Напомните формулу закона Джоуля-Ленца
Закон Джоуля — Ленца (по имени английского физика Джеймса Джоуля и русского физика Эмилия Ленца, одновременно, но независимо друг от друга открывших его) — закон, характеризующий тепловое действие электрического тока.
При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причем количество выделенного тепла будет равно работе электрических сил:
Q = W
Закон Джоуля — Ленца: количество тепла выделяемого в проводнике равно произведению квадрата силы тока, сопротивления проводника и времени протекания.
Q = I2Rt
Остальные ответы
Sattar ZhanatУченик (101) 5 лет назад
как ее разложить
Сопротивление R показывает, сколько теплоты выделяется в проводнике в единицу времени при протекании по нему тока 1А. , т. е. Q=(I)в квадрате *Rt
Q = I*U*t = I2*R*t = U2*t/R . Эта формула — закон Джоуля-Ленца для однородного участка цепи.
Q=I*U*t или Q=i^2*R*t. Англичанин Джеймс Джоуль и русский физик Эмилий Христианович Ленц открыли его почти одновременно
Закон Джоуля Ленца
Источник: https://zakon-oma.ru/zakon-dzhoulya-lenca.php
Закон Джоуля Ленца
В 1841 году английский физик Джеймс Джоуль экспериментально доказал наличие зависимости количества выделяемой теплоты от силы тока. А в 1842 году, независимо от него к тому же выводу пришел русский ученый Эмилий Ленц, измерявший в течение нескольких лет количество времени, необходимое для нагрева спирта в сосуде на 10°С. Окончательное же определение закона Джоуля-Ленца было опубликовано в 1843 году.
Формулировка закона Джоуля-Ленца, основанная на работах обоих ученых, звучит так: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.
Формула для закона Джоуля-Ленца
Q=I2Rt
I – сила тока, [А];
t – время, [с].
R – сопротивление, [Ом].
Приведенная формула выражает закон Джоуля-Ленца для участка цепи. Единица измерения количества теплоты (Q) – джоуль (Дж), является производной единицей и может быть получена из формулы:
1Дж = 1Ом · (1А) 2· 1с.
В неподвижном проводнике, по которому течет постоянный ток работа сторонних сил расходуется на его нагревание. Опытно доказано, что в любом проводнике выделяется количество теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника.
φ1-φ2=U – разность потенциалов на концах проводника, тогда для переноса заряда на этом участке совершается работа
A=q(φ1-φ2 )=qU,
А – работа [Дж];
q – заряд [Кл].
Из определения силы тока следует:
q = It
A = IUt
Учитывая формулу и сказанное выше, получим: Q = A = IUt – закон Джоуля-Ленца в интегральной форме.
Запишем закон Джоуля-Ленца в дифференциальной форме.
∆W=I2R=I(φ1-φ2)=j∆SE∆l=j ⃗E ⃗∆V
∆W – тепловая мощность тока в элементе проводника, [Вт];
∆l – длина проводника, [мм];
∆S – сечение проводника, [мм2];
∆V – объем проводника, [мм3];
j – плотность тока, j = ϭE, ϭ = 1/ρ (удельная электропроводность);
Е – напряженность поля, [В/м].
ω=∆W/∆V=j ⃗E ⃗ – удельная мощность тока.
Отсюда: ω=ϭE ⃗ – дифференциальная запись закона Джоуля-Ленца, характеризующая плотность выделенной энергии
Закон Джоуля-Ленца имеет широкое практическое применение. Так, в электротехнике необходимо учитывать нагревание проводов при расчете теплопотери в линиях электропередач, температуры срабатывания автоматических выключателей, тепловыделения элементов радиотехники и электротехнических приборов, характеристик проводов сетей температуры плавления плавких предохранителей, тепловой мощности электронагревателей. Применение закона Джоуля-Ленца позволяет уменьшить потери при передаче электроэнергии на большие расстояния и поднять напряжения в линиях электропередач. Кроме этого на законе Джоуля-Ленца основана контактная и электродуговая сварка.
Закон Джоуля-Ленца (8 класс)
Как мы знаем, электрический ток может производить разное действие: химическое, магнитное, тепловое и так далее. В сегодняшнем занятии мы рассмотрим тепловое действие тока и описывающие его законы.
Начнем с того, почему вообще наблюдается тепловое действие тока. Рассмотрим для примера металлический проводник, через который бежит электрический ток. Свободные электроны (которые, собственно, и обеспечивают протекание тока) разгоняются электрическим полем. Далее при своем движении они взаимодействуют с ионами вещества и передают им свою энергию. В результате увеличивается интенсивность колебаний ионов, что и выражается в нагреве проводника.
