При повышении напряжения что происходит с током
Перейти к содержимому

При повышении напряжения что происходит с током

  • автор:

Главный закон электричества для «чайников»

Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.

Сопротивление

Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий.
Расчет сопротивления осуществляется между точками подключения.

Напряжение

В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.

Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.

Сила тока

Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.

Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.

Мощность

Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.

На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.

Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.

Главный закон электрики

Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.

Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.

Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.

Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.

Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.

При повышении напряжения что происходит с током

Построим график зависимости амплитуды тока от частоты подаваемого напряжения, т.е. график функции (6), для разных значений активного сопротивления. Этот график изображён на рис. 6, верхняя кривая соответствует маленькому сопротивлению, нижняя –большому. Из формулы (6) видно, что при частоте, равной нулю, равна нулю также амплитуда тока. В асимптотическом случае при стремлении частоты ω к бесконечности амплитуда тока также стремится к нулю.

Функция имеет единственный максимум, соответствующий минимальному значению знаменателя дроби, при равенстве нулю реактивного сопротивления X = | X L − X C | = | ω L − 1 ω C | . Отсюда следует, что максимальная амплитуда тока наблюдается при частоте, равной ω 0 = 1 L C , т.е. при частоте свободных незатухающих колебаний колебательного контура с индуктивностью L и ёмкостью С. Возрастание амплитуды тока при частоте ω0 является типичным резонансным явлением, а частота ω 0 = 1 L C

Электрический резонанс, наблюдаемый при последовательном соединении активного сопротивления, индуктивности и ёмкости, называется резонансом напряжений. Согласно (10) при резонансе разность фаз между током и напряжением равна нулю, т.е. ток и напряжение совершают колебания в одинаковой фазе. Полное сопротивление цепи при резонансе равно своему наименьшему возможному значению – активному сопротивлению.

Вычислим тепловую мощность, выделяемую в цепи переменного тока. За малое время dt электрические силы в цепи совершают работу d A = U d q = U I d t , где dq – протекающий за это время заряд. Подставляя сюда ток и напряжение из формул (8) и (9), получаем d A = U 0 I 0 cos ω t cos ( ω t − φ ) . Интегрируем это соотношение по времени за один период от нуля до T = 2 π ω , при этом пользуемся тригонометрическим соотношением cos α cos β = 1 2 ( cos ( α-β ) + cos ( α+β ) ) . Таким образом, полная работа электрических сил за один период равна A = 1 2 U 0 I 0 ∫ 0 T ( cos φ + cos ( 2 ω t − φ ) ) d t = U 0 I 0 T cos φ 2 , а второй интеграл равен нулю. Таким образом, средняя мощность электрических сил за период равна

N = A T = 1 2 U 0 I 0 cos φ . (11)

Эта мощность выделяется на активном сопротивлении в виде тепла, константа cosφ в электротехнике обычно называется коэффициентом передачи мощности. При резонансе в цепи сдвиг фаз между током и напряжением равен нулю, следовательно, коэффициент передачи мощности равен единице. Таким образом, в случае резонанса средняя тепловая мощность

N = 1 2 I 0 2 R = U 0 2 2 R .

Эта формула напоминает обычный закон Джоуля – Ленца для постоянного тока, отличие только в двойке в знаменателе. Чтобы избавиться от этой двойки и пользоваться привычной формулой Джоуля – Ленца, вводят эффективные или действующие значения силы тока и напряжения, отличающиеся от амплитудных значений этих величин в 2 раз: U эф = U 0 2 , I эф = I 0 2 . Именно эффективные значения величин измеряют универсальные электроизмерительные приборы, которыми можно пользоваться как в цепях постоянного, так и переменного тока.

Кадр из компьютерного эксперимента приведён на рис. 7. В правом верхнем углу находится поле, на котором помещаются осциллограммы напряжения (синий цвет) и тока (красный цвет). Амплитуда тока рассчитывается по формуле (6). На осциллограмме её можно измерить при помощи линейки, которая перемещается по рабочему полю в горизонтальном направлении при помощи мышки. Сдвиг фаз между током и напряжением вычисляется по формуле (10), на осциллограмме её можно оценить визуально по горизонтальному смещению относительно друг друга синусоид тока и напряжения. В частности, на рис. 7 сдвиг фаз – около 60 градусов, а амплитуда тока около 12 единиц.

В верхнем левом углу рисуется схема соответствующей электрической цепи, вид которой выбирается при помощи четырёх радиокнопок на поле под осциллограммами. В нижнем левом углу помещаются три радиокнопки для задания периода колебаний подаваемого в цепь напряжения.

Распечатка программы данного компьютерного эксперимента приведена в приложении.

Высокое или повышенное напряжение. Как понизить напряжение в сети

0 — текст кнопки «Купить», если = 0, то выводится кнопка «Сообщить о поступлении» 2 Предзаказ — данный тип реализации НЕ учитывает остатки, товар с данным типом можно купить всегда, выводится текст на кнопке «Предзаказ». 3 Только под заказ — данный тип реализации, НЕ учитывает остатки, такие товары изготавливаются под заказ, выводится текст на кнопке «Заказать» —> Купить

Полная мощность 555 ВА в диапазоне сети 145…260 В

0 — текст кнопки «Купить», если = 0, то выводится кнопка «Сообщить о поступлении» 2 Предзаказ — данный тип реализации НЕ учитывает остатки, товар с данным типом можно купить всегда, выводится текст на кнопке «Предзаказ». 3 Только под заказ — данный тип реализации, НЕ учитывает остатки, такие товары изготавливаются под заказ, выводится текст на кнопке «Заказать» —> Купить

Рекомендуем прочитать:

  • Высокое и повышенное напряжение. Причины возникновения
  • Чем опасно высокое и повышенное напряжение
  • Как защититься от высокого напряжения и как понизить напряжение в сети

Высокое и повышенное напряжение. Причины возникновения

Как в наших электросетях могут появиться высокое или повышенное напряжение? Как правило к повышению напряжения могут привести некачественные электрические сети или аварии в сетях. К недостаткам сетей можно отнести: устаревшие сети, низкокачественное обслуживание сетей, высокий процент амортизации электрооборудования, неэффективное планирование линий передач и распределительных станций, не управляемый рост количества потребителей. Это приводит к тому, что сотни тысяч потребителей, получают высокое или повышенное напряжение. Значение напряжения в таких сетях может достигать 260, 280, 300 и даже 380 Вольт.

высокое напряжение в доме, повышенное напряжение в доме, как снизить напряжение в дома

Одной из причин повышенного напряжения, как ни странно, может быть пониженное напряжение потребителей, находящихся далеко от трансформаторной подстанции. В этом случае часто электрики умышленно повышают выходное напряжение электрической подстанции, чтобы добиться удовлетворительных показателей тока у последних в линии передач потребителей. В итоге, у первых в линии напряжение будет повышенным. По этой же причине можно наблюдать повышенное напряжение в дачных поселках. Здесь изменение параметров тока связаны с сезонностью и периодичностью потребления тока. Летом мы наблюдаем рост потребления электроэнергии. В этот сезон на дачах находится много людей, они используют большое количество энергии, а зимой потребление тока резко падает. В выходные дни потребление на дачных участках растёт, а в рабочие дни падает. В результате имеем картину неравномерного потребления энергии. В этом случае, если установить выходное напряжение на подстанции (а они, как правило, недостаточной мощности) нормальным (220 Вольт), то летом и в выходные напряжение резко просядет и будет пониженным. Поэтому электрики изначально настраивают трансформатор на повышенное напряжение. В итоге зимой и в рабочие дни напряжение в поселках высокое или повышенное.

Вторая большая группа причин появления высокого напряжения — это перекосы по фазам при подключении потребителей. Часто бывает так, что подключение потребителей происходит хаотично без предварительного плана и проекта. Или в ходе реализации проекта или развития поселений происходит изменение значения потребления на разных фазах линии передач. Это может привести к тому, что на одной фазе напряжение будет пониженным, а на другой фазе — повышенным.

Третья группа причин повышенного напряжения в сети — это аварии на линиях электропередач и внутренних линиях. Здесь следует выделить две основные причины — обрыв нуля и попадание тока высокого напряжения в обычные сети. Второй случай — это редкость, случается в городах в сильный ветер, ураган. Бывает, что линия питания электротранспорта (трамвая или троллейбуса) попадает при обрыве на линии городских сетей. В этом случае в сеть может попасть и 300, и 400 Вольт.

Теперь рассмотрим, что происходит при пропадании «нуля» во внутренние домовые сети. Этот случай бывает довольно часто. Если в одном подъезде дома используется две фазы, то при пропадании нуля (например, нет контакта на нуле) происходит изменение значения напряжения на разных фазах. На той фазе, где сейчас нагрузка в квартирах меньше, напряжение будет завышенным, на второй фазе — заниженным. Причем напряжение распределяется обратно пропорционально нагрузке. Так, если на одной фазе нагрузка именно в этот момент в 10 раз больше, чем на другой, то мы можем получить на первой фазе 30 Вольт (низкое напряжение), а на второй фазе — 300 Вольт (высокое напряжение). Что приведет к сгоранию электрических приборов и, возможно, пожару.

Чем опасно высокое и повышенное напряжение

Высокое напряжение опасно для электрических приборов. Значительное повышение напряжения может привести к сгоранию приборов, их перегреву, дополнительному износу. Особенно критичны к высокому напряжению электронное оборудование и электромеханические приборы.

высокое напряжение, повышенное напряжение, как снизить напряжение

Повышенное напряжение может привести к пожару в доме, нанести большой ущерб.

Как защититься от высокого напряжения и как понизить напряжение в сети

Чтобы защитить свои сети от повышенного напряжения, пиков высокого напряжения, скачков тока и перенапряжения необходимо использовать устройства защиты от скачков напряжения.
Подробнее смотрите в разделе «Устройства защиты от импульсных перенапряжений» . Чтобы понизить напряжение, нормализовать параметры тока необходимо использовать стабилизаторы. Подробнее смотрите в разделе «Стабилизаторы напряжения».

  • Низкое или пониженное напряжение. Как повысить напряжение в сети
  • Скачки напряжения, защита от скачков напряжения
  • Эффективная защита сети по напряжению

Электрическая мощность и закон Ома

Для анализа и расчета параметров нагревателей, как правило, мы используем различные методы, в частности закон Ома. Этот закон используется в основном для определения неизвестных величин, таких как напряжение, ток, сопротивление и мощность, которые связаны с одним или несколькими элементами электронной схемы. Закон Ома — основной закон теории электрических цепей, который определяет линейную зависимость между напряжением, током и сопротивлением. В данной статье мы постараемся подробно рассказать о законе Ома и его практическом применении.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Закон Ома

Закон Ома — это основной, главный и важный закон теории электрических цепей, который исследует взаимосвязь между напряжением, током и сопротивлением. В нем говорится, что при постоянной температуре ток, протекающий по цепи, прямо пропорционален напряжению или разности потенциалов в этой цепи. В алгебраической форме, V∝ I V = IR Где I — ток, протекающий по цепи, измеряется в амперах. V — напряжение, приложенное к цепи, измеряется в вольтах. А R — это константа пропорциональности, называемая сопротивлением, которое измеряется в омах. Это сопротивление также указывается в килоомах, мегаомах и т. д. Следовательно, закон Ома гласит, что ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению в этой цепи. Закон Ома можно применить как к отдельным частям, так и ко всей цепи. Математически ток, I = V/R Напряжение, V = IR Сопротивление, R = V/I

Треугольник закона Ома

Ниже показано, что отношение между различными величинами в законе Ома называется треугольником закона Ома. Это простой метод описания, а также простой для запоминания соотношения между напряжением, током и сопротивлением.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

На приведенном выше рисунке показан треугольник закона Ома, где отдельные термины, такие как напряжение, ток и сопротивление, и их формулы представлены из основного уравнения закона Ома. На приведенном выше рисунке один параметр вычисляется из оставшихся двух параметров. Таким образом, можно сделать вывод, что при высоком сопротивлении ток будет низким, а ток будет высоким, когда сопротивление низкое, при любом приложенном напряжении.

Электрическая мощность

Электрическая мощность дает скорость, с которой энергия передается по цепи. Электрическая мощность измеряется в ваттах. Эта мощность потребляется, когда напряжение вызывает протекание тока в цепи. Следовательно, электрическая мощность есть произведение напряжения и силы тока. Математически P = VI По закону Ома V = IR и I = V/R Подставляя в уравнение мощности P = I 2 R P = V 2 / R Следовательно, электрическая мощность, P =VI или I 2 R или V 2 / R Это три основные формулы для нахождения электрической мощности в цепи. Таким образом, мощность может быть рассчитана, когда известна любая из двух величин.

Треугольник мощности

Подобно треугольнику закона Ома, на рисунке ниже показан треугольник мощности, чтобы показать соотношение между мощностью, напряжением и током. Уравнения отдельных параметров легко запоминаются по этому рисунку. Округлите и скройте параметр, который необходимо измерить, а положение оставшихся двух параметров дает уравнение для поиска скрытого или округленного параметра, как показано на рисунке ниже.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Круговая диаграмма закона Ома

В дополнение к двум вышеупомянутым концепциям существует еще один метод определения параметров схемы с использованием закона Ома, который представляет собой круговую диаграмму закона Ома. Используя круговую диаграмму закона Ома, можно легко запомнить все уравнения для нахождения напряжения, тока, сопротивления и мощности, которые необходимы для упрощения электрических цепей, которые могут быть простыми или сложными.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

На приведенном выше рисунке показана круговая диаграмма, которая показывает взаимосвязь между мощностью, напряжением, током и сопротивлением. Эта диаграмма разделена на четыре блока для мощности, напряжения, сопротивления и тока. Каждый блок состоит из трех формул с двумя известными значениями для каждой формулы. Из диаграммы для нахождения каждого параметра в цепи мы можем использовать любую из трех доступных формул.

Графическое представление закона Ома

Для лучшего понимания этой концепции ниже приведена экспериментальная установка, в которой регулируемый источник напряжения с шестью ячейками (по 2 В каждая) подключен к нагрузочному резистору через переключатель выбора напряжения. Измерительные приборы, такие как вольтметр и амперметр, также подключены к цепи для измерения напряжения и тока в цепи.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Регулируемый источник напряжения с нагрузочным резистором Сначала подключите резистор 10 Ом и установите переключатель в положение «1». Тогда амперметр показывает 0,2 А, а вольтметр показывает 2 В, потому что I = V/R, т. е. I = 2/10 = 0,2 А. Затем измените положение селекторного переключателя на вторую ячейку, чтобы подать 4 В на нагрузку и запишите показания амперметра. По мере того, как селектор будет постепенно изменяться от первого положения к последнему, мы получим текущие значения, такие как 0,2, 0,4, 0,6, 0,8, 1, 1,2 для значений напряжения 2, 4, 6, 8, 10 и 12 соответственно. Точно так же поместите резистор 20 Ом вместо резистора 10 Ом и выполните ту же процедуру, что и выше. Мы получим значения тока 0,1, 0,2, 0,3, 0,4, 0,5, 0,6 для значений напряжения 2, 4, 6, 8, 10 и 12В соответственно. Постройте график этих значений, как показано ниже.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Графическое представление закона Ома
На приведенном выше графике для данного напряжения ток меньше, когда сопротивление больше. Рассмотрим случай приложенного напряжения 12 В, когда значение тока составляет 1,2 А при сопротивлении 10 Ом и 0,6 Ом при сопротивлении 20 Ом. Точно так же при одном и том же токе напряжение тем больше, чем больше сопротивление. Из приведенных выше результатов следует, что отношение напряжения к току постоянно, когда сопротивление постоянно. Следовательно, зависимость между напряжением и током является линейной, и наклон этой линейной кривой становится тем круче, чем больше сопротивление.

Пример применения закона Ома

Рассмотрим приведенную ниже схему, в которой батарея на 6 В подключена к нагрузке 6 Ом. Амперметр и вольтметры подключены к цепи для измерения тока и напряжения практически. Но используя закон Ома мы можем найти силу тока и мощность следующим образом.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Из закона Ома V = IR I = V/R I = 6/6 I = 1 А Мощность, P = VI P = 6×1 P = 6 Вт Но практически амперметр не показывает точное значение из-за внутреннего сопротивления батареи. Включив внутреннее сопротивление батареи (предположим, что батарея имеет внутреннее сопротивление 1 Ом), текущее значение рассчитывается следующим образом.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Общее сопротивление цепи 6+1=7 Ом. Ток, I = V/R I = 6/7 I = 0,85 Ампер

Цепь фар в автомобиле

На приведенном ниже рисунке показана схема фар легкового автомобиля без схемы управления. С применением закона Ома мы можем узнать ток, протекающий через каждую лампу. Как правило, каждая лампочка подключается параллельно к аккумулятору, что позволяет другим элементам светиться, даже если какой-то из них поврежден. К этим параллельным лампам подводится батарея 12 В, где лампы имеют сопротивление 2,4 каждая (считается в данном случае).

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Общее сопротивление цепи равно R = R1x R2/(R1 + R2), так как они соединены параллельно. R = 5,76/4,8 = 1,2 Тогда ток, протекающий по цепи, равен I = V/R. I = 12/1,2 I = 10А. Ток, протекающий через отдельную лампу, равен I1 = I2 = 5 А (из-за одинаковых сопротивлений).

Закон Ома для цепей переменного тока

В общем, закон Ома можно применить и к цепям переменного тока . Если нагрузка индуктивная или емкостная, то также учитывается реактивное сопротивление нагрузки. Следовательно, с некоторыми изменениями закона Ома, учитывающими влияние реактивного сопротивления, его можно применять к цепям переменного тока. Из-за индуктивности и емкости в переменном токе будет значительный фазовый угол между напряжением и током. А также сопротивление переменному току называется импедансом и обозначается как Z. Таким образом, закон Ома для цепей переменного тока задается как E = IZ I = E/Z Z = E/I Где E — напряжение в цепи переменного тока, I — текущий ток, Z — импеданс. Все параметры в приведенном выше уравнении представлены в комплексной форме, которая включает фазовый угол. Подобно круговой диаграмме цепи постоянного тока, круговая диаграмма закона Ома для цепи переменного тока приведена ниже.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Пример закона Ома (цепи переменного тока)

Рассмотрим приведенную ниже схему, в которой нагрузка переменного тока (сочетание резистивной и индуктивной) подключена к источнику переменного тока 10 В, 60 Гц. Нагрузка имеет сопротивление 5 Ом и индуктивность 10 мГн.

Электрическая мощность и закон Ома ТЕРМОЭЛЕМЕНТ

Тогда значение импеданса нагрузки Z = R + jX L Z = 5 + j (2∏ × f × L) Z = 5+ j (2×3,14×60×10×10-3) Z = 5 + j3,76 Ом или 6,26 Ом при фазовом угле -37,016 Ток, протекающий по цепи, равен I = V/Z = 10/(5+ j3,76) = 1,597 А при фазовом угле -37,016
Для расчета параметров сети для подключения нагревателей вы можете воспользоваться данными в данной статье основными формулами, или же просто позвоните нашим специалистам компании Термоэлемент по телефону и получите полную бесплатную консультацию и помощь с выбором нужных параметров нагревателей для вашей задачи по нагреву.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *