Как сделать постоянный магнит физика 8 класс
Азбука физики
Научные игрушки
Простые опыты
Этюды об ученых
Решение задач
Презентации
Книги по физике
Умные книжки
Есть вопросик?
Его величество.
Музеи науки.
Достижения.
Викторина по физике
Физика в кадре
Учителю
Читатели пишут
Постоянные магниты – это тела, длительное время сохраняющие намагниченность.
Основное свойство магнтов: притягивать тела из железа или его сплавов (напр. стали).
Постоянный магнит всегда имеет 2 магнитных полюса: северный ( N ) и южный ( S ).
Наиболее сильно магнитное поле постоянного магнита у его полюсов.
Постоянные магниты изготавливают обычно из з железа, стали, чугуна и других сплавов железа (сильные магниты),
а также из никеля, кобальта ( слабые магниты ).
М агниты бывают естественные ( природные) из железной руды магнитного железняка
и искусственные, полученные намагничиванием железа при внесении его в магнитное поле.
одноименные полюса отталкиваются,
а разноименные полюса притягиваются.
Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле,
и эти магнитные поля взаимодействуют между собой.
Магнитное поле постоянных магнитов.
В чем причины намагничивания железа?
Согласно гипотезе французского ученого Ампера внутри вещества существуют элементарные электрические токи ( токи Ампера ), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси. При движении электронов возникает элементарные магнитные поля. При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом.
Как выглядит магнитное поле постоянных магнитов?
П редставление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками.
Для постоянного полосового магнита :
Для постоянного дугообразного магнита.
Если к вертушке, сделанной из железных спиц, поднести магнит,
а рядом под вертушкой поставить горелку, то что будет происходить?
Постоянные магниты. Магнитное поле постоянных магнитов
Магнитное поле возникает при наличии движущихся зарядов. Например, при наличии проводника с током. Но все мы видели магниты и в повседневной жизни, хоть в виде тех же значков на холодильнике.
Рядом с такими магнитами ведь никакого проводника с током. Тогда почему они все же обладают магнитными свойствами? Притягивают к себе другие металлические предметы или сами притягиваются к ним? На данном уроке вы узнаете много нового и интересного про магниты, природу их магнитного поля и его свойства.
Постоянный магнит
Начнем с определения. Какие тела называют постоянными магнитами?
Постоянный магнит (или просто магнит) — это тело, длительное время сохраняющее намагниченность.
Что это означает? Если мы вставим в катушку с током обычный железный стержень, он начнет притягивать к себе другие железные предметы. В этот момент он намагничен и обладает магнитными свойствами. Выключим ток — и намагниченность сразу исчезнет.
Но если мы вставим в катушку с током стержень из закаленной стали, после выключения тока он не размагнитится. Он будет сохранять намагниченность (рисунок 1). Такое устройство мы можем называть магнитом.
Получается, что создавать магнитное поле могут всего две вещи:
- проводник с током;
- постоянный магнит.
Объяснение явления намагниченности
Одно из первых объяснений этого явления принадлежало Андре-Мари Амперу.
Как Ампер объяснял намагниченность железа?
Французский ученый говорил о существовании электрических токов. Эти токи по его предположению циркулировали внутри каждой молекулы вещества.
Странное объяснение, не так ли? Дело в том, что в те времена еще не было достаточно знаний о строении вещества. Про атомы еще никто не слышал и не говорил. Так что такое мнение не имело доказательств, ведь природу молекулярных токов никто не мог объяснить.
С тех времен физика шагнула далеко вперед. Как можно теперь объяснить молекулярные токи Ампера?
Давайте вспомним строение атома. Вокруг ядра вращаются электроны. Каждый электрон имеет заряд и находится в движении. Значит, вокруг него существует магнитное поле. Но большинство веществ устроено таким образом, что эти крошечные магниты нейтрализуют друг друга.
В строении веществ, из которых делают магниты, такой нейтрализации не происходит (рисунок 2). Электроны таких атомов вращаются в одном и том же направлении. Поэтому их магнитные поля складываются, и вокруг такого вещества образуется единое магнитное поле.
Искусственные магниты
Постоянные магниты, сделанные человеком, имеют две основные разновидности. Они могут быть полосовыми (рисунок 3, а) и дугообразными (рисунок 3, б).
Полюса магнита
Каждый магнит, как и магнитная стрелка, обладает двумя полюсами: северным ($N$) и южным ($S$).
Что называется магнитными полюсами магнита (рисунок 4)?
Полюса магнита — это те места магнита, где обнаруживается наиболее сильные магнитные действия.
Мы можем это проверить с помощью простого опыта. Возьмем полосовой магнит и динамометр. К динамометру прикрепим железный шарик.
Касаемся шариком магнита в разных его точках, а потом аккуратно его отрываем. При этом следим за показаниями динамометра в момент отрыва. Так мы можем судить о силе притяжения шарика к разным точкам магнита. Опыт покажет, что самое сильное притяжение будет как раз в местах, которые мы называем полюсами (рисунок 5).
Этот же опыт покажет нам что в середине магнита шарик практически не испытывает притяжение.
Нейтральная зона магнита — место магнита, где практически не проявляется притяжения.
Что лучше всего притягивается к магнитам?
Это чугун, сталь, железо и некоторые сплавы. Также притягивается никель и кобальт, но значительно слабее.
Естественные магниты
Также в природе встречаются и естественные магниты. Например, железная руда. Из-за ее свойств ее называют магнитным железняком. Богатые залежи этого минерала зафиксированы на Урале, в Карелии, Курской области и других местах.
Если рядом с железом, сталью, никелем и кобальтом оказывается магнитный железняк, то эти металлы приобретают магнитные свойства. Именно поэтому магнитный железняк и открыл людям возможность наблюдать эти свойства.
Взаимодействие магнитной стрелки и магнита
Теперь возьмем магнит и поднесем его к магнитной стрелке (рисунок 7). Что мы увидим?
Северный полюс магнитной стрелки оттолкнулся от северного полюса магнита. Он притягивается к его южному полюсу.
В это же время южный полюс магнитной стрелки отталкивается от южного полюса магнита и притягивается к северному.
Взаимодействие полюсов магнитов между собой
Так как взаимодействуют между собой полюсы магнитов? Вышеописанные и другие опыты подводят нас к выводам (рисунок 8).
Разноименные магнитные полюсы притягиваются, а одноименные — отталкиваются.
Это легко запомнить. Аналогия проходит с электрическими зарядами: одноименные отталкиваются, а разноименные притягиваются.
При этом сила взаимодействия будет прямо пропорциональна расстоянию между полюсами взаимодействующих магнитов.
Это применимо и к магнитным стрелкам, и к постоянным магнитам, и к электромагнитам.
Но чем объясняется это явление? Все дело в существовании магнитного поля вокруг любого магнита. Магнитные поля взаимодействующих магнитов обоюдно действуют друг на друга.
Разница магнитных и электрических взаимодействий
Хоть мы и провели аналогию с электрическими зарядами, это не позволяет применять нам все законы электричества к магнетизму.
Например, есть одно очень большое отличие. Мы можем разделять электрические заряды. Это происходит при электризации в источниках тока. А вот полюсы магнита неразделимы. Если мы разрежем магнит на части, у нас все равно не получится отделить один полюс от другого. Мы просто получим два новых магнита (рисунок 9).
Разделяемые части могут равными или разными — результата все равно один. Получатся новые магниты, каждый из которых будет иметь два полюса и нейтральную зону.
Магнитное поле, созданное двумя магнитами
Как будет выглядеть магнитное поле, созданное сразу двумя магнитами?
Если два магнита расположить друг к другу одноименными полюсами, то получим результат, показанный на рисунке 11.
Если два магнита расположить друг к другу разноименными полюсами, то получим совсем другую картину (рисунок 12).
Подтверждение вышесказанному вы можете легко получить, проводя тот же опыт с опилками. Опилки выстроятся вдоль магнитных линий, изображенных на рисунках выше.
Упражнения
Упражнение №1
Предложите способ определения полюсов намагниченного стального стержня.
Это можно сделать с помощью магнитной стрелки. Поднесите ее к одному из концов стального стержня. Посмотрите, в каком положении она установится. Если магнитная стрелка повернется к стержню южным полюсом, то этот конец стержня является его северным полюсом (рисунок 13).
К южному полюсу стержня стрелка повернется своим северным полюсом. Помните: разноименные полюса притягиваются, а одноименные — отталкиваются.
Упражнение №2
Какую форму надо придать проводу, чтобы при наличии тока в нем силовые линии его магнитного поля были расположены так же, как у полосового магнита?
Для этого нам нужно намотать этот проводник на катушку. Силовые линии магнитного поля катушки с током расположены так же, как и у полосового магнита (рисунок 14).
Задания
Задание №1
Дугообразный магнит поднесите к листу картона. Магнит не притянет его. Затем положите картон на мелкие гвозди и снова поднесите магнит. Лист картона поднимется, а за ним и гвозди. Объясните явление.
Магниты притягивают к себе не все материалы. Так, картон не притягивается к магниту, поэтому он останется неподвижен.
Когда вы положите картон на гвозди и поднесете магнит, то картон поднимется вместе с гвоздями. Точнее говоря, магнит будет притягивать к себе гвозди (так они сделаны из железа). Под действием магнитного поля магнита гвозди придут в движение и поднимут на себе картон (рисунок 15).
Задание №2
Положите дугообразный магнит на край стола. Тонкую иглу с ниткой положите на один из полюсов магнита. Затем осторожно потяните иглу за нить, пока игла не соскочит с полюса магнита. Игла зависает в воздухе (рисунок 16). Объясните явление.
Когда игла соскользнет с полюса магнита, она все еще будет находиться в его магнитном поле. Магнит продолжит притягивать ее. В этот момент сила натяжения нити уравновешивает силу притяжения магнита. Так будет казаться, что игла зависла в воздухе. Если же расслабить нить, то игла снова притянется к магниту и «прилипнет» к нему.
Постоянные магниты. Магнитное поле Земли
На этом уроке мы с вами познакомимся с постоянными магнитами. Узнаем, что называют полюсами магнита. Выясним, как взаимодействуют между собой магниты. Познакомимся с фактами, свидетельствующими о том, что вокруг Земли существует магнитное поле. Узнаем, где находятся магнитные полюсы Земли и являются ли их положения постоянными. А также выясним, что такое области магнитных аномалий и чем объясняется появление магнитных бурь.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.
Получите невероятные возможности
1. Откройте доступ ко всем видеоурокам комплекта.
2. Раздавайте видеоуроки в личные кабинеты ученикам.
3. Смотрите статистику просмотра видеоуроков учениками.
Получить доступ
Конспект урока «Постоянные магниты. Магнитное поле Земли»
На прошлом уроке мы с вами изучали магнитное поле катушки с током:
Катушку с сердечником называют электромагнитом. Многочисленные опыты по усовершенствованию электромагнитов показали, что если вставить в катушку с током сердечник из закалённой стали, то в отличии от железного стержня, он не размагничивается даже после выключения тока и способен долгое время сохранять намагниченность.
Тела, способные длительное время сохранять намагниченность, называются постоянными магнитами или просто магнитами.
История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Ещё за 600 лет до н. э. в древнем городе Магнесия на территории Малой Азии была обнаружена горная порода, образцы которой притягивали друг друга. По названию города их стали называть магнитами.
А впервые свойства магнитных материалов использовали в Китае: именно там более 4 000 лет назад был сконструирован первый компас.
И лишь в начале XII в. магнитные компасы стали использовать в Европе.
Магниты могут иметь разнообразные форму и размеры. Но наиболее распространены полосовой и подковообразный магниты, которые есть в любом кабинете физики.
Также принято различать естественные и искусственные магниты. Естественные магниты представляют собой некоторые железные руды, которые обладают способностью притягивать к себе находящиеся поблизости небольшие железные предметы и оказывают влияние на компас.
Кусок железа или его сплава можно намагнитить, то есть сделать его искусственным магнитом. Например, если к металлу достаточно близко поднести магнит, то он приобретёт магнитные свойства и будет притягивать к себе другие железные предметы. Однако после удаления магнита он может потерять свою намагниченность.
А одинаковы ли свойства магнита в разных его точках? Чтобы ответить на этот вопрос, проделаем такой опыт. Возьмём полосовой магнит и будем дотрагиваться до него железным шариком, закреплённым на динамометре. По показаниям динамометра в момент отрыва шарика от магнита можно судить о силе притяжения шарика к какой-либо его точке.
Опыт показывает, что притяжение шарика к концам магнита самое сильное, а к середине магнита он практически не притягивается.
Те места магнита, в которых магнитное действие проявляется наиболее сильно, называют магнитными полюсами. У всякого магнита есть два полюса: северный и южный. Для обозначения полюсов магнита, принято южный полюс окрашивать красным цветом, а северный — синим.
Середину магнита, то есть там, где нет притяжения, называют нейтральной зоной.
Заметим, что очень сильным нагреванием или другими воздействиями любой магнит можно размагнитить.
Теперь изучим взаимодействие двух магнитов. Для этого проделаем такой опыт. Закрепим один магнит жёстко к штативу, а другой прикрепим к пружине динамометра.
Поднеся магниты разными полюсами друг к другу, нетрудно заметить, что они начинают притягиваться.
Если же поднести магниты друг к другу одноимёнными полюсами, то они начнут отталкиваться.
При этом сила взаимодействия будет зависеть от расстояния между полюсами и может быть даже больше или равной силе тяжести магнита.
Таким образом, взаимодействие магнитов имеет значительное сходство с взаимодействием электрически заряженных тел. В обоих случаях одноименные полюсы (или заряды) отталкиваются, а разноимённые полюсы (или заряды) притягиваются.
Взаимосвязь магнитных полей и движущихся электрических зарядов впервые попытался объяснить А. Ампер. Он предположил, что внутри каждой молекулы вещества, подобного железу или его сплавам, циркулируют электрические токи.
Вокруг этих токов существуют магнитные поля, которые и приводят к возникновению магнитных свойств вещества. Гипотеза Ампера была очень прогрессивна для начала XIX в., поскольку ещё не было известно ни о строении атома, ни о движении заряженных частиц — электронов вокруг ядра.
Но у электрических и магнитных взаимодействий есть одно очень большое различие. Электрические заряды можно отделить друг от друга. Вспомните электризацию трением или электризацию через влияние. А полюсы магнита неразделимы. Разрезая магнит на части (неважно, равные или неравные), вы не отделите его полюса друг от друга, а будете получать новые магниты. Каждый из них будет иметь нейтральную зону и два полюса: северный и южный.
Взаимодействие магнитов объясняется тем, что вокруг любого магнита существует магнитное поле. Убедимся в его существовании, для чего воспользуемся маленькими магнитными стрелками. Расположим их вокруг полосового магнита. Стрелки мгновенно придут в движение и расположатся в строго определённом порядке.
Это означает, что магнитное поле, существующее вокруг магнита, подействовало с определённой силой на магнитные стрелки и совершило работу. Действие магнитного поля и является подтверждением его существования.
С помощью железных опилок можно получить представление о виде магнитного поля постоянного магнита.
Не трудно заметить, что опилки располагаются в виде цепочек, причём с разной плотностью вокруг полосового магнита. Это говорит о том, что действия, которые оказывает магнит на опилки, в разных точках поля различны. Наиболее сильно это действие проявляется возле полюсов магнита. Чем дальше от полюсов, тем слабее подобное действие, следовательно, тем слабее магнитное поле.
Взаимодействием магнитов объясняется принцип работы компаса.
Стрелка компаса — это лёгкий сильный магнит, который может поворачиваться вокруг вертикальной оси.
А с каким вторым магнитом взаимодействует стрелка компаса? Таким гигантским магнитом является наша Земля. Впервые это доказал английский исследователь У. Гильберт. Он изготовил из магнитного железняка шар большого диаметра — «магнитный глобус». Обходя шар с компасом, он показал, что ориентация стрелки во всех изучаемых точках полностью копирует её ориентацию в различных точках Земли.
Очень упрощённо магнитное поле Земли можно представить в виде магнитного поля полосового магнита, расположенного между Северным и Южным географическими полюсами.
Магнитные полюсы Земли расположены не слишком далеко от географических полюсов нашей планеты. Именно поэтому полюсы всех магнитов получили свои названия — северный и южный, и обозначения — N и S, от голландского «норд» и «сюд».
Многочисленные наблюдения показали, что географические и магнитные полюсы не совпадают. Строго говоря, стрелка компаса указывает направление магнитного меридиана. Её северный конец ориентирован не на Северный географический полюс планеты, а на Южный магнитный полюс Земли.
Кроме того, положение магнитных полюсов нашей планеты непрерывно меняется. Так, например, со второй половины ХХ в. южный магнитный полюс довольно быстро движется в сторону Таймырского полуострова со скоростью около 60 км/год.
А зачем Земле нужно магнитное поле? Оно нужно для того, чтобы защищать нас от нежелательного космического излучения, в частности, излучение Солнца. Оно постоянно испускает потоки различного рода заряженных частиц. Их попадание на Землю в таком количестве вредит живым организмам. Магнитное поле Земли отклоняет эти частицы, и те, подчиняясь магнитным линиям, направляются к полюсам. Именно тогда мы и видим северные и южные сияния.
Но, вторжение такого количества частиц не может пройти бесследно: это вызывает нагревание атмосферы и изменение силы некоторых электромагнитных полей. Такие явления называют магнитными бурями.
Магнитная буря — это быстрые и сильные изменения в магнитном поле Земли, возникающие под действием сильного солнечного излучения. Они часто вызывают неполадки в работе электроприборов (например, помехи в радиоэфире).
И ещё один интересный факт: на нашей планете существуют области, в которых стрелка компаса очень сильно отклоняется от направления линии магнитного поля Земли — это области магнитных аномалий.
Курская магнитная аномалия
Причиной их, в большинстве случаев, являются залежи железной руды в недрах Земли. Одной из крупнейших магнитных аномалий в нашей стране и в мире является Курская магнитная аномалия.
Постоянные магниты
Постоянными магнитами называют тела, способные продолжительное время сохранять способность к притягиванию металлических предметов. Что лежит в основе этого удивительного свойства, как возникает магнитное поле, какие вещества могут обладать такими свойствами? Попробуем разобраться.
Из истории магнетизма
В VI в. до н.э. в древнем Китае был обнаружен минерал (горная порода), который притягивал к себе железные предметы. Китайцы дали ему название “чу-ши”, что переводится как “любящий камень. “Любящий” — в смысле притягивающий.
Слово “магнит” ввели в обиход древние греки в V в. до н.э. Существует легенда, что первые образцы этих необычных “черных камней” были найдены вблизи города Магнесу, где были обнаружены залежи магнетита. Магнит переводится как “камень из Магнесии”.
Магнетит — это железорудный минерал черного цвета, оксид железа Fe3O4, который имеет природные магнитные свойства.
Определение и основные признаки постоянного магнита
Постоянным магнитом называют твердый предмет, способный долгое время сохранять состояние намагниченности. Состояние намагниченности означает наличие магнитного поля, которое воздействует (притягивает) на металлические предметы.
Постоянные магниты могут быть естественного происхождения (магнетит) и искусственными, которые изготавливают из железа, стали, никеля, кобальта и других, более редких металлов. Искусственные магниты получают с помощью намагничивания заготовок в сильном магнитном поле. Эти магниты могут иметь разную форму и размеры.
Основным признаком постоянного магнита является наличие двух магнитных полюсов: южный — S, и северный — N. Магнитные линии направлены снаружи постоянного магнита от северного полюса к южному, а внутри магнита от южного к северному.
Почему у постоянного магнита имеется магнитное поле
В 1820 г. датский физик Ханс Эрстед при исследовании электрических явлений обнаружил, что если вблизи металлического провода разместить магнитную стрелку компаса, то при включении электрического тока стрелка отклонялась на заметный угол. Хотя он и не смог объяснить это явление, но после опубликования этих результатов французский ученый Андре-Мари Ампер высказал предположение, что движение электрических зарядов в проводе — электрический ток, приводит к появлению магнитного поля. Происходит взаимодействие, и на практике стрелка отклоняется.
Эту же идею Ампер использовал для объяснения природы магнитного поля постоянных магнитов. Согласно его теории магнитное поле появляется из-за наличия в магнитах непрерывно циркулирующих круговых токов, которые эквивалентны небольшим магнитикам. Эти токи складываются, усиливают друг друга и создают общее магнитное поле внутри и вне магнита. Магнит в целом представляет собой набор (сумму) этих магнитиков.
Наша планета представляет собой огромный постоянный магнит. Принципиальная схема постоянного магнита Земли, который создает ее магнитное поле, аналогична природе обычного, природного магнита. Ядро Земли имеет внешнюю оболочку из расплавленных металлов (железа, никеля и ряда примесей) при температуре более 4000 К 0 . Раскаленная масса, состоящая из смеси заряженных частиц, вращается вместе с Землей. В результате возникают непрерывно циркулирующие потоки и вихри, которые являются главной причиной появления магнитного поля Земли.
Как и из чего делают постоянные магниты
Магнетиты имеют довольно слабые магнитные свойства. Промышленным способом налажено массовое производство искусственных магнитов различных размеров. Исходными материалами для этого служат сплавы на основе металлов: железа Fe, никеля Ni, кобальта Co, неодима Nd, самария Sm. Заготовки из этих сплавов получают литьем, прессованием или спеканием. Затем они помещаются в очень сильное однородное магнитное поле, создаваемое электромагнитами. Во время воздействия магнитного поля, намагниченные частицы направляются в одну сторону. Так выравнивается полярность будущего магнита. В результате заготовки сильно намагничиваются и становятся самостоятельными постоянными магнитами.
В последнее время большую популярность получили полимерные постоянные магниты (магнитопласты). Их изготавливают из смеси магнитного порошка и полимерной (пластиковой) эластичной добавки, например, резины. Магнитные свойства магнитопластов невысоки, но их вполне достаточно для изготовления различных полезных приспособлений, например, магнитов на холодильник, пластиковых карт, демонстрационных и учебных досок.
Где используют постоянные магниты
Замечательные свойства постоянных магнитов используются в различных областях науки, техники, на производствах, в повседневной жизнедеятельности. Вот только некоторые из них:
- Запись и хранение информации (магнитные ленты, компьютерные дискеты и диски);
- Пластиковые карты различного назначения (финансовые, бонусные, контрольно-пропускные);
- Микрофоны, громкоговорители, звуковая техника;
- Электродвигатели, генераторы, трансформаторы;
- Компасы;
- В измерительных приборах с отклоняющей стрелкой, например, в амперметрах;
- Пластиковые магниты для использования в учебных выставочных целях;
- Магниты на холодильник;
- Изготовление застежек для одежды и сумок:
- Мебельные фиксаторы (закрывание дверок);
- Детские игрушки.
Пальму первенства среди самых мощных искусственных магнитов на сегодняшний день удерживают магниты, в состав которых включены редкоземельные металлы: неодим (сплав Nd-Fe-B) или самарий (сплав Sm-Co). Эти магниты могут сохранять свои свойства, не размагничиваясь в течение 30 лет.
Что мы узнали?
Итак, мы узнали, что постоянные магниты могут быть естественными и искусственными. Согласно теории Ампера магнитное поле появляется из-за наличия внутри магнитов непрерывно циркулирующих круговых токов. Эти токи и создают общее магнитное поле внутри и вне магнита. Самые сильные постоянные магниты изготавливаются с применением редкоземельных металлов: самария и неодима.