Как правильно подобрать контроллер для заряда аккумулятора
Перейти к содержимому

Как правильно подобрать контроллер для заряда аккумулятора

  • автор:

Все что Вам нужно знать о контроллере заряда

Контроллер заряда — это электронное устройство, которое контролирует и управляет процессом зарядки аккумуляторной батареи (АКБ).

Контроллер защитит АКБ от перезарядки, утечки тока на солнечную панель в ночное время и поможет контролировать состояние батарей.

Как работают контроллеры заряда?

Солнечные электростанции, ветряные, гидро и т. д. являются прерывистыми по своей природе, что означает, что эти источники энергии не производят электричество постоянно, с неизменной мощностью и на протяжении всего дня.

По этой причине им требуется АКБ для хранения электроэнергии.

Аккумулятор не выполняет никакой трансформации электрического тока, он просто его хранит.

Всякий раз, когда электроэнергии недоступно, накопленный заряд внутри батареи используется для обеспечения стабильности питания нагрузок.

Контроллеры зарядки установлены для оптимальной и эффективной работы аккумулятора, а также для защиты аккумулятора от перегрузки и подзарядки.

Существуют два основных типа контроллеров заряда: MPPT и PWM.

Контроллер PWM

По сути соединяет солнечную батарею с батареей. В результате напряжение массива будет сведено (понижено, «обрезано») до уровня АКБ.

Контроллер заряда PWM является хорошим недорогим решением только для небольших систем.

Контроллер MPPT

Является более сложным (и более дорогим): он будет регулировать входное напряжение, чтобы собрать максимальную мощность от солнечной батареи, а затем преобразовать эту мощность для заряда и нагрузки.

Чтобы полностью использовать потенциал контроллера MPPT, напряжение массива должно быть значительно выше напряжения батареи. Контроллер MPPT является оптимальным решением для более мощных систем.

Напряжение и заряд батареи

Между зарядкой / разрядом батарей и его напряжением существует интересная взаимосвязь.

Когда аккумулятор начинает разряжаться, напряжение на выходе постепенно падает. Это соотношение используется при работе контроллера заряда.

Контроллеры имеют встроенные измерители напряжения, которые определяют выходное напряжение.

В зависимости от выходного напряжения он определяет процент заряда батареи.

Можно запрограммировать большое количество параметров, в зависимости от требований пользователя.

Современный контроллер выполняет несколько других полезных функций (кроме основной):

Блокирование обратного тока

Эта функция облегчает однонаправленный поток тока от солнечных панелей к АКБ и блокирует обратный поток в ночное время. Это помогает предотвратить излишнюю разрядку батарей и увеличивает время его работы.

Защита от недостаточного напряжения

Если АКБ разряжается на 80%, то есть остаточная мощность составляет 20% от номинальной емкости — контроллер отсекает разряженный АКБ от потребителя. Таким образом продлевает его срок службы.

Предотвращение перезарядки аккумулятора

Перезаряд батарей может значительно сократить срок службы батарей — поэтому не рекомендуется. Контроллер заряда останавливает заряд батарей, если они достаточно заряжены (напряжение достигает оптимального значения).

Настройка контрольных точек заряда

Иногда требуется более тонкая настройка циклов заряда и разряда аккумулятора — для обеспечения максимальной эффективности и более длительного срока службы.

Устранение неполадок и история заряда

Некоторые контроллеры имеют встроенную память для сохранения событий и аварийных сигналов с интеграцией даты и времени. Эта история событий и аварийных сигналов помогает быстро диагностировать и устранить неполадки.

Предварительная настройка

Ниже Вы найдете четыре ключевых параметра, которые могут быть запрограммированы в любых контроллерах заряда.

Максимальное напряжение

Это максимальное заданное напряжение. Любой контроллер заряда защищает батарею от перенапряжения — превышающего установленное значение. В момент, когда напряжение на АКБ достигает предельного значения — контроллер прекратит зарядку аккумулятора.

Установка низкого напряжения

Это минимальное заданное напряжение. Любой контроллер не позволит батарее достичь напряжения ниже этого напряжения. Когда напряжение на АКБ достигает минимального установленного значения — контроллер отключит нагрузку, чтобы предотвратить дальнейший разряд батареи (при глубоких разрядах уменьшается ресурс и срок службы АКБ).

Установка запаздывания включения при низком напряжении

Устанавливается задержка подключения нагрузки после возобновления заряда АКБ.

Установка запаздывания включения при высоком напряжении

Когда АКБ полностью заряжены и нет потребителей — контроллер поддерживает аккумулятор в оптимальном состоянии.

Итак, мы определились с технологией заряда (MPPT/PWM), теперь приступим к главному.

Выбор контроллера заряда

Допустим у нас к контроллеру заряда подключаются солнечная панель (напряжением 12В, мощностью 150Вт) и АКБ (12В емкостью 100Ач). По упрощенной формуле рассчитываем ток, который должен выдать контроллер заряда (делим мощность панели на коэффициент 13):

150 / 13 = 11,5 А

Лучше всего подбирать оборудование по большему значению в модельном ряде. Соответственно нам нужен контроллер заряда 12В, 20А.

Для более детального подбора обращайте к нашим специалистам.

Тонкости выбора контроллера заряда аккумулятора

Не редко, при подборе контроллера для солнечной фотоэлектрической системы пользователи совершают ошибки, носящие порой принципиальный характер. Ошибки эти совершают, в том числе и люди, имеющие соответствующее образование, либо теоретически подкованные, не обратившие внимание на некоторые важные нюансы.

Самые часты ошибки при расчёте контроллера заряда аккумулятора

Казалось бы, очень просто подобрать контроллер заряда аккумулятора – просто делим мощность солнечных батарей на напряжение системы и получаем значение номинального тока. Тем не менее, довольно часто клиенты берут за основу значение номинального тока солнечной батареи. Все это верно для ШИМ контроллера, у которого напряжение, равно как и ток, солнечной батареи и аккумулятора равны, но у MPPT это не так (о разнице ШИМ и МРРТ технологий читайте здесь). Как правило, в системе с MPPT контроллером ток в цепи аккумулятора в 1.5 – 2 раза больше тока солнечной батареи, поэтому крайне важно подбирать контроллер в соответствии с током именно аккумуляторной батареи.

В качестве входного напряжения солнечного контроллера следует понимать именно напряжение холостого хода солнечной батареи, никак не напряжение точки максимальной мощности. В отличие от ситуации с превышением мощности солнечных батарей, когда результат может быть различным, при превышении максимально допустимого входного напряжения, поломка произойдет с достаточно большой долей вероятности.

Не редко возникает необходимость в зимний период питать нагрузку автономно, это могут быть камеры видеонаблюдения, светофоры или уличное освещение. Ни для кого не секрет, что в данном случае солнечный массив должен быть довольно большим, чтобы обеспечить выработку необходимого количества энергии. Хорошенько поразмыслив, иногда инженеры приходят к следующему решению: в целях экономии установить контроллер меньшего номинала и, соответственно, меньше аккумуляторов, так как зарядный ток не высок. Объяснятся это тем, что зимой солнце светит слабо и большого зарядного тока просто не будет, а летом контроллер обрежет часть мощности солнечных батарей, что тоже неплохо, потому что мощность избыточна. Изящное, недорогое, простое и, к сожалению, неправильное решение. Первое, что стоит отметить: выработка солнечного массива рассчитывается исходя из среднемесячных значений за последние несколько лет, а в течение месяца солнечная активность может быть распределена очень неравномерно. Например, для северных районов характерна ситуация, когда в зимний месяц может быть 1-2 солнечных дня, а все остальное время пасмурная погода, когда выработки энергии вообще нет. Получается, чтобы обеспечить потребителя энергией в течение всего месяца, мы должны зарядить аккумуляторы большим солнечным массивом за один или два дня. Естественно, «обрезав» контроллер и аккумуляторы в данной ситуации мы можем свести эффективность всей системы «на нет».

Второе. Если мощность солнечных батарей значительно превышает номинал контроллера, то это может привести к поломке устройства. Далеко не каждый MPPT контроллер имеет функцию ограничения мощности, в линейке мирового лидера, компании EpSolar, например, такую функцию имеет только новая серия контроллеров Tracer A.

Также в зимний период следует учитывать, что из–за низкой температуры КПД модуля станет больше. Температурный коэффициент для кремниевых солнечных батарей составляет 0,4-0,5%/°С, а номинальная мощность приводится для температуры равной 25°С. Таким образом, при температуре -25°С мощность солнечного массива может быть больше аж на 20%. Если также учесть тот факт, что к моменту выхода солнца аккумулятор может быть разряжен ниже расчётного напряжения, что бывает часто, зарядный ток может быть значительно превышен, контроллер окажется перегружен и может выйти из строя мгновенно.

Резюмируем самые важные нюансы подбора контроллера заряда для солнечных систем:

  • Подбирайте контроллер в соответствии с током аккумуляторной батареи;
  • В качестве входного напряжения контроллера следует понимать именно напряжение холостого хода, а не точки максимальной мощности;
  • Не устанавливайте контроллер меньшего номинала, даже если предполагается работа с неполной нагрузкой;
  • Если мощность солнечных батарей превышает номинал контроллера – это приведет к выходу последнего из строя.

Мы рассмотрели лишь некоторые, часто встречающиеся заблуждения, касающиеся подбора контроллера заряда. Чтобы не совершить лишних ошибок внимательно изучайте техническую документацию к оборудованию, а в случае сомнений обращайтесь к специалистам за помощью.

Контроллер заряда для АКБ от солнечных панелей: как выбрать

Контроллер заряда аккумуляторной батареи выполняет несколько важнейших функций, которые сводятся к оптимизации схемы питания АКБ, сохранению ресурсов солнечной батареи и предотвращению фатальных поломок. Контроллер регулирует уровень заряда на системах как автономного, так и резервного электропитания.

Покупка контроллера заряда АКБ – на что обратить внимание

Выбирая контроллер, следует обратить внимание на ряд технических параметров, которые позволят получить оптимальную по мощности систему электроснабжения. Прежде всего, следует знать о технологических различиях контроллеров, которые реализованы в основных видах этих устройств, существующих на сегодняшний день.

Схема заряда батареи АКБ

В первую очередь вам нужно выяснить схему заряда вашей аккумуляторной батареи. Существуют две основные технологии: MPPT и PWM. Первая расшифровывается как Maximum Power Point Tracking и переводится с английского как «слежение за точкой максимальной мощности». Устройства, поддерживающие эту технологию, в среднем на 30% эффективнее стандартных PWM-аккумуляторов, так как последние не используют всю мощность солнечной панели, в результате чего часть ее просто теряется. Принцип работы контроллера для АКБ со схемой заряда MPPT основан на обнаружении точек с наивысшей мощностью и распределением всего объема энергии в среде доступа. Последние модели подобных контроллеров обладают сверхвысокой скоростью обнаружения точек максимальной мощности, которая исчисляется секундами, и на 10% превосходят стандартные MTTP-устройства по эффективности в эксплуатации.

Регулировка параметров и выбор схемы заряда

Немаловажным фактором, определяющим срок службы АКБб, является правильно подобранное напряжение в сети. Напряжение на одних и тех же участках заряда различается в зависимости от типа батареи (кислотные, литий-ионные, АГМ, гелиевые, наливные). Контроллер заряда АКБ в свою очередь имеет функционал параметров, позволяющий производить настройку под тот или иной тип аккумуляторного устройства.

Датчик температуры

Показателем качественного контроллера является, среди прочего, наличие встроенного или внешнего датчика температуры. Функция датчика состоит в определении температуры устройства и компенсации температуры напряжений заряда. Это регулирование напряжения заряда в соответствии с температурой аккумуляторной батареи предотвращает преждевременный износ и продлевает срок службы АКБ.

Выбор контроллера с учетом напряжения аккумуляторной батареи

Технические характеристики солнечных панелей и аккумуляторов имеют определяющее значение при выборе подходящей модели контроллера заряда. Изучая ассортимент актуальных на сегодняшний день моделей контролеров, несложно заметить, что они способны работать со всеми возможными уровнями напряжения солнечных панелей и батарей (12, 24, 36 и 48 вольт). Для долговечной работы АКБ должно соблюдаться условие: контроллер соответствует максимальному напряжению устройства энергосбережения.

Ориентация на входное напряжение солнечной батареи

Для того чтобы обезопасить ваше регулирующее устройство от поломки в связи с не гарантийным случаем, необходимо обращать внимание не только на характеристики входного напряжения солнечной панели, но и на так называемый «холостой ход» при невысоких температурах воздуха в окружающей среде. Если этот момент не учитывать, поломка входных каскад регуляторов неминуема. Чтобы верно рассчитать «холостой ход», используйте коэффициент 25%, который будет учитывать увеличение напряжения сети при низком температурном режиме. Приведем наглядный пример. При использовании для электропитания солнечной панели с «холостым ходом» 37,4 вольт в комплекте с контроллером заряда с наивысшей мощностью 150 вольт, необходимо создавать одну цепь не более чем из трех панелей. Считаем по формуле: «холостой ход» * 25% * количество панелей. Получаем 37,4 вольт *25%*3 шт. = 140,25. Превышение максимальной мощности приведет к выходу из строя оборудования.

Выбор по силе выходного тока

Помимо входного напряжения, важным фактором при выборе контроллера является соответствие по силе выходного тока. Расчет производят по формуле: складываем мощности всех батарей и делим получившееся число на напряжение всего объема энергонакопителей в стадии разряда.

Рассмотрим конкретный пример: система содержит солнечную батарею (2250 W) из 9 плит, каждая обладает мощностью 250 W, и вы применяете аккумулятор с характеристикой 48 вольт. По указанной выше формуле вам нужно суммарную мощность разделить на минимальное напряжение аккумулятора в разряженном состоянии, другими словами – минимальное выходное напряжение, что в данном случае соответствует значению 44 В, и далее умножить на коэффициент 25%. Получим: 2250/44*25%= 64 А. Следовательно, для данной системы предпочтительными являются контроллеры с силой выходного тока 64 А и более.

При использовании всех вышеперечисленных правил подбора контроллер минимизирует нагрузки на систему и позволяет получить самый высокий заряд аккумуляторов.

Какой контроллер заряда для солнечных батарей выбрать?

Любая автономная система, которая содержит своем составе аккумуляторные батареи, должны в обязательном порядке предусматривать средства контроля заряда и разряда аккумуляторов. Схема контроллера заряда для солнечных батарей основывается на базе чипа. Он является ключевой частью всего устройства. Сам же контроллер заряда для солнечных батарей представляет собой ключевой элемент гелиосистемы. Контроллер производит отслеживание работы всего устройства, кроме того, он руководит зарядкой аккумулятора солнечных батарей.

Контроллеры отличаются друг от друга следующим:

  • слежение за точкой максимальной мощности;
  • способы регулирования тока (последовательные и шунтовые);
  • алгоритмом заряда;
  • работа контроллера заряда.

При условии, что аккумулятор для солнечных батарей имеет максимальный заряд, контролёр будет производить регулирование подачи тока на него, уменьшая при этом до нужной величины. Если аккумулятор разряжается полностью, то за счёт контроллера будут отключены любые входящие нагрузки.

Необходимость использования контроллера объясняется следующим:

  1. Производится регулирование отключения и включения аккумулятора при заряде и разряде устройства;
  2. Зарядка аккумулятора является многостадийной;
  3. При максимальном заряде осуществляется подключение аккумулятора;
  4. В автоматическом режиме производится подключение зарядки от фотоэлементов.

Важность использования контроллер заряда аккумулятора солнечных батарей обуславливается тем, что выполнение его функций значительно увеличивает эксплуатацию встроенного аккумулятора.

Параметры выбора контроллера

На самом деле существует всего два критерия выбора контроллера:

Основным моментом является входящее напряжение. Высшее значение этого показателя должно быть как минимум на 20 % выше, чем напряжение холостого хода солнечной батареи. При этом важно учитывать, что в летний период, во время высокой солнечной активности, напряжение в солнечных батареях будет выше, чем указано в технических документах.

Номинальный ток. Если предпочтение отдаётся контроллер заряда PWN, то как минимум на 10% номинальный ток должен быть больше тока короткого замыкания. Если же выбор падает на контроллер заряда МРРТ, то внимание следует обратить на мощность.

В обязательном порядке контроллер заряда для солнечных батарей должен иметь определенную защиту. Это позволяет с высокой надежностью эксплуатировать устройство. К защите относится следующее:

  • от перегрева;
  • грозовых разрядов;
  • коротких замыканий;
  • перезаряда;
  • глубокого разряда.

Это не полный перечень. Все зависит от конкретного поставщика и от конкретной модели. В любом случае выбор следует производить по индивидуальным особенностям.

Подбор контроллера заряда по типу АКБ

Каждый тип АКБ отличается друг от друга по отличным программам зарядки. В первую очередь, это зависит от химического состава определенного аккумулятора. Определенные программы заряда имеют разные алгоритмы.

Конечно же, при подборе контроллера не следует забывать о ценовой характеристике. Не стоит отдавать предпочтение самым дешевым вариантам. Лучше всего подбирать средний вариант. Кроме того, всегда можно воспользоваться консультацией специалиста, который поможет определиться с конкретной моделью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *