Индекс цветопередачи или CRI (RA)
Свет в доме во многом определяет настроение и атмосферу, с его появлением мир приобретает краски и наполняется жизнью.
Чтобы понять какие именно лампы помогут нам добиться комфортной среды, наряду с мощностью и цветовой температурой нужно обратить внимание на ее цветопередачу. Для начала поймем что же это такое: индекс цветопередачи или colour rendering index — CRI — параметр, характеризующий уровень соответствия естественного цвета предмета видимому (кажущемуся) цвету этого предмета при освещении его данным источником света. Другими словами будут ли окружающие нас предметы такими же по цвету как и при дневном освещении.
В реальной жизни, при освещении лампами с плохой цветопередачей – мы сталкиваемся с искаженным восприятием цветов в окружающем нас пространстве именно из-за того, что источники искусственного освещения имеют низкий коэффициент цветопередачи.
Качественный же источник света должен обеспечивать максимально близкое к естественному отображение цветов.
При этом важно понимать, что цветопередача не определяется цветовой температурой освещения. На протяжении светового дня цветовая температура естественного освещения изменяется от 2000К до 7000К, но при этом глаз человека правильно распознает большинство цветовых оттенков, благодаря способности нашего зрения адаптироваться к цветовой температуре. Светодиодные источники света с разной цветовой температурой (например «теплый белый» (2700К — 3500К) и «холодный белый»(3500К – 6500К)) могут отображать цвета одинаково хорошо. С другой стороны, две различные лампы с одинаковой цветовой температурой (например 3000 Кельвин) могут передавать цвета по-разному, то есть иметь различный индекс цветопередачи.
Даже для источников с очень низкой цветовой температурой, например для пламени свечи (2000К – 2300К), CRI может быть высоким. Но стоит учитывать, что возможность нашего зрения к различению цветов при столь низких цветовых температурах уменьшается.
Можно увидеть разницу в цветопередаче для источников света с разными Ra.
Для источника с Ra=60 цветопередача значительно хуже, чем для 80 или 90.
Эталонным является источник света с показателем цветопередачи Ra=100, который излучает свет, оптимально отображающий все цвета. Чем ниже значения Ra, тем хуже передаются цвета освещаемого объекта.
В большинстве случаев в качестве такого эталонного источника можно использовать дневной свет.
В Таблице 1 приведены примеры различных источников света и типовые значения цветопередачи.
Таблица 1.
Характеристика цветопередачи
Степень цветопередачи
Коэффициент цветопередачи
Примеры ламп
Серная лампа, Лампы накаливания, Галогенные лампы, Люминесцентные лампы с пятикомпонентным люминофором, Лампы МГЛ (Металогалогенные)
Люминесцентные лампы с трехкомпонентным люминофором, светодиодные лампы
Люминесцентные лампы ЛБЦ, ЛДЦ, светодиодные лампы
Люминесцентные лампы ЛД, ЛБ, светодиодные лампы
Лампы ДРЛ (ртутные), НЛВД с улучшенной цветопередачей
Лампы ДНат (натриевые)
При выборе светодиодных ламп стоит ориентироваться на индекс цветопередачи не ниже 80.
Однако, стоит отметить, что при выборе светодиодных ламп или светильников стоит учитывать особенность деятельности в помещениях, которые требуется освещать.
Для примера рассмотрим студию по печати фотографий, либо лабораторию по подбору красок для автомобилей. В данном случае, коэффициент цветопередачи является очень важным параметром, т.к. при плохой цветопередаче очень часто будут возникать ошибки, связанные с определением соответствия цветов, и как следствие дополнительные потери материалов и времени на исправление таких ошибок.
Или другой пример – магазин одежды. Здесь также важно обеспечить правильную цветопередачу, т.к. иначе покупатели могут испытывать разочарование, увидев, что цвет, который они видели в магазине не соответствует тому, что они видят на улице, или дома. Это безусловно будет приводить к потере лояльности клиентов, и как следствие снижение выручки такого магазина.
Методика измерения CRI была разработана Международной комиссией по освещению (МКО) еще в 70-х годах прошлого века. Первоначально методика основывалась на восьми ненасыщенных цветах (TS1 – TS8), с дополнительным TS9 насыщенным красным.
В последствии в нее также были включены еще 4 насыщенных оттенка.
Для более точной оценки качества передачи цвета, Национальным институтом стандартов и технологий США (NIST) была разработана методика Color Quality Scale (CQS). Она основывается на использовании более насыщенных цветов, сильнее подверженных искажениям при искусственном освещении, а также на более совершенных методиках расчета.
Однако она не учитывает насыщенность цветов освещаемых предметов отдельным дополнительным параметром. Это важно, так как особенности спектра освещения могут сделать цвета объекта более «приглушенными» или, наоборот, более яркими. Но CRI или CQS при этом будут одними и тем же.
Для повышения точности определения качества цветопередачи, в августе 2015 года Североамериканским светотехническим обществом (Illuminating Engineering Society of North America — IES) был разработан стандарт ТМ-30-15, который оценивает точность (fidelity) — Rf и насыщенность (gamut) — Rg цвета. Причем для измерений используются не только по цветные шаблоны, но и встречающиеся в повседневности предметы.
На сегодняшний день стандарт IES ТМ-30-15 не является обязательным к исполнению ни в одной стране мира. Тем не менее, производители могут при желании измерять цветопередачу своей продукции и по данной методике в дополнение к измерениям, предусмотренным стандартами, обязательность которых установлена законодательством.
В России измерение индекса цветопередачи определяется ГОСТ Р 8.827-2013 ГСИ «Метод измерения и определения индекса цветопередачи источников излучения», базирующееся на рекомендации МКО CIE 177:2007.
Чтобы не ошибиться в существующем многообразии предложений, или вы сомневаетесь в том, какие светодиодные лампы или светильники оптимально подойдут под вашу задачу, мы с удовольствием поможем вам сделать правильный выбор. В нашем магазине вы получите всю исчерпывающую информацию об осветительном оборудовании.
Все светодиодные лампы в нашем магазине имеют качественную цветопередачу и отвечают необходимым нормам, утвержденным МКО. Также мы всегда рады помочь нашим клиентам в выборе светодиодных ламп, подходящих даже под самую сложную задачу.
Выбираем уличные светильники. Светодиоды vs газоразрядные лампы: кто победит?
В этой статье предлагаем сравнить популярные виды источников света для уличных светильников: ртутные (ДРЛ), натриевые (ДНаТ) и светодиодные.
Если газоразрядные лампы, к которым относятся ртутные и натриевые, в мире светотехники уже давно, то светодиодные составляют им конкуренцию только последние несколько лет. Эксперты сходятся во мнении, что будущее за светодиодами, однако и лампы ДРЛ, и ДНаТ не сдают свои позиции и по-прежнему освещают дороги, парки и дворы.
Что выбрать? Какие светильники эффективнее, экономичнее и долговечнее? И, что немаловажно, экологичнее? Правда ли, что лампы ДРЛ и ДНаТ пора списывать со счетов? Давайте разбираться вместе.
Лампы ДРЛ
Аббревиатура ДРЛ расшифровывается как «дуговая ртутная люминофорная» лампа. Такие лампы имеют в конструкции горелку из тугоплавкого материала, в которую заведены четыре электрода. Во время подачи электрического тока между электродами возникает электрическая дуга, которая выступает светящим элементом в лампах ДРЛ. Ультрафиолетовое излучение дуги преобразуется в видимый спектр излучения с помощью люминофора, нанесенного на внешнюю колбу лампы. Именно люминофор дает красноватое свечение, которое мы привыкли видеть у ртутных ламп.
Для ламп ДРЛ характерна большая мощность (распространены лампы мощностью 250 Вт) и высокий световой поток. Чаще всего они используются при освещении улиц и промышленных объектов, где не требуется высокое качество цветопередачи.
Помимо низкого индекса цветопередачи к существенным недостаткам относят частое мерцание и так называемое старение ртутных ламп. Так, через три месяца светильники теряют порядка 30 % светового потока, через год эксплуатации – уже 40 %. По статистике, лампы ДРЛ служат на 30 % меньше заявленного срока – например, из теоретических десяти тысяч часов работы на практике лампы светят только семь.
Ртутные лампы способны работать при отрицательных температурах, но только до -20 °С – при более низкой температуре зажигание лампы затрудняется. И это тоже один из недостатков технологии ДРЛ.
И, пожалуй, самый большой минус таких ламп – неэкологичность, поскольку лампы содержат ртуть. Чтобы избежать вреда для человека и окружающей среды, утилизировать отслужившие лампы необходимо особым образом. К сожалению, закон предусматривает обязательства по утилизации только для организаций; частные потребители выбрасывают лампы в обычные мусорные баки.
Лампы ДНаТ
ДНаТ – это дуговая (Д) натриевая (На) трубчатая (Т) лампа. Принцип её работы схож с лампой ДРЛ, но здесь источником света служит газовый разряд в парах натрия. Распознать натриевые лампы можно по ярко-оранжевому свету, который они излучают.
Натриевые лампы обладают высокой светоотдачей по сравнению с другими газоразрядными лампами. Это надежный и проверенный временем источник света, не лишенный, и недостатков.
Во-первых, низкий индекс цветопередачи и смещение спектра в сторону красно-оранжевых цветов. Светильники с натриевыми лампами широко применяют в уличном освещении, но при этом редко устанавливают на скоростных автомагистралях: преобладание красного спектра ухудшает видимость и повышает опасность для участников дорожного движения. Во-вторых – высокий коэффициент пульсаций (от 15 до 40 %). И, наконец, длительный старт: время выхода на рабочий режим натриевой лампы может достигать 5–10 минут.
Световой поток натриевых ламп также снижается во время эксплуатации. На светоотдачу влияют и условия работы светильника: при температуре ниже -20 ºС и частых перепадах напряжения происходит ухудшение излучения и теряется его интенсивность.
Светодиоды
Светодиоды, служащие источником света в светодиодных светильниках, представляют собой устройство, в центре которого размещен полупроводниковый кристалл. Этот кристалл состоит из двух материалов: n-типа, обогащенного отрицательными носителями заряда (электронами) и материала p-типа, с положительными носителями заряда. При подаче электрического тока происходит переход частиц из одного полупроводника в другой, в результате чего создаются частицы света – фотоны.
У светодиодных светильников очень высокий КПД – не меньше 90 %, в то время как ртутные и натриевые лампы лишь 50–70 % потребляемой энергии преобразуют в видимый свет. Кроме этого, светодиодные светильники обладают рядом преимуществ, недостижимых для ламп ДРЛ и ДНаТ:
– устойчивость к перепадам напряжения;
– способность работать в широком диапазоне температур (-60… +55 ºС);
– стабильный световой поток на протяжении всего срока службы.
– высокая контрастность и более высокий индекс цветопередачи (Ra 80). Спектр излучения светодиодов безопасен для зрения человека, практически не имеет УФ и ИК-излучений;
– экологичность: в светодиодных лампах нет токсичных материалов (ртути, свинца).
Итак, сравним
Мы сравнили уличные светодиодные светильники ЛУЧ мощностью 90, 150 и 200 Вт и лампы ДРЛ, ДНаТ по четырем параметрам:
– активная мощность, которая говорит об энергозатратах при использовании светильника;
– световой поток в начале эксплуатации;
– световой поток спустя три месяца эксплуатации;
– срок службы лампы.
Отправная точка нашего сравнения – относительно одинаковый световой поток в начале эксплуатации. Как мы видим, уже через три месяца у ламп ДРЛ и ДНаТ он снижается на 30 и 15 %, у светодиодных светильников остается на том же уровне.
Активная мощность меньше всего у светильников на светодиодах: в 2–4 раза ниже, чем у газоразрядных конкурентов. А это значит, что потребители несут в 2–4 раза меньше затрат на электроэнергию.
По сроку службы в нашем рейтинге снова лидируют светодиодные светильники, ведь они служат в 3–6 раз дольше светильников с лампами ДРЛ и ДНаТ. И, как мы помним, сохраняют световой поток во время эксплуатации до 95 % от изначального.
Сегодня по техническим параметрам и безопасности светодиодным светильникам нет равных. Основное препятствие на пути лидерства в освещении – высокая цена. Но высокой она кажется лишь на первый взгляд. Светодиодные светильники служат много лет, и спустя год-два после начала использования полностью оправдывают свою стоимость.
Сравнение ламп ДРЛ, ДНаТ и светодиодных
Характеристики | ДРЛ-250 | ДНаТ-150 | ЛУЧ-220-СТ 90 |
Активная мощность | 280 Вт | 170 Вт | 90 Вт |
Световой поток | 10 500 Лм | 12 000 Лм | 12 600 Лм |
Световой поток через 3 месяца эксплуатации | 7500 Лм | 10 200 Лм | 12 600 Лм |
Срок службы лампы | 12 000 часов | 10 000 часов | 60 000 часов |
Характеристики | ДРЛ-400 | ДНаТ-250 | ЛУЧ-220-СТ 150 |
Активная мощность | 460 Вт | 300 Вт | 150 Вт |
Световой поток | 19 200 Лм | 22 400 Лм | 21 000 Лм |
Световой поток через 3 месяца эксплуатации | 13 440 Лм | 19 040 Лм | 21 000 Лм |
Срок службы лампы | 15 000 часов | 15 000 часов | 60 000 часов |
Характеристики | ДРЛ-700 | ДНаТ-400 | ЛУЧ-220-СТ 200 |
Активная мощность | 820 Вт | 470 Вт | 200 Вт |
Световой поток | 32 800 Лм | 38 400 Лм | 29 700 Лм |
Световой поток через 3 месяца | 22 960 Лм | 32 640 Лм | 29 700 Лм |
Срок службы лампы | 20 000 часов | 15 000 часов | 60 000 часов |
Уличные светодиодные светильники марки ЛУЧ – оптимальная замена светильников с газоразрядными лампами. Выбирайте из каталога светильники мощностью от 60 до 200 Вт и экономьте уже сейчас!
Что такое индекс цветопередачи?
Цветовая температура источника света определяется его теплотой или холодностью и выражается в градусах Кельвина (К). Термин происходит из теории физики. При нагреве объекта, именуемого «абсолютно черным телом-излучателем», его цвет меняется от черного до красного, затем до желтого, белого и, наконец, до голубого. В нижнем участке этой шкалы объект считается «более теплым» по цвету, в то время как в верхнем участке его цвет считается «более холодным». В более теплом диапазоне шкалы свеча будет иметь цветовую температуру приблизительно в 1800 К, в то время как небо в северном полушарии достигнет отметки в 28 000 К. На практике мы обычно рассматриваем цвета источников искусственного освещения в диапазоне приблизительно от 2000 до 10000 К.
Любопытно, что два различных типа ламп могут иметь одну и ту же цветовую температуру, но передавать цвета по-разному. К примеру, люминесцентные лампы SP и SPX компании General Electric имеют приблизительно ту же цветовую температуру, что и лампы накаливания, но у первых гораздо меньше энергия в красной области спектра. За счет этого красные цвета выглядят ярче при освещении лампами накаливания, чем при освещении люминесцентными источниками света. В свою очередь, индекс цветопередачи определяется как мера степени отклонения цвета объекта, освещенного источником света, от его цвета при освещении эталонным источником света сопоставимой цветовой температуры. Термин появился приблизительно в 1960-1970-х годах, когда была разработана система, математически сравнивающая, насколько источник света изменяет расположение в спектральной шкале восьми определенных пастельных цветов по сравнению с теми же цветами, освещенными эталонным источником цвета той же цветовой температуры, согласно определению Международной комиссии по освещению (СIE). Средние различия затем вычитаются из 100, и получается индекс цветопередачи. Шесть дополнительных цветов иногда используются для специальных нужд, но они не применяются для расчета индекса цветопередачи. По определению, если не существует разницы в том, как выглядят цвета предметов, источнику света присваивается индекс цветопередачи 100. Таким образом, при малых различиях CRI будет ближе к 100, в то время как более серьезные различия приведут к получению меньшей величины индекса цветопередачи. Когда происходит сравнение цветовых температур в диапазоне от 2000 К до 5000 К, эталонным источником света является «излучатель черного тела», а с цветовыми температурами выше этого диапазона – дневной свет. Примечательно, что индекс цветопередачи и у ламп накаливания, и у неба северного полушария считается равным 100, притом, что ни один из них не является действительно безупречным. Лампы накаливания очень слабы в освещении синих тонов (попробуйте, к примеру, отличить носок темно-синего цвета от носка черного цвета в комнате, освещенной лампами накаливания). В свою очередь, северное небо при 7500 К слабо при освещении красных тонов. Тем не менее, индекс цветопередачи, вопреки своим ограничениям и слабостям, все еще применим и пригоден для определения «качества» цвета. Изначально CRI был разработан для сравнения источников света непрерывного спектра, индекс цветопередачи которых был выше 90, поскольку ниже 90 можно иметь два источника света с одинаковым индексом цветопередачи, но с сильно различающейся передачей цвета. Технически индекс цветопередачи можно сравнивать только у источников света, которые имеют одинаковую цветовую температуру. Тем не менее, как правило, источники света с высокими индексами цветопередачи (80-100) обычно способствуют тому, что люди и вещи выглядят лучше, чем при источниках света с менее высокими CRI.
Индекс цветопередачи и светодиоды
В настоящее время проводится исследование, согласно результатам которого обнаруживается, что белый свет, получаемый при смешении красных, зеленых и синих светодиодов, предпочтительнее, чем свет, излучаемый галогенными светильниками и лампами накаливания, даже если у последних более высокие показатели индексов цветопередачи. На самом деле в техническом отчете «Цветопередача белых светодиодных источников света» Международной комиссии по освещению указывается: «Технический комитет заключил, что индекс цветопередачи, разработанный комиссией, обычно неприменим для прогнозирования параметров цветопередачи набора источников света, если в этот набор входят светодиоды белого цвета».
Такая рекомендация проистекает из изучения множества академических анализов, в которых рассматривались и покрытые фосфором белые светодиоды, и красно-зелено-синие (RGB) светодиодные кластеры. Обозреватели оценили внешний вид освещенных сцен при использовании ламп с различными индексами цветопередачи и обнаружили, что в целом не существует точной взаимозависимости между классификациями и подсчитанными показателями CRI. Во многих случаях RGB-светодиоды имели индексы цветопередачи в районе 20, но при этом хорошо показывали себя при передаче цветов. Одно из возможных объяснений этому заключается в том, что они обычно склонны повышать воспринимаемую насыщенность большинства цветов без смещения цветопередачи оттенков.
Рекомендации для CRI и светодиодов
Департамент энергетики США рекомендует следующее: «Проводятся долгосрочные исследования и разработки в области создания обновленной метрической системы для оценки качества цвета, которая была бы применима ко всем источникам света. Пока же индекс цветопередачи можно считать одним из информационных параметров при оценке светодиодных изделий и систем на их основе. Он не должен использоваться для выбора конкретного светотехнического изделия без предварительных персональных оценок и тестирования изделия на предполагаемом месте эксплуатации.
1. Определите визуальные задачи, которые будут выполняться при освещении конкретным источником света. Если верность цветовоспроизведения критически важна (к примеру, в пространстве, где цвета или ткани сравниваются и при дневном, и при электрическом освещении), показатели индекса цветопередачи существующей метрической системы могут быть пригодны и полезны для использования в оценке светодиодной продукции.
2. Индекс цветопередачи можно сравнивать только у источников света равной цветовой температуры. Это относится ко всем источникам света, не только к светодиодам. Вдобавок, различия в величинах CRI меньшие, чем пять единиц, не значительны. Это означает, что источники света с индексами цветопередачи в 80 и 84 практически одинаковы.
3. Если внешний вид цвета более важен, чем верность цветовоспроизведения, не исключайте белые светодиоды только по причине их относительно низких показателей CRI. Некоторые светодиодные решения с CRI столь низкими, как 25, все же излучают визуально приятный белый свет.
4. В случаях, когда верность цветовоспроизведения или внешний вид цветов являются важными факторами, оценивайте светодиодные системы лично, и если возможно, на месте предполагаемой эксплуатации.
Тогда зачем же использовать CRI, если у этой величины так много недостатков? В настоящее время это единственная признанная на международном уровне система оценки цветопередачи, которая дает потребителям некоторые ориентиры. Тем не менее, стоит заметить, что в этой области ведет работу Государственный институт стандартов и технологии (NIST) США, разрабатывающий Шкалу качества цвета для решения некоторых проблем существующей системы оценки цветопередачи CRI, но пока еще эта шкала повсеместно не принята.
Дик Эрдманн, инженер-технолог компании GE
CRI: у меня для вас плохие новости
Все, кто разбирался с качеством света светодиодных ламп и все, кто читал мои статьи о светодиодных лампах, знают о таком параметре, как индекс цветопередачи (CRI, он же Ra). Считается, что у качественного света для жилых помещений CRI должен быть не меньше 80.
Недавно я столкнулся с лампой, CRI у которой был вполне приличным — 83.4, но она давала очень неприятный зеленоватый свет.
Я попытался разобраться, что с ней не так.
Индекс цветопередачи или colour rendering index — CRI (ru.wikipedia.org/wiki/Индекс_цветопередачи) — параметр, характеризующий уровень соответствия естественного цвета тела видимому (кажущемуся) цвету этого тела при освещении его данным источником света был предложен в 1965 году.
CRI — это средний уровень передачи восьми цветов R1-R8.
Иногда, помимо CRI, указывается и измеряется индекс передачи красного цвета R9. Этот индекс влияет на качество передачи тона человеческой кожи. На lamptest.ru измеренный индекс R9 указан в карточке каждой лампы.
Ещё в 2007 году Международная комиссия по освещению отметила, что «…индекс цветопередачи, обычно неприменим для прогнозирования параметров цветопередачи набора источников света, если в этот набор входят светодиоды белого цвета», однако так вышло, что все производители светодиодных ламп используют именно CRI.
В 2010 году, для более точной оценки качества передачи цвета, была разработана методика Color Quality Scale (CQS), оценивающая качество света по пятнадцати цветам.
В 2015 года был разработан стандарт ТМ-30-15, который оценивает качество света по 99 цветам.
У хороших ламп значения всех трёх индексов приблизительно равны.
А теперь вернёмся к лампе Gauss 207707102 190Lm 2W 2700K G4 12V, из-за которой я и затеял всё это исследование. Её цветовые индексы выглядят удивительно.
Значение CRI достаточно высокое — 83.4, TM30 Rf — 84.3, а вот CQS очень низкий — 35.8. Похоже, хитрый китаец намешал люминофор так, чтобы хорошо передавались именно те 8 цветов, которые учитываются при измерении CRI. Удивительно, что результат вроде как самого продвинутого индекса TM30 также оказался высоким.
Замечу, что из всех 1244 ламп, параметры которых я измерял, только у одной оказался такой низкий уровень индекса CQS. Даже у самых плохих безымянных китайских лампочек с CRI 60, CQS составляет не менее 50.
Я начал изучать значения CQS у ламп и выяснил, что встречается довольно много ламп, у которых CRI больше 80, а значение CQS составляет чуть выше 70, но свет таких ламп визуально вполне комфортный. А вот у некоторых ламп с CRI больше 80, CQS оказался около 60 и свет таких ламп визуально зеленоватый или желтоватый.
Возникает вопрос, что с этим всем делать. Наверное придётся добавлять на lamptest значение CQS и учитывать его при расчёте итоговой оценки ламп, чтобы не могло получится, что лампа с высоким CRI, но некомфортным светом получала высокую оценку.
P.S: Для развития проекта lamptest.ru ищу
1. PHP-программиста, готового помочь с доработкой сайта.
2. Помощников, готовых заниматься покупкой и возвратом ламп в магазинах.
3. Лаборатории с фотометрическим шаром, готовые бесплатно измерить световой поток десятка моих образцов (для подтверждения точности моих измерений).
4. Человека, делавшего формулу расчёта оценки качества ламп в Excel (всё перелопатил, не могу найти контакты).