Что понимают под работой электрического поля
Перейти к содержимому

Что понимают под работой электрического поля

  • автор:

Что понимают под работой электрического тока?

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,708
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Работа в электрическом поле. Потенциал

Работа сил электростатического поля. Понятие потенциала

Когда пробный заряд q перемещается в электрическом поле, можно говорить о работе, совершаемой в данный момент электрическими силами. Для малого перемещения ∆ l → формулу работы можно записать так: ∆ A = F · ∆ l · cos α = E q ∆ l cos α = E l q ∆ l .

Рисунок 1 . 4 . 1 . Малое перемещение заряда и работа, совершаемая в данный момент электрическими силами.

Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.

Обозначив энергию как W , а работу, совершаемую зарядом, как A 10 , запишем следующую формулу:

Обратите внимание, что энергия обозначается именно буквой W , а не E , поскольку в электростатике E – это напряженность поля.

Потенциальная энергия электрического поля является определенной величиной, которая зависит от выбора точки отсчета (нулевой точки). На первый взгляд в таком определении есть заметная неоднозначность, однако на практике она, как правило, не вызывает недоразумений, поскольку сама по себе потенциальная энергия физического смысла не имеет. Важна лишь разность ее значений в начальной и конечной точке пространства.

Чтобы вычислить работу, которая совершается электростатическим полем при перемещении точечного заряда из точки 1 в точку 2 , нужно найти разность значений потенциальной энергии в них. Путь перемещения и выбор нулевой точки значения при этом не имеют.

A 12 = A 10 + A 02 = A 10 – A 20 = W p 1 – W p 2 .

Если мы поместим заряд q в электростатическое поле, то его потенциальная энергия будет прямо пропорциональна его величине.

Понятие потенциала электрического поля

Определение 5

Потенциал электрического поля – это физическая величина, значение которой можно найти, разделив величину потенциальной энергии электрического заряда в электростатическом поле на величину этого заряда.

Он обозначается буквой φ . Это важная энергетическая характеристика электростатического поля.

Если мы умножим величину заряда на разность потенциалов начальной и конечной точки перемещения, то мы получим работу, совершаемую при этом перемещении.

A 12 = W p 1 – W p 2 = q φ 1 – q φ 2 = q ( φ 1 – φ 2 ) .

Потенциал электрического поля измеряется в вольтах ( В ) .

1 В = 1 Д ж 1 К л .

Разность потенциалов в формулах обычно обозначается Δ φ .

Чаще всего при решении задач на электростатику в качестве нулевой берется некая бесконечно удаленная точка. Учитывая это, мы можем переформулировать определение потенциала так:

Потенциал электростатического поля точечного заряда в некоторой точке пространства будет равен той работе, которая совершается электрическими силами тогда, когда единичный положительный заряд удаляется из этой точки в бесконечность.

Чтобы вычислить потенциал точечного заряда на расстоянии r , на котором размещается бесконечно удаленная точка, нужно использовать следующую формулу:

φ = φ ∞ = 1 q ∫ r ∞ E d r = Q 4 π ε 0 ∫ r ∞ d r r 2 = 1 4 π ε 0 Q r

С помощью нее мы также можем найти потенциал поля однородно заряженной сферы или шара при r ≥ R , что следует из теоремы Гаусса.

Изображение электрических полей с помощью эквипотенциальных поверхностей

Чтобы наглядно изобразить электростатические поля, кроме силовых линий используются поверхности, называемые эквипотенциальными.

Эквипотенциальная поверхность (поверхность равного потенциала) – это такая поверхность, у которой во всех точкам потенциал электрического поля одинаков.

Эквипотенциальные поверхности и силовые линии на изображении всегда находятся перпендикулярно друг другу.

Если мы имеем дело с точечным зарядом в кулоновском поле, то эквипотенциальные поверхности в данном случае являются концентрическими сферами. На изображениях ниже показаны простые электростатические поля.

Рисунок 1 . 4 . 3 . Красным показаны силовые линии, а синим – эквипотенциальные поверхности простого электрического поля. На первом рисунке изображен точечный заряд, на втором –электрический диполь, на третьем – два равных положительных заряда.

Если поле однородное, то его эквипотенциальные поверхности являются параллельными плоскостями.

В случае малого перемещения пробного заряда q вдоль силовой линии из начальной точки 1 в конечную точку 2 мы можем записать такую формулу:

Δ A 12 = q E Δ l = q ( φ 1 – φ 2 ) = – q Δ φ ,

где Δ φ = φ 1 — φ 2 – изменение потенциала. Отсюда выводится, что:

E = — ∆ φ ∆ l , ( ∆ l → 0 ) или E = — d φ d l .

Это соотношение передает связь между потенциалом поля и его напряженностью. Буквой l обозначена координата, которую следует отсчитывать вдоль силовой линии.

Зная принцип суперпозиции напряженности полей, которые создаются электрическими разрядами, мы можем вывести принцип суперпозиции для потенциалов:

φ = φ 1 + φ 2 + φ 3 + . . .

Что понимают под работой электрического поля

При перемещении пробного заряда в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 1.4.1):

Рисунок 1.4.1.

Работа электрических сил при малом перемещении заряда

Рассмотрим работу сил в электрическом поле, создаваемом неизменным во времени распределенным зарядом, т.е. электростатическом поле

Электростатическое поле обладает важным свойством:

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.

Следствием независимости работы от формы траектории является следующее утверждение:

Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Силовые поля, обладающие этим свойством, называют потенциальными или консервативными .

На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда и две различные траектории перемещения пробного заряда из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение Работа Δ кулоновских сил на этом перемещении равна

Таким образом, работа на малом перемещении зависит только от расстояния между зарядами и его изменения Δ. Если это выражение проинтегрировать на интервале от = 1 до = 2, то можно получить

Рисунок 1.4.2.

Работа кулоновских сил при перемещении заряда зависит только от расстояний 1 и 2 начальной и конечной точек траектории

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов то при перемещении пробного заряда работа результирующего поля в соответствии с принципом суперпозиции будет складываться из работ кулоновских полей точечных зарядов: Так как каждый член суммы не зависит от формы траектории, то и полная работа результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда , помещенного в эту точку, принимается равной нулю.

Потенциальная энергия заряда , помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе 10, которую совершит электростатическое поле при перемещении заряда из точки (1) в точку (0):

(В электростатике энергию принято обозначать буквой , так как буквой обозначают напряженность поля.)

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.

Работа, совершаемая электростатическое полем при перемещении точечного заряда из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).

12 = 10 + 02 = 1020 = p1p2.

Потенциальная энергия заряда , помещенного в электростатическое поле, пропорциональна величине этого заряда.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля.

Работа 12 по перемещению электрического заряда из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов (φ1 – φ2) начальной и конечной точек:

12 = p1p2 = φ1 – φ2 = (φ1 – φ2).

В Международной системе единиц (СИ) единицей потенциала является вольт (В).

Во многих задачах электростатики при вычислении потенциалов за опорную точку (0) удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:

Потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал φ поля точечного заряда на расстоянии от него относительно бесконечно удаленной точки вычисляется следующим образом:

Как следует из теоремы Гаусса, эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при , где – радиус шара.

Для наглядного представления электростатическое поля наряду с силовыми линиями используют эквипотенциальные поверхности .

Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала .

Силовые линии электростатическое поля всегда перпендикулярны эквипотенциальным поверхностям.

Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы. На рис. 1.4.3 представлены картины силовых линий и эквипотенциальных поверхностей некоторых простых электростатических полей.

Рисунок 1.4.3.

Эквипотенциальные поверхности (синие линии) и силовые линии (красные линии) простых электрических полей: a – точечный заряд; b – электрический диполь; c – два равных положительных заряда

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей.

Если пробный заряд совершил малое перемещение вдоль силовой линии из точки (1) в точку (2), то можно записать:

Δ12 = Δ = (φ1 – φ2) = – Δφ,

где Δφ = φ1 – φ2 – изменение потенциала. Отсюда следует

Это соотношение в скалярной форме выражает связь между напряженностью поля и потенциалом. Здесь – координата, отсчитываемая вдоль силовой линии.

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов:

φ = φ1 + φ2 + φ3 + .

Что понимают под работой электрического поля

Заряженные частицы генерируют в своем окружении электрическое поле. На любой заряд, существующий в электрическом поле, действует сила, приводящая к совершению работы при его перемещении. Основываясь на законе сохранения энергии, следует понимать, что работа сил электрического поля — это изменение энергии на определенном участке цепи.

Определение работы электрополя

Определение работы электрополя

Что такое потенциал

Когда заряженная частица движется в поле, на нее действует сила. Под действием этой силы частица ускоряется, что в конечном итоге приводит к совершению работы. Она может быть положительной, отрицательной или нулевой, в зависимости от направления и величины силы.

Работа, совершаемая статическим электрическим полем, не зависит от траектории перемещения частицы с зарядом. Если эта частица движется по замкнутой траектории, работа сил электрического поля будет нулевой. Поэтому силы называют консервативными, а поле потенциальным. Следовательно, потенциал — это энергетическая характеристика электрополя. Он представляет собой физическую скалярную величину и отображает энергетическое состояние поля. Единица измерения потенциала — вольт.

Определение потенциала

Определение потенциала

Разность потенциалов

Работа в электрическом поле, совершаемая при движении заряженной частицы из одной точки в другую, получила название разницы потенциалов.

Разница потенциалов

Разница потенциалов

Формула для определения разности потенциалов может быть представлена и в несколько другом виде:

Определение разницы потенциалов

Определение разницы потенциалов

Разность потенциалов обычно называют электрическим напряжением, но это утверждение справедливо лишь в том случае, когда отсутствует действие сторонних сил при перемещении заряда в электрическом поле или же этим действием можно пренебречь.

Формула напряжения

Формула напряжения

Если в эту формулу подставить выражение, с помощью которого определяется работа силы однородного электрического поля, то получим следующее равенство:

Альтернативная формула напряжения

Альтернативная формула напряжения

Напряжение определяет, каким будет ток в электроцепи и энергия частицы с зарядом. Величина, отражающая работу, которая совершается за единицу времени, называется мощностью.

Мощность электротока

Мощность электротока

Работа в однородном и неоднородном поле

Однородным называют электрополе, которое можно представить в виде параллельных линий напряженности, то есть, напряженность во всех точках имеет одинаковое значение. Сила действия на заряд в таком поле всегда одинаковая благодаря симметрии.

Изображение однородного электрополя

Изображение однородного электрополя

Когда частица с зарядом движется по замкнутой траектории, она в конечном итоге попадает в свою исходную точку, поэтому величина работы электрического поля равна нулю. Это можно объяснить, исходя из того, что наблюдается нулевое падение потенциала (электрон возвращается в исходное положение). Поскольку потенциал — это работа, деленная на заряд, а разность потенциалов у нас нулевая, то работа и мощность электрического поля также будут нулевыми.

Если заряд перемещается из одной точки в другую под некоторым углом к направлению вектора напряженности, то поле будет совершать работу, которую определяют с помощью такой формулы:

Работа в электростатике

Работа в электростатике

Поле, напряженность которого в разных точках является непостоянной, называют неоднородным. Формула работы в неоднородном электрическом поле выглядит так:

Работа в неоднородном поле

Работа в неоднородном поле

С учетом определения потенциала можно записать:

Выражение для потенциала

Выражение для потенциала

Тогда формула работы примет такой вид:

Определение работы через разницу потенциалов

Определение работы через разницу потенциалов

Следовательно, работа в неоднородном поле, как и в однородном, представляет собой произведение разности потенциалов и заряда. В системе СИ этот параметр измеряется в джоулях.

Работа любого электрополя на произвольном участке цепи определяется с помощью интеграла:

Интегральная формула

Интегральная формула

Если заряд q перемещается в поле, созданном несколькими зарядами, то общая работа будет равна сумме работ, совершаемых в поле каждого заряда:

Суммарная работа

Суммарная работа

Важным аспектом, который следует учитывать, является то, что для перехода заряда из области с более высоким потенциалом в область с более низким потенциалом должна быть приложена определенная сила, вызывающая необходимость совершения работы. Следовательно, такое действие уменьшает разницу зарядов между полюсами. Транспортировка электронов от источника тока к назначенной точке требует использования энергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *