателя. Им удалось увеличить степень сжатия. При этом состав топлива остался неизменным.

В свою очередь, немецкие разработчики установили небывалый рекорд. Созданному электромобилю удалось проехать без подзарядки целых 600 км. Для автомобилей с ДВС это не показатель, однако электромобили могут похвастаться теперь и такими возможностями.

Дело в том, что даже Tesla, ведущий участник рынка, ещё не создал легкий аккумулятор, который смог вытянуть это расстояние. А в этом случае разработчикам удалось достичь показателя в 600 км.

Автомобиль проехал расстояние между двумя немецкими городами – Мюнхеном и Берлином. Его средняя скорость передвижения по трассе составила около 90 км/ч. Установление подобного рекорда стало возможным благодаря плодотворной работе предприятия DBM Energy, которое в тесном сотрудничестве с Lekker Energie создало такое решение.

электрокар Audi A2

В электромобиле была установлена аккумуляторная батарея емкостью 115 кВт/ч. Благодаря этому транспортное средство способно увеличивать мощность до 55 кВт, что отвечает приблизительно объему 1,4 Л для бензинового двигателя. Эффективность такой батареи доказывает установка в погрузчик, который способен увеличить время своей работы в четыре раза, если сравнивать действия с обычным аккумулятором. Именно этот емкостный агрегат был установлен на немецкий автомобиль Audi A2.

Может сложиться впечатление, что автомобиль «пустой», однако это не так. Организаторы эксперимента оснастили его всем необходимым: кондиционером, усилителем руля, аудиосистемами, системами безопасности и даже подогревом сидений. Поэтому потребление энергии, кроме перемещения, требовалось для выполнения и других функций.

Как стало известно, подобная технология находится на рассмотрении министерства экономики Германии, поэтому вполне возможно, что уже в скором времени эта отрасль получит новый толчок. Уже есть планы, по которым к 2020 году правительство страны намеревается достичь показателя в один миллион электрических автомобилей на европейских дорогах. Причем это не только транспортные средства личного пользования, но и другого назначения.

К тому же один из менеджеров компании Lekker Energie сообщил, что используемый аккумулятор на автомобиле А2 способен обеспечить общий пробег на уровне 500 тысяч километров.

Есть и еще один рекорд в этом направлении, поставленный Japan Electric Vehicle Club. Однако он касается чистого эксперимента. Это значит, что для повседневного использования такой электрокар не приспособлен. В результате японцам удалось побить рекорд – 1 тыс. км без подзарядки.

Какие бы разработки не велись в этой области, они сводятся к тому, что их должны поддержать гиганты автомобильной промышленности. Только им под силу внедрить достойное новшество, распространяя его по всему миру, создавая необходимую инфраструктуру, сервис и прочие необходимые средства. Все это требует больших затрат, поэтому предложенная идея может быть воплощена в жизнь, если расчеты по ее реализации дадут действительно существенную прибыль и установят новую планку стандартов на мировом рынке.

Тем не менее, учитывая текущее положение вещей, вряд ли стоит предполагать, что уже очень быстро электромобили займут свою большую нишу в автомобилестроении. И важный фактор, притормаживающий прогресс — психология человека. Очень непросто переубедить автомобилистов пересесть с бензиновых и дизельных автомобилей на электрические. Это особенно сложно сделать тем, кто занимается автогонками или является любителем динамичной езды.

Электромобиль Tesla

Электромобиль Tesla Model S

Но тенденция к изменению отношения к такому явлению, как электрокар, уже проявляется. Сегодня все больше подобных автомобилей можно встретить на дорогах не только Европы, но и России. Пусть их еще немного, но их дополняют бесплатные зарядные станции в некоторых странах, позволяющие перемещаться на большие расстояния. Поэтому электрический транспорт постепенно становится естественным участником дорожного движения, закладывая фундамент новой эры машиностроения.

Устройство Электродвигателя .Как он работает?

Электродвигатель – устройство, которое занимается преобразованием электроэнергии в механическую. Он работает, используя принцип электромагнитной индукции.В последнее время он все сильнее популяризируется на автомобильном рынке в качестве перспективного направления развития автопромышленности. Поэтому есть смысл подробнее ознакомиться с устройством электромобиля, его двигателя, за которым может быть будущее отрасли.

Принцип работы и устройство:
Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с двигателем внутреннего сгорания (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.
Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

устройства переменного тока;
конструкции постоянного тока;
решения универсального образца (способны функционировать от постоянного и переменного тока).
Электродвигатели переменного тока делятся на группы:

асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;
синхронные – частоты вращения магнитного поля статора и ротора совпадают.
С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.
Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.
Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.
коллекторный роторРотор электродвигателя
В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.

Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Преимущества и недостатки электродвигателей
Выделим достоинства электрических агрегатов:

высокий коэффициент полезного действия – до 95 процентов;
компактность, малый вес;
простота использования;
экологичность;
долговечность;
создается максимальный показатель крутящего момента на любой отметке скорости;
воздушное охлаждение;
способны функционировать в режиме генератора;
не нужна коробка передач;
возможность рекуперации энергии торможения.
В качестве примера удачной разработки модели с высокими характеристиками можно привести мотор от Yasa Motors. Инженеры компании создали агрегат, который при весе 25 кг способен выдавать до 650 Нм крутящего момента.
Что касается недостатков непосредственно электродвигателя, то их нет. Больше вопросов вызывает питание агрегата, что, собственно, и тормозит распространение, широкое использование технологии. Поэтому на данный момент большей популярностью пользуются гибридные авто, нежели электромобили. Благодаря такой схеме увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Устройство электромобиля
Если сравнивать электромобиль с авто, где используется ДВС, он характеризуется более простой схемой, минимальным числом движущихся элементов. Следовательно, такое решение является более надежным.

Главные составляющие электромобиля:

непосредственно электродвигатель;
питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора;
упрощенная трансмиссия;
инвертор;
зарядное устройство на борту;
электронная система управления элементами конструкции;
преобразователь.
Питание мотора в этой схеме организовывает, конечно же, тяговая аккумуляторная батарея. Зачастую задействуется литий-ионный тип, включающий в себя несколько модулей, подключенных последовательно. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В. Пример – автомобили Lola-Drayson, разработанные для гонок. Они оснащаются батареями напряжением 700 (В) и емкостью 60 кВт⋅ч.

Для корректного взаимодействия емкость батареи подбирается с учетом мощности двигателя. Этот показатель в подавляющем большинстве конструкций составляет от 15 до 200 (кВт). Если сравнить электрический двигатель с ДВС, то у первого КПД составляет 95%, а у другого – 25%. Разница существенна.

Имеются примеры в автомобилестроении, когда в конструкции используется несколько агрегатов. Они могут приводить в движение определенные колеса. Такой принцип организации позволяет увеличить тяговую мощность авто. Двигатель, интегрированный в колесо, имеет массу преимуществ, однако такое устройство тягового электродвигателя характеризуется ухудшенной управляемостью транспортного средства. Поэтому разработчики продолжают вести активную деятельность в этом направлении.

электродвигатель с редукторомЭлектродвигатель с редуктором (вид снизу)
Что касается трансмиссии, то у электромобиля она имеет упрощенный вид. Многие конструкции оснащены одноступенчатым редуктором. Благодаря инвертору происходит преобразование высокого напряжения постоянного тока батареи. За счет наличия в конструкции бортового зарядного устройства гарантируется зарядка аккумулятора от электросети бытового назначения.

Обеспечением зарядки дополнительной батареи на 12 (В) занимается преобразователь. Эта батарея задействуется в качестве питающего элемента различных устройств транспортного средства:

аудиосистемы;
климат-контроля;
освещения;
отопительной системы;
прочих элементов.
Система управления организовывает такие процессы:

мониторинг используемой энергии;
управление рекуперацией энергии торможения;
оценка уровня заряда;
управление динамикой движения;
обеспечение необходимого режима перемещения транспортного средства;
регулировка тяги;
управление напряжением.
Система объединяет блок управления, датчики и прочие элементы других систем авто. Благодаря датчикам оценивается уровень давления в тормозной системе, разряда батареи, а также положение селектора переключения передач, тормозной педали и педали газа. По данным этих устройств обеспечивается оптимальное перемещение электромобиля с учетом текущих условий. На панели приборов традиционно отображаются основные показатели функционирования транспортного средства.
Внешне электромобиль не имеет отличий от традиционного автомобиля с ДВС, однако основные расхождения находятся в области эксплуатации: высокая стоимость, необходимость длительной зарядки, ограниченный ход. Поэтому устройство электромобиля имеет определенные расхождения с составом традиционного транспортного средства.

Затраты на содержание электромобиля зачастую ниже, чем авто с ДВС, особенно в тех государствах, где стоимость электроэнергии низкая.

Как устроен электромобиль?

В этом тексте я попробовал сфантазировать, как мог бы быть устроен абстрактный электромобиль. Что у него должно быть внутри и как агрегаты автомобиля соединено в единую систему между собой? Иначе говоря, какова архитектура электромобиля?

Инфу пришлось добывать из видеоуроков на YouTube и с флаеров сайтов производителей электро-деталей.

Попробуем понять, какой путь проходит электричество начиная от зарядной розетки заканчивая колесами автомобиля.

Когда речь идет об архитектуре чего-лило, то тут есть 2 способа представления. Либо объяснять всё словами либо рисовать картинку. В этом вопросе я предпочитаю следовать английской пословицы

Поэтому я скомпоновал схему анатомии электромобиля.

Итак, вот схема электромобиля так как я её себе представляю. Понятное дело, что схему надо рассматривать не на листочке A4, а в специальном редакторе векторной графики с увеличением и со слоями. Если кому-то нужен исходник схемы в *.svg, то пишите в личку.

блок схема агрегатов электромобиля

Каждый агрегат электрокара: контроллер зарядки, BMS, инвертор, ABS, ESP, BCU, это, в сущности, устройства на микроконтроллерах. В электромобиле нет ничего механического кроме редуктора на оси двигателя. А мощные процессоры там максимум только в HMI для проигрывания видео. Видимо поэтому электромобили долгое время не появлялись так как до 1980х не было элементной базы для управления ключами инверторов. Я имею в виду мощные и дешевые микроконтроллеры.

Теперь посмотрим под увеличением конкретные места схемы.

Контроллер заряда

Как известно, есть быстрая зарядка постоянным током, а есть медленная от переменного тока. Подозреваю, что выбор режима зарядки происходит по интерфейсу передачи данных по проводам питания PLC или по CAN.

Батарея

Батарея для электрического автомобиля это сотни последовательно соединенных аккумуляторных батареек как в фонариках по 3.7. 4,2V каждая. За состоянием всей батарей следит отдельная электронная плата называемая Battery Management System (BMS). Она следить за напряжением, током, температурой, заботится об охлаждении и нагревании батареи, может разрядить перезаряженную батарею, договориться с зарядной станцией по PLC или CAN и прочее.

Инвертор (Inverter)

Инвертор это по сути переходник постоянного тока в переменных ток (и обратно). Он вырабатывает модулированный трехфазный синусоидальный ток необходимый для вращения мотора. Этим занимается прошивка-spiner в микроконтроллере инвертора. Так как в инверторе очень часто переключаются силовые IGBT транзисторы, то инвертор также может работать в режиме нагревателя и нагревать остывающую батарею.
К контроллеру инвертора подключена педаль газа. Если все CAN устройства зависнут, то автомобиль хоть как-то сможет ездить.

Двигатель

Для вращения в электромобилях используют асинхронный электродвигатель. Он работает от переменного тока. Угловая скорость определяется частотой синусов в фазах тех трех силовых оранжевых проводах, что подключены к индукционному мотору. Обычно рядом с мотором прямо на его оси прикреплен механический редуктор. Редуктор нужен для увеличения крутящего момента на колесах. Также на оси электродвигателя есть датчик положения вала (Резольвер или СКВТ). Он сообщает инвертору, что двигатель в самом деле вертится.

Интерфейс управления (HMI)

За автомобилем надо как-то наблюдать. Для этого есть приборная панель и сенсорный экран. Эти приборы берут инфу из CAN шины и 100Base-T1 интерфейса. Часто есть мобильное приложение и за параметрами можно следить по BlueTooth LE. Можно вообще подключиться к CAN и посмотреть какие там циркулируют пакеты в Win приложении.

Рулевая рейка

Понятное дело что для поворота колес нужен высокий момент и малые скорости. Как известно высоким моментном на малых скоростях обладают шаговые двигатели. Но их там нет. Ведь шаговые двигатели тяжелые и дорогие. В электро-усилитель руля ставят BLDC мотор (бесколлекторный двигатель постоянного тока). Управляет им отдельный ECU рулевой рейки.
Также возможно там есть и чисто механическое руление через планетарный редуктор. Электроника ведь может отказать, микроконтроллер зависнуть. А планетарный редуктор фактически является сумматором крутящих моментов.

Периферия

В автомобиле целая куча всяких разных мелких электроприборов: фары, замки, стеклоподъемники, дворники, люки. Для управления ими ставят отдельные контроллеры. Обычно их называют Body Control Units (BCU).

В основном всё блоки соединены такими интерфейсами как CAN, LIN, K-LIne, 100Base-T1, A2B, FPD-Link, MOST, FlexRay.

Вот реестр с подборкой тех самых видеоуроков на основе которых я нарисовал эту схему

Вывод

По сравнению с двигателями внутреннего сгорания в электромобиле деталей мало. Всё выглядит просто. Допускаю, что в настоящих электромобилях всё несколько сложнее. Особенно в гиперкарах по 2M EUR.

Тут же нет ADAS, парковочных видеокамер. Также я не отражал на схема автомобильные игрушки как мультимедиа системы на задних сиденьях, имитация рычащего мотора из бутафорской выхлопной трубы, сервопривод антикрыла, подогрев стаканчиков, моторы открытия люков, авто лебётки и пр.

Если вам есть, что добавить, то пишите в комментариях.

В автомобильной технике как нигде очень много акронимов. Вот небольшой словарь для понимания автомобильных схем.

Акроним

Расшифровка

original design manufacturer

original equipment manufacturer

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *