Как обозначается катушка на схеме
Перейти к содержимому

Как обозначается катушка на схеме

  • автор:

Индуктивность. Катушки индуктивности

Индуктивностью (применительно к компонентам электрической цепи) называется идеализированный элемент электрической цепи, приближающийся по свойствам к катушке индуктивности, в которой накапливается энергия магнитного поля.

Катушка индуктивности представляет собой проводник, намотанный на сердечник. Сердечник может быть магнитным, либо немагнитным. Схематическое изображение катушки индуктивности показано на рис 1. При работе в электрической цепи катушка индуктивности препятствует изменению протекающего через нее тока. Иными словами, если ток, подаваемый в схему, которая содержит катушку, резко увеличить, то ток в схеме будет нарастать плавно до достижения своего максимального значения.

На рисунке 1 показаны условно-графические изображения катушек индуктивности различных типов [3].

Способность катушки индуктивности препятствовать изменению силы тока, протекающего через нее, носит название индуктивности этой катушки. Индуктивность обозначается буквой L, единицей ее измерения является Генри (Гн). Генри — большая единица индуктивности, значительно чаще используются миллигенри (мГн) = 10 -3 Гн и микрогенри (мкГн) = 10 -6 Гн.

Катушки могут иметь как постоянную, так и изменяемую индуктивность. На рисунке 1 показано схематическое изображение катушки с переменной индуктивностью (рисунки 1в и 1г). Катушки с переменной индуктивностью содержат подстроечный сердечник. Сердечник может изготавливаться из материала, который при введении внутрь катушки как увеличивает индуктивность (например, феррит), так и уменьшает (например, латунь).

Катушки индуктивности с воздушным сердечником, или катушки без сердечника, используются в тех случаях, когда индуктивность не превышает 5 мГн. Они наматываются на керамические или композитные сердечники. Сердечники из феррита или порошкообразного железа обычно используются для индуктивности до 200 мГн.

Тороидальные сердечники имеют кольцеобразную форму и позволяют получить высокую индуктивность при малых размерах. Их магнитное поле сосредоточено внутри сердечника.

Многослойные катушки индуктивности с железным сердечником используются для получения большой индуктивности от 0,1 до 100 Гн. Эта индуктивность зависит от величины тока, протекающего через катушку. Эти катушки иногда называют дросселями. Они используются в цепях фильтрации источников питания для удаления переменных составляющих выпрямленного постоянного тока.

Если постоянное напряжение приложено к катушке индуктивности L через резистор (рис.2) то, для того чтобы в цепи установился максимальный ток требуется время, прямо пропорциональное величине сопротивления и индуктивности. Постоянная времени цепи определяет время, требуемое для увеличения тока в проводнике от нуля до 63,2% или уменьшения до 36,8% от максимального значения. Постоянная времени определяется следующей формулой: t= L/R, где t — время в секундах, R — сопротивление в омах, L — индуктивность в Генри.

Для того, чтобы создать максимальное магнитное поле в катушке индуктивности требуется примерно пять постоянных времени цепи L/R. Такое же время требуется для того, чтобы магнитное поле исчезло.

Катушка индуктивности в цепи постоянного тока имеет очень малое сопротивление (с учетом сопротивления проводника) и не препятствует прохождению постоянного тока. Если к катушке индуктивности приложено переменное напряжение, оно создает магнитное поле. Магнитное поле в свою очередь индуцирует напряжение в витках катушки, которое называется электродвижущей силой (э.д.с) самоиндукции. Э.д.с. самоиндукции сдвинута по фазе на 180 ° относительно приложенного напряжения и противодействует приложенному напряжению.

Реактивное сопротивление катушки индуктивности вычисляется по формуле: XL = j*2*π*f*L, где j — означает поворот вектора по часовой стрелке на 90 ° , L — индуктивность (Гн), f — частота (Гц).

Индуктивное сопротивление является функцией частоты приложенного переменного напряжения и индуктивности. Рост частоты увеличивает индуктивное сопротивление и вызывает увеличение противодействия току. Уменьшение частоты уменьшает индуктивное сопротивление и снижает противодействие току. Данное свойство катушек индуктивности используетя при построении различных электрических фильтров.