Сформулируем еще раз основную мысль, как происходит передача энергии. Вначале источник тока (например, батарейка) создает в проводнике электрическое поле. Через поле он передает свою энергию свободным электронам. Те, в свою очередь, сталкиваются с ионами и передают свою энергию им. Таким образом, источник тока вызывает нагрев проводника.
Переведем наше качественное объяснение на язык формул. Как мы знаем, работа тока на участке цепи выражается как U*I*t . В неподвижном проводнике вся эта работа переходит в тепловую энергию. Значит, мы можем написать, что Q = A = U*I*t. Наконец, использовав закон Ома и заменив через него напряжение, получим окончательную формулу.
Итак, Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.
Этот закон установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем. По этой причине его называют законом Джоуля-Ленца.
Отметим также, что, в зависимости от поставленной задачи, закон Джоуля-Ленца можно выражать и через напряжение:
Если же нас интересует мощность нагревательного элемента (то есть количество тепла, выделяемого в единицу времени), то ее можно рассчитать по формуле
P = I^2 * R либо U^2 / R
От теории перейдем к практике. Тепловое действие тока широко применяется в различных приборах и установках. Самые очевидные примеры из этой области: электрическая плитка, утюг, кипятильник. В каждом из этих устройств расположен нагревательный элемент из материала с большим удельным сопротивлением. Также отметим, что материал должен выдерживать значительную температуру, не разрушаясь.
Попробуйте теперь самостоятельно определить, в каких еще бытовых приборах используется тепловое действие тока.
- Кофеварка
- миксер
- мясорубка
- тостер
- мультиварка
Сначала запишем все величины, которые нам даны.
Напряжение бытовой сети, к которой подключается электроплитка — 220 В. Ее мощность, как было сказано — 1500 Вт. Удельное сопротивление проволоки возьмем из таблицы, площадь поперечного сечения также дана.
В данном упражнении мы скомбинируем две формулы. Первая из сегодняшнего урока — выражает мощность нагревательного элемента. Вторая изучалась нами ранее — она определяет сопротивление проводника через его параметры. Из них можно выразить интересующую нас длину проволоки.
Как мы видим, расчетная длина проволоки получилась довольно значительной — порядка 6 метров. Чтобы уместить такую длину в достаточно малом объеме электроприбора, проволоку обычно сворачивают в спираль и укладывают «змейкой».
Еще один нагревательный элемент, который всем нам знаком — это обычная лампа накаливания. Ее идея состоит в том, чтобы разогреть металл настолько сильно, чтобы он испускал видимый свет. В выпускаемых лампах температура нити составляет примерно 2.5 тысячи градусов цельсия. Большинство металлов при такой температуре уже плавятся, поэтому для изготовления нити накаливания берут вольфрам. Его температура плавления примерно 3400 градусов цельсия.
Нить лампы, если увеличить ее, представляет уже знакомую нам спираль.
А если увеличить еще — то не просто спираль, а спираль, закрученную в спираль (так называемую биспираль). Это нужно для того, чтобы через многократное увеличение длины достичь требуемого сопротивления нити.
У классической лампы накаливания есть две проблемы.
1. Чтобы нить не окислялась, из колбы откачивают воздух. Однако это приводит к тому, что в вакууме вольфрам интенсивно испаряется, и лампа быстро перегорает. Чтобы избежать этого, современные лампы заполняются инертными газами, например, азотом или аргоном. В результате средний срок службы лампы составляет около 1000 часов.
2. Более серьезным недостатком ламп накаливания является то, что в видимый свет они преобразуют лишь 5% используемой энергии (остальные 95% — не видимое нами инфракрасное излучение). Человечество давно пыталось найти замену столь неэффективным источникам освещения. В частности, были изобретены люминесцентные лампы, которые позже стали выпускаться в компактном виде (для применения в быту).
Теперь же и те, и другие вытесняются светодиодными лампами. Последние имеют значительно бОльший срок службы (10 и более тысяч часов), и намного меньшее потребление энергии. При замене обычных ламп на светодиодные ориентируются на следующее (примерное) правило: «для такой же освещенности требуется светодиодная лампа мощностью в 7 раз меньшей». То есть, например, для замены 100-ваттной лампы требуется всего лишь 14-ваттная светодиодная лампа.
Закон Джоуля-Ленца
Если включить в сеть обычную лампочку или электрочайник, спираль этих приборов начнет нагреваться и выделять тепло. А при работе вентилятора теплового излучения нет, хотя он тоже подключается к сети. Этот феномен объясняет закон Джоуля-Ленца, который широко используется в прикладной электротехнике. В данном материале мы познакомимся с ним, узнаем определение, формулы и физический смысл правила.
15 сентября 2021
· Обновлено 31 января 2024
Закон Джоуля-Ленца
На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.
Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.
Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.
Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:
- количество теплоты в проводнике снижается при увеличении площади его сечения;
- тепловой эффект снижается при уменьшении длины проводника.
Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.
Открыть диалоговое окно с формой по клику
Природа тепла в проводниках
Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.
При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.
Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.
Теперь представим, что мы соединили в одну цепь последовательно два проводника, при этом у второго сечение больше, чем у первого. Во втором столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.
Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.
Какая профессия тебе подходит? Узнай за 10 минут!
Получи больше пользы от Skysmart:
- Подтяни оценки на курсах по физике.
- Выбирай из 890+ репетиторов по физике.
Уравнение Джоуля-Ленца
Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.
Q = A
Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.
Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:
Q = IUt = I(IR)t = I 2 Rt
Q = I 2 Rt
Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.
Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:
I = U/R
Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:
Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.
Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:
При расчетах используют следующие единицы измерения:
- количество тепла Q— в джоулях (Дж);
- силу тока I — в амперах (А);
- сопротивление R — в омах (Ом);
- время t — в секундах (с).
Практическое применение
Применение на практике закона Джоуля-Ленца заключается в том, что тепловым действием электрического тока можно управлять, подбирая проводники с нужным сопротивлением. К примеру, для электрических нагревательных приборов, которые должны выделять максимум тепла, выбирают проводники с высоким сопротивлением.
Низкое сопротивление, напротив, позволяет проводнику практически не нагреваться при прохождении тока. Поэтому на промышленных предприятиях с усиленными требованиями к пожаробезопасности для прокладки линий электропередач используется медный кабель. Удельное сопротивление меди сечением 1 мм 2 равно 0,0175 Ом, в то время как у алюминия оно составляет 0,0271 Ом. Медь практически не нагревается, чем снижает риск возгораний.
Закон Джоуля Ленца
В 1841 году английский физик Джеймс Джоуль экспериментально доказал наличие зависимости количества выделяемой теплоты от силы тока. А в 1842 году, независимо от него к тому же выводу пришел русский ученый Эмилий Ленц, измерявший в течение нескольких лет количество времени, необходимое для нагрева спирта в сосуде на 10°С. Окончательное же определение закона Джоуля-Ленца было опубликовано в 1843 году.
Формулировка закона Джоуля-Ленца, основанная на работах обоих ученых, звучит так: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.
Формула для закона Джоуля-Ленца
- I – сила тока, [А];
- t – время, [с].
- R – сопротивление, [Ом].
Приведенная формула выражает закон Джоуля-Ленца для участка цепи. Единица измерения количества теплоты (Q) – джоуль (Дж), является производной единицей и может быть получена из формулы:
1Дж = 1Ом · (1А) 2 · 1с.
В неподвижном проводнике, по которому течет постоянный ток работа сторонних сил расходуется на его нагревание. Опытно доказано, что в любом проводнике выделяется количество теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника.
- А – работа [Дж];
- q – заряд [Кл].
- q = It
- A = IUt
Учитывая формулу и сказанное выше, получим: Q = A = IUt – закон Джоуля-Ленца в интегральной форме.
Запишем закон Джоуля-Ленца в дифференциальной форме.
- ∆W – тепловая мощность тока в элементе проводника, [Вт];
- ∆l – длина проводника, [мм];
- ∆S – сечение проводника, [мм2];
- ∆V – объем проводника, [мм3];
- j – плотность тока, j = ϭE, ϭ = 1/ρ (удельная электропроводность);
- Е – напряженность поля, [В/м].
- ω=∆W/∆V=j ⃗E ⃗ – удельная мощность тока.
Отсюда: ω=ϭE ⃗ – дифференциальная запись закона Джоуля-Ленца, характеризующая плотность выделенной энергии
Закон Джоуля-Ленца имеет широкое практическое применение. Так, в электротехнике необходимо учитывать нагревание проводов при расчете теплопотери в линиях электропередач, температуры срабатывания автоматических выключателей, тепловыделения элементов радиотехники и электротехнических приборов, характеристик проводов сетей температуры плавления плавких предохранителей, тепловой мощности электронагревателей. Применение закона Джоуля-Ленца позволяет уменьшить потери при передаче электроэнергии на большие расстояния и поднять напряжения в линиях электропередач. Кроме этого на законе Джоуля-Ленца основана контактная и электродуговая сварка.