Список использованной литературы

1. Атабеков Г. И. Основы теории цепей: Учебник. 2-е изд.,испр.–СПб.: Издательство «Лань», 2006.–432 с.

2. Эрл Д.Гейтс. Введение в электронику: Учебник. — Ростов-на-Дону.: Издательство «Феникс», 1998 год, 640 стр.

3. ГОСТ 2.723-68. Единая система конструкторской документации. Обозначения условные графические в схемах. Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители.

Катушка индуктивности

Обозначение, параметры и разновидности катушек индуктивности

Катушка индуктивности

Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.

Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение.

Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.

Бескаркасные катушки

Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.

Разнообразные катушки индуктивности

Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»). Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10 -3 и 10 -6 Генри. Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.

Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.

Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.

В реальности катушка с сердечником может выглядеть так.

Внешний вид катушки индуктивности с сердечником

Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.

Катушка с подстроечным сердечником вживую выглядит так.

Катушка с подстроечным сердечником

Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.

Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.

В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.

Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.

На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.

В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.

Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор. Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.

После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.

Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.

Схема сетевого фильтра 220V

Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм. на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор. Тогда защита от бросков сетевого напряжения будет практически полной. В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.

Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.

Сетевой фильтр компьютерного блока питания

Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.

Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам. Широко известный выпрямительный диодный мост, у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки. Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).

Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.

Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.

Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX. На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.

Дроссель в выходных выпрямителях блока питания

Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.

Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.

Здесь цифра после точки (L1.1; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.

Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.

Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.

Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.

1.4. Обозначение катушек индуктивности, дросселей, трансформаторов и магнитных усилителей

За основу построения обозначений катушек индуктивности, дросселей, трансформаторов, автотрансформаторов и магнитных усилителей принимают обозначения обмоток, сердечников, корпуса, экрана, знаки регулирования, а также знаки, указывающие виды соединений.

Обмотки обычно изображают в виде окружности (рис. 1.3). Количество полуокружностей и направление выводов не устанавливается. Обозначение сердечников приведено на рис. 1.3, б…д. Ферромагнитный, ферритовый сердечники (магнитопровод) имеют обозначение, изображенное на рис. 1.3, б, ферромагнитный с воздушным зазором (для исключения насыщения сердечника от протекающего по обмотке постоянного тока) – нарис. 1.3, в, магнитодиэлектрический – на рис. 1.3, г; при этом количество штрихов в обозначении не устанавливается. Сердечник, например, из меди, латуни – немагнитного материала обозначается на схемах в соответствии с рис. 1.3, д.

Размеры обозначения катушки индуктивности приведены на рис. 1.3, е. Рассмотрим обозначение на рис. 1.3, ж. В него входят катушки индуктивности с отводами и магнитодиэлектрический сердечник подстраиваемый, т. е. полное обозначение – катушка индуктивности с отводом, подстраиваемая магнитодиэлектрическим сердечником. На рис. 1.3, з показан однофазный трансформатор с неподвижным сердечником. На рис. 1.3, и показан однофазный трансформатор с ферромагнитным сердечником и экраном между обмотками. На рис. 1.3, к приведено обозначение однофазного трансформатора с ферромагнитным сердечником с тремя обмотками. Автотрансформатор однофазный с ферромагнитным сердечником показан на рис. 1.3, л. В широко применяемом на практике в лабораторном автотрансформаторе (ЛАТР) отвод является регулируемым.

Рис. 1.3. Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы и магнитные усилители

При изображении магнитных усилителей рабочая обмотка имеет обозначение, приведенное на рис. 1.3, м, а управляющая – на рис. 1.3, н, где вертикальная линия обозначает сердечник. Для указания начала обмотки используют точку. На рис. 1.3, о изображен магнитный усилитель с двумя последовательно включенными рабочими обмотками и двумя встречно включенными секциями управляющей обмотки. При большом количестве обмоток на сердечнике и большом количестве сердечников в схеме допускается использовать обозначения рис. 1.3, п, р. На схеме вертикальная линия обозначает сердечник, горизонтальная – линию электрической связи между обмотками, наклонная черта указывает на наличие обмотки на данном сердечнике. Конец наклонной черты, расположенный под линией, условно определяет, что соединение произведено с началом обмотки.

1.5. Электродвигатели, предохранители, сигнальные устройства

Общее обозначение электрической машины показано на рис. 1.4, а. Внутри окружности допускается указывать следующие данные: а) род машины (генератор – Г; двигатель – М; тахогенератор – Т; газотурбогенератор ГГ, сельсин Сс и др.); б) род тока, число фаз или вид соединения обмоток в соответствии с ГОСТ 2.750–68. На рис. 1.4, б показан трехфазный асинхронный двигатель с короткозамкнутым ротором. На рис. 1.4, в приведена трехфазная асинхронная машина с фазным ротором, обмотка ротора которого соединена в звезду, а обмотка статора в угольник. На рис. 1.4, г показан двигатель постоянного тока с независимым возбуждением. Размеры условных обозначений приведены на рис. 1.4, д. Общее обозначение плавкого предохранителя дано на рис. 1.4, е, выключателя-предохранителя – на рис. 1.4, ж.

Рис. 1.4. Электродвигатели, предохранители, сигнальные приборы

Предохранители с сигнализирующим устройством приведены на рис. 1.4, з – с самостоятельной цепью сигнализации, рис. 1.4, и – с общей цепью сигнализации. Размеры предохранителя приведены на рис. 1.4, к.

На рис. 1.4, л показано общее обозначение лампы накаливания осветительной и сигнальной. В изображении сигнальных ламп противоположные секторы допускается зачернить. Общее обозначение газоразрядной осветительной и сигнальной ламп приведено на рис. 1.4, м. На рис. 1.4, н…п дано обозначение приборов звуковой сигнализации: рис. 1.4, н – звонок электрический, общее обозначение; рис. 1.4, о – сирена электрическая, рис. 1.4, п – ревун. В полуокружность общего обозначения допускается вписывать обозначение рода тока – постоянный, переменный в соответствии с ГОСТ 2.750–68. Размеры условных обозначений сигнальных приборов приведены на рис. 1.4, р.

Электротехника

Если линии магнитной индукции одной катушки индуктивности пересекают витки другой катушки то эта катушка имеет индуктивную связь со второй катушкой. На рисунке 1 изображены три индуктивно связанных катушки L1, L2 и L3 с общим магнитопроводом, направления токов каждой катушки известны.

Индуктивно связанные катушки

Рисунок 1 — Индуктивно связанные катушки.

Для того чтобы обозначить такое соединение катушек на принципиальной схеме необходимо определить: 1) как катушки соединены друг с другом, 2) направления магнитных потоков каждой катушки. Из рисунка 1 видно что катушка L2 соединена последовательно с катушкой L3 и это соединение соединено параллельно с катушкой L1. Чтобы определить направление магнитного потока катушки можно мысленно обхватить катушку правой рукой так чтобы мизинец, безымянный палец, указательнай палец и средний палец указывали направление тока в её витках и направить большой палец на 90 o в сорону он (большой палец) укажет направление магнитного потока. Если в индуктивно связанных катушках потоки направлены в одну сторону то их соединение называют согласным, если в индуктивно связанных катушках потоки направлены в разные стороны то их соединение называют встречным. После того как на принципиальной схеме обозначены катушки и направления токов в них около катушек ставят точки так чтобы было видно какие из катушек с какими соединены встречно а какие с какими согласно. Если ток одной катушки входит в её сторону с точкой и ток другой катушки входит в её сторону с точкой то эти катушки соединены согласно. Если ток одной катушки входит в её сторону без точки и ток другой катушки входит в её сторону без точки то эти катушки соединены согласно. Если ток одной катушки входит в её сторону с точкой а ток другой катушки входит в её сторону без точки то эти катушки соединены встречно. Учитывая это по рисунку 1 можно составить схему:

Рисунок 2 — Принципиальная схема с индуктивно связанными катушками.

В получившейся схеме, на рисунке 2, соединены согласно катушки L1 и L3, соединены встречно катушки L2 и L3 и катушки L1 и L2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *