Рекомендации по проектированию печатных плат
Общеизвестно, что при выполнении любого проекта цена ошибки тем выше, чем раньше она допущена. В данной статье даны рекомендации, которые могут быть использованы при проектировании печатных плат с использованием SMD-компонентов еще на этапе разработки («разводки») платы.
Статья поможет избежать ошибок, существенно усложняющих или даже делающих невозможным изготовление и монтаж платы с использованием современного оборудования, что влечет за собой удорожание и увеличение длительности производства проекта.
Статья построена по принципу вопросов \ ответов, то есть дана попытка ответить на наиболее часто возникающие у заказчиков вопросы. В статье используются рекомендации стандарта IPC-SM-782 Surface Mount Design and Land Patterns ( Руководство по проектированию плат и контактных площадок для поверхностного монтажа ).
Какое должно быть оптимальное расстояние между элементами на печатной плате?
Разумеется, с точки зрения людей осуществляющих монтаж вашей печатной платы, не существует максимального рекомендуемого расстояния между компонентами на печатной плате — чем больше, тем лучше. Однако некоторые проекты требуют как можно более плотного размещения компонентов на печатной плате, поэтому часто приходится находить какой-то компромис. Пример минимальных рекомендуемых расстояний представлен на Рис. 1.
Рис. 1. Примеры минимальных рекомендуемых расстояний между компонентами на печатной плате
Кроме того, не следует размещать компоненты слишком близко к краю печатной платы — расстояние между компонентом и краем платы должно быть не менее 1,25 мм (50 mil).
Как следует размещать компоненты на печатной плате для монтажа ?
При использовании технологий пайки волной или пайки оплавлением в конвекционных печах SMD компоненты должны быть по возможности сориентированы в одном направлении. Для плат, у которых одна из сторон должна паяться волной припоя, предпочтительная ориентация компонентов показана на Рис. 2.
Рис. 2. Ориентация компонентов при использовании технологии пайки волной для компонентов поверхностного монтажа
Предпочтительное расположение компонентов поверхностного монтажа:
— все пассивные компоненты должны быть расположены параллельно друг другу
— все SOIC-компоненты должны размещаться перпендикулярно длинной оси пассивных компонентов
— длинная ось SOIC должна быть параллельна направлению движения платы при пайке волной припоя
Хорошим стилем будет считаться, если компоненты одного типа будут размещены в одном направлении и по возможности сгруппированы вместе (см. Рис. 3).
Рис. 3. Пример расположения (ориентации) компонентов на печатной плате
В какой сетке следует размещать компоненты на плате ?
Для проектов, использующих традиционные компоненты выводного монтажа, рекомендуется сетка 2,54 мм (100 mil), для более плотного размещения, при использовании поверхностного монтажа, сетку размещения можно уменьшить до 1,27 мм (50 mil) или даже до 0,63 мм (25 mil). Применение более мелкой сетки часто бывает неоправдано.
Какой монтаж печатных плат лучше: двусторонний или односторонний ?
Следует различать двусторонний монтаж компонентов на печатную плату и односторонний. Разработчики должны стараться разместить все компоненты на одной стороне ( «основной» стороне ) печатной платы. В противном случае это повлечет за собой удорожание монтажа печатных плат.
Что такое «Реперные знаки» (Fiducial Marks) и для чего они используется?
Данные знаки используются как автономная система координат, имеющаяся в наличии на каждой печатной плате и необходимая для оборудования на всех этапах производства печатных плат и последующего монтажа. Они позволяют оборудованию скорректировать погрешности измерения текущих координат, накапливающиеся в процессе их монтажа.
Существует два вида знаков: общие и локальные.
— Общие реперные знаки используются для всей печатной платы или в случае, если несколько печатных плат объединены в панель.
— Локальные реперные знаки используются для привязки конкретного компонента ( обычно с большим количеством выводов и маленьким шагом между ними ).
Для корректного вычисления координат сдвигов по осям X.Y и поворота рисунка печатной требуется минимум два реперных знака на одной печатной плате, обычно расположенных в диагонально противоположных углах, на максимально возможном друг от друга расстоянии.
Для корректного вычисления координат сдвигов некоторых конкретных компонентов также требуются по два локальных знака, расположенные обычно по диагонали периметра области, занимаемой компонентом. В случае нехватки свободного места можно использовать один локальный знак, предпочтительно в центре занимаемой компонентом области.
Рекомендуемый размер реперного знака — 1,5 мм (60 mil), как для общих, так и для локальных. Иногда используют общие реперные знаки большего размера, чем локальные, но это не всегда является удачным вариантом, так как не все оборудование по производству и монтажу печатных плат способно быстро перестраиваться на различные виды реперных знаков на одной и той же печатной плате. Различные виды реперных знаков изображены на Рис. 4.
Рис. 4. Виды реперных знаков
Минимальный рекомендуемый размер реперного знака — 1,0 мм (40 mil), максимальный — 3,0 мм (120 mil). Между знаком и остальными частями печатной платы должен быть зазор (см. Рис. 5).
Рис. 5. Зазор между реперным знаком и остальными элементами печатной платы
Знак должен быть изображен в слое металлизации печатной платы, раскрыт от паяльной маски и покрыт сверху никелем, золотом или оловом. Между реперными знаками и краем печатной платы должно быть расстояние не менее чем 5,0 мм (200 mil), плюс минимальный требуемый зазор 2R ( R — радиус свободной области вокруг реперного знака ). Хорошим стилем считается размещение реперных знаков на панели печатных плат или отдельной печатной плате в трех точках, как показано на Рис.6.
Рис. 6. Размещение реперных знаков панели печатных плат
— Размещайте все реперные знаки и технологические отверстия в привязке к узлам соответствующей сетки
— Размещайте реперные знаки на обеих сторонах платы.
— Стандартные диаметры технологических отверстий — 2,4мм, 2,8мм, 3,2мм.
— Общий реперный знак нужно располагать минимум в 5 мм от края платы.
Координаты точки привязки — (0,0), два остальных знака расположены по осям X и Y. Общие реперные знаки должны располагаться на всех слоях, содержащих компоненты как для поверхностного, так и для выводного монтажа печатных плат.
Как правильно подводить проводники к контактным площадкам, для того чтобы получить впоследствии хорошее качество пайки печатных плат?
Широкие проводники, подходящие к контактным площадкам, могут помешать хорошему пропаиванию элементов, так как тепло будет «уходить» с площадки по широкому проводнику — в результате пайка получится «холодной». Поэтому часто используются узкие проводники, соединяющие непосредственно контактную площадку и широкий проводник, как показано на Рис. 7.
Рис. 7. Соединение контактной площадки и широкого проводника на печатной плате
Ширина подводящего «узкого» проводника может варьироваться в пределах от 0,25 до 0,125 мм (зависит от технологических возможностей производителя печатных плат).
2. Проводить дорожки между соседними площадками рекомендуется, как показано на Рис. 8 (при условии отсутствия жестких требований к длине проводника).
Рис. 8. Проведение проводников между соседними площадками на печатной плате
3. Вокруг контактной площадки со всех сторон наносят паяльную маску, которая препятствует перемещению расплавленного припоя вдоль проводника. Этот способ может успешно применяться, когда игнорируются лервые из двух вышеперечисленных.
Каким должно быть взаимное расположение переходных отверстий и контактных площадок для обеспечения хорошего качества пайки элементов на печатной плате?
Чрезмерно близкое размещение контактных площадок и переходных отверстий препятствует уходу тепла и припоя с контактной площадки, и как следствие — «холодная» пайка. В этом случае справедливы те же рекомендации, что и для широких проводников. На Рис. 9 представлено рекомендуемое расположение переходных отверстий и контактных площадок на печатной плате.
Рис. 9. Рекомендуемое расположение переходных отверстий и контактных площадок на печатной плате
Что такое панелирование печатных плат и для чего оно применяется?
Монтаж элементов можно производить как на отдельной печатной плате, так и одновременно на нескольких платах, объединенных в панель. Печатные платы или панели с ними, для которых выполняется автоматический монтаж, имеют некоторые особенности:
— обычно на краях панели ( или одиночной печатной платы) оставляют с двух сторон свободную от компонентов полоску шириной от 3,8 (150 mil) до 10 (400 mil) мм. Конкретная ширина полоски зависит от требований конкретного производителя (рекомендуется 10 мм).
— для точной фиксации печатной платы при монтаже и пайке требуется 4 (минимум 2) отверстия, расположенных по углам панели ( одиночной печатной платы ). Эти отверстия (обычно диаметром 3,2 мм) можно также располагать в свободных областях печатной платы.
Примерное построение панели показано на Рис. 10.
Рис. 10. Вид законченной печатной платы для автоматизированного поверхностного монтажа
Каким образом разделить печатные платы, объединенные в панель?
Несколько небольших печатных плат, объединенных в одну панель, после завершения монтажа требуют разделения. Существует два основных метода разделения и их различные модификации (см. Рис. 11 и 12):
1) Фрезерование с последующим выламыванием плат из панели.
Рис. 11. Метод фрезерования с последующим выламыванием плат из панели
2) Скрайбирование ( при этом линии скрайбирования должны быть прямыми и проходить от одного края панели к другому через всю панель )
Рис. 12. Разделение плат, объединенных в одну панель, методом скрайбирования ( фрезерование на 1/3 глубины )
Окончательный выбор между этими способами зависит от технологических возможностей вашего производителя печатных плат.
Журнал «Компоненты и технологии»
№45 от 5 мая 2002 года
Работа подразделения лазерной резки трафаретов в новогодние праздники:
В 2014-2015 году отгрузка заказов будет производиться до 30/12/2014 включительно. В течение всех праздничных дней заказы можно присылать как на электронную почту, так и через сервис заказов круглосуточно. Почта нами будет проверяться. Заказы будут обработаны и, по мере накопления, будут изготовлены и отправлены сразу же в первые послепраздничные дни (начиная с 12/01/2015).
В 2013 году отгрузка заказов будет производится до 30/12/2013 включительно. В течение всех праздничных дней заказы можно присылать как на электронную почту, так и через сервис заказов круглосуточно. По мере накопления они будут изготовлены и отправлены в первые послепраздничные дни (09-10/01/2014).
Для заказа стала доступна новая толщина стали — 0,180мм. Рекомендуется для клеевых трафаретов и различных деталей.
Для заказа стала доступна новая толщина стали — 0,250мм. Рекомендуется для клеевых трафаретов и различных деталей.
Также на склад поступили ранее закончившиеся толщины 0,08мм, 0,1мм, 0,2мм, 0,3мм. В настоящий момент все толщины есть в наличии.
Сообщаем о начале работы нашего нового подразделения PRONTO5 (www.pronto5.ru).
Подразделение занимается срочным изготовлением единичных партий деталей. Изготовлением производится фрезерованием из металлов и пластиков.
PRONTO5 оснащено мощным 5-координатным вертикальным фрезерным обрабатывающим центром и высокоточной портальной координатно-измерительной машиной.
Подробнее о наших возможностях можно узнать на нашем сайте www.pronto5.ru
Подразделение «Лазер-Трафарет» фирмы «Таберу» первой в России освоила выпуск многоуровневых трафаретов с переменной толщиной материала!
«Лазер-Трафарет» производит многоуровневые трафареты как с уменьшением (Step-Down Stencil), так и с увеличением толщины материала (Step-Up Stencil). В настоящее время отработана технология производства двух, трёх и четырёхуровневых трафаретов.
Многоуровневый трафарет дает уникальную возможность наносить за один проход ракеля разное количество пасты через одинаковые по размерам апертуры. Это собенно ценно при сборке узлов, в которых применяются компоненты с различными количественными требованиями по нанесению пасты.
Все трафареты на предприятии производятся на немецком оборудовании LPKF в соответствии с рекомендациями IPC.
Отдельно предлагается полная электрополировка трафарета, облегчающая прохождение паяльной пасты через апертуры.
Усиление края трафарета выполняется с помощью наварки контактной сваркой дополнительных полос из материала 0,2мм, в районе расположения апертур перфорации.
— Позволяет снизить вероятность прорыва перфорации для трафаретов из тонких материалов (от 0,1мм и менее).
— Увеличивает жесткость трафарета на скручивание
— Делает трафарет более безопасным в использовании, из-за притупления острого края
Мы рады сообщить, что несмотря на аномальные погодные условия мы снимаем ограничения на изготовление печатных плат со сроками 1, 2 и 3 недели. Временно платы будут изготавливаться без электротестирования, но со 100% автоматическим оптическим контролем.
В нашем ассортименте материалов появилась новая толщина — 0,120мм.
Кроме того, в наличии имеются толщины 0,08мм и 0,100мм, временно отсутствовавшие на производстве.
В нашем ассортименте материалов появилась новая толщина — 0,120мм.
Кроме того, в наличии имеются толщины 0,08мм и 0,100мм, временно отсутствовавшие на производстве.
Мы рады предложить новую услугу при заказе трафаретов для монтажа.
При заказе электрополировки бесплатно выполняется ультразвуковая
очистка трафарета в специальном активном растворе, устраняющим мельчайшие
дефекты лазерной резки.
Благодаря воздействию мощного ультразвука раствор проникает
во все отверстия трафарета и очищает их от остатков мелких частиц металла и
окалины, возникающих при лазерной резке.
Специальный активный раствор воздействует на саму сталь трафарета, заставляя
сглаживаться все мелкие неровности на поверхности трафарета и, что самое важное,
на внутренних стенках апертур.
Используемая процедура очистки отличается от обычной ультразвуковой промывки
трафарета моющими растворителями, применяемыми при мойке трафаретов, поскольку
используется активный раствор, воздействующий на саму сталь трафарета.
Данная операция выполняется всего один раз, при финишной электрополировке
трафарета.
Использование ультразвуковой очистки, совместно с электрополировкой трафарета
позволяет:
— Улучшить пропускную способность трафарета для паяльной пасты.
Отпечатки пасты получаются более четкими. Как следствие, сокращается время
трафаретной печати и увеличивается время эксплуатации трафарета между циклами
отмывки.
— Улучшить качество поверхности трафарета и ее защитных свойств против
воздействия растворителей, применяемых для отмывки трафаретов. Из-за
гладкой поверхности трафарет легче и быстрее моется
— Уменьшить вероятность образования перемычек пасты при поднятии трафарета
— Снять легкий нагар от лазерной резки с поверхности трафарета и внутренних
стенок апертур
Выполнение финишной ультразвуковой очистки, совместно с электрополировкой
рекомендуется для трафаретов с применением апертур для мелкошаговых
(0,5мм и менее) микросхем и компонентов БГА.
ВНИМАНИЕ!
Цена на паяльную пасту SMT623602-38 СНИЖЕНА НА 20% !
Поторопитесь, количество пасты по спецпредложению ограничено.
Подробную информацию по паяльным пастам можно получить в торговом отделе:
Телефон\факс: +7(495)995-3408
e-mail: trade@smtservice.ru
С 2009 года мы включили несколько технологических новинок, входящих в базовую стоимость трафарета для поверхностного монтажа:
— Подготовка заказа нашим инженером, в соответствии с требованиями Заказчика
— НОВИНКА: Лазерная резка в среде кислорода, что повышает качество реза лазера и чистоту апертур
— НОВИНКА: Проверка трафарета на специализированной системе Автоматической Оптической Инспекции трафаретов с приложением отчета проверки к заказу (для заказов свыше 1000 апертур)
— НОВИНКА: Контрастная маркировка с полной информацией о заказе (название файла, номер заказа, толщина материала, сторона печатной платы, дата изготовления) выполняемая со стороны трафарета, обращенной к оператору при работе
— Герметичная упаковка с жесткой подложкой и ручкой для переноски, пригодная для последующего хранения трафарета
— Материал трафарета
Опции при заказе трафарета:
— НОВИНКА: Финишная электрополировка трафарета
— НОВИНКА: Сквозные реперные знаки с заполнением черным красящим веществом (Cut Through, Filled with Contrasting Epoxy по IPC-7525)
На склад поступил материал толщиной 0,3мм. В настоящий момент все заявленные толщины материала доступны для выполнения заказов.
Авторазмещение элементов и автотрассировка печатных плат
На написание статьи меня подтолкнула программа, на которую я наткнулся в поисках способов автоматизации разработки печатных плат (а упоминаний, тем более статей про неё я на хабре не нашёл). Но, обо всём по порядку.
Итак, конструкция разработана, собрана на макетной плате, проверена в действии. Дальше — печатная плата. Если верить форумам, то многие (в том числе и мои знакомые) используют Sprint-Layout. Но ведь это ручная работа, тот же карандаш и бумажка, только в электронном виде. Зачем все эти ядра процессора и гигабайты памяти, если приходится всё равно работать ручками? Признаюсь, меня это всегда коробило.
Сейчас я расскажу, как добился удовлетворительного для меня результата в автоматическом режиме.
Красивая картинка для привлечения внимания
А использовал я связку Proteus плюс TopoR Lite.
Сразу скажу, что к данным продуктам имею отношение лишь как пользователь и ни в коем случае не рекламирую их. Тем более, что Proteus можно спионерить найти на просторах интернета (конечно же в ознакомительных целях), а TopoR Lite бесплатен (с некоторыми ограничениями).
Почему именно эти программы?
Изначально пользовался Proteus. Не помню, с чего началось, но меня вполне устроило: можно рисовать схемы, моделировать работу, разводить платы. Первые два получались хорошо, последнее не нравилось, искал идеал.
Я пытался рисовать схему в Eagle. Но то ли я рукожопый, то ли нужны особые привычка и сноровка, в общем, мне не понравилось. Сначала я долго не мог понять, как добавить элемент. Потом оказалось, что нужно подключать библиотеки с необходимыми элементами. А откуда я знаю, как называется библиотека, если я и названия элемента-то не знаю (например, разъёмы я ищу исключительно по картинкам). В Eagle по умолчанию не оказалось нужных мне Attiny2313 и Atmega328. Пришлось гуглить/скачивать/копировать нужную библиотеку. Ну и шины питания в Proteus подключены сразу (и даже эти пины у микросхем скрыты, чего внимание отвлекать), а тут пришлось раскидывать их явно. Итогом через полчаса тыканий оказалась одна микросхема, подключенная к питанию.
Я пытался рисовать в DipTrace. В принципе, рисовать удобно. Однако нет (или не нашёл) симуляции работы, мне это нужно и для отладки схемы, и для отладки программ МК. Взгруснул и вернулся в ISIS.
Зачем внешний трассировщик TopoR, если в ARES есть встроенный? Он уныл. Те цепи, которые не может развести, он просто бросает. Если с двусторонней разводкой этого почти не происходит, при односторонней и минимальных габаритах платы получается ужас. А поскольку текстолит у меня односторонний, да и делать двусторонние платы сложнее, я решил — хочу с одной стороны плюс перемычки.
Авторазмещение в ARES тоже ужас, но альтернатив я не нашёл, а вручную делать ничего не хочется. Как говорится, на безрыбье и щуку раком.
Итак, предлагаю рассмотреть средства автоматизации на стандартном примере из Proteus 8 — Thermo.
Переходим в ARES, удаляем всю ту красоту, что наделали хитрые создатели Proteus и нажимаем на Auto-placer. Тут открывается ещё один недостаток этого инструмента: он умеет помещать компоненты только на одну сторону платы (я полчаса потратил в поисках решения, пока в справке не прочёл, что это невозможно). Т.е. если вы используете и SMD корпуса, и обычные и хотите, чтобы они были с разных сторон платы — придётся ручками перемещать компоненты с одной стороны на другую, причём каждый по-отдельности.
Итогом авторазмещения становится такая картина:
Дабы посмотреть, как в ARES работает автороутер, идём в Design Rule Manager, выставляем дороги POWER и SIGNAL только с одной стороны (у меня Top Copper), ширину T25 (чтоб с ЛУТ проблем не было) и запускаем Auto-router.
Вот что получается:
То есть 43 дорожки он не развёл и придётся делать перемычки.
Что ж, давайте опробуем TopoR.
Опять же нажимаем Auto-router, там Export Design File и сохраняем. В TopoR Импорт -> Specctra и открываем файл. Теперь надо немного настроить. В Параметрах дизайна (F4) удаляем лишние 14 слоёв, в Ширине проводников ставим от 0,3 до 0,6 мм. Нажимаем кнопку Автотрассировка, в настройках галки Переназначить функционально эквивалентные контакты компонентов (на всякий случай: мне показалось, что данная опция не совсем работает или даже совсем не работает), Однослойная трассировка и жмём кнопку Запустить. Трассировщик автоматически сохраняет лучшие варианты, которые потом можно добавить в проект. Трассировка закончится только после нажатия кнопки Остановить. Обращу внимание, что перемычки расставляются автоматически, и даже размещаются контактные площадки под них. Я дождался, пока количество переходов не достигло 30 (т.е. 15 перемычек):
15 перемычек против 43 в ARES — гораздо лучше!
Потратив 5 минут и чуть переместив компоненты/раздвинув границы платы можно получить 10 переходов (5 перемычек), что уже допустимо:
А как по мне — 5 минут перемещать уже накиданное гораздо веселей, чем с нуля всё раскладывать по плате.
Белые кружочки — нарушения DRC (дорожки/компоненты расположились слишком близко). Не беда — вручную чуть передвинем эти самые компоненты и дорожки и нажмём F7 — они аккуратно перепроложатся, ошибки устранены (впрочем, я видел, как эта самая F7 глючит: после очередного нажатия ложит одну из дорог поверх нескольких других, а потом ругается об ошибке).
Специфичная для TopoR кривизна дорожек веет тёплой ламповостью и напоминает про времена, когда платы разводили карандашом на листочке в клеточку, а на текстолите рисовали нитрокраской/нитролаком и иголкой/шприцем/пастиком гелевой ручки. Лично меня это прёт.
Когда результат получится удовлетворительный, можно либо экспортировать плату, либо распечатать прямо из программы (есть даже галочка Зеркальное отображение, видимо специально для ЛУТ).
Пример реальной платы:
Полигоны в TopoR рисовать можно, причём сплошные/штрих/сетка, но я про них забыл. На этой плате нарисовал их маркером для дисков. Штрихованные пятачки — как раз перемычки.
Буду рад, если статья помогла кому автоматизировать нудные процессы. Буду благодарен, если расскажете про более удобные инструменты для авторазмещения и автотрассировки (особенно авторазмещения).
Монтаж печатных плат
Во многом качество SMT-монтажа обеспечивается еще на этапе проектирования печатного узла. Для того чтобы уменьшить вероятность возникновения проблем при монтаже, а также снизить его стоимость, необходимо учитывать требования предприятия, производящего монтаж. Их соблюдение позволит получить наиболее полную реализацию тех преимуществ, которые заключает в себе технология поверхностного монтажа.
Некоторые из приведенных здесь сведений носят общий характер и применимы к любому производству. Они основаны на рекомендациях и стандартах организаций IPC (Institute for Interconnecting and Packaging Electronic Circuits) и JEDEC (Joint Electronic Device Engineering Council). Другие сведения были получены нашими специалистами на основе собственного опыта работы с нашим оборудованием.
Размещение компонентов
Применяемое оборудование позволяет размещать компоненты с минимальным расстоянием друг от друга 0,2 мм, а от края платы — 1 мм (при условии наличия технологических полей на заготовке). Но использование максимальных технических возможностей не всегда оправдано. Например, слишком близкое размещение компонентов очень сильно снижает ремонтопригодность изделия, оптическую инспекцию компонентов, проверку паяных соединений. Близкое расположение компонентов, разных по размерам и теплоемкости может сказываться на качестве пайки.
Кроме того, важно учитывать, что размеры корпусов многих компонентов выходят за размеры контактных площадок, поэтому при создании графики компонентов необходимо прорисовывать их реальные габариты или зону, занимаемую компонентом, с учетом пространства, необходимого для инспекции и ремонта. Это поможет правильному размещению компонентов и позволит избежать ошибок.
Рекомендуемые зазоры: 0,6. 0,8 мм между чип-компонентами; 1 мм — между чип-компонентами и крупными элементами платы и 1,2. 1,5 мм — между микросхемами и крупными компонентами, и 1,5 мм между SMD и выводными компонентами (см. рис.1).
Ориентация компонентов не имеет значения, т. к. на нашем предприятии метод пайки волной припоя не применяется.
Располагать SMD-компоненты на обеих сторонах печатной платы стоит только в том случае, если габариты платы, всевозможные ограничения на зазоры между проводниками, контактными площадками и другими элементами платы и прочие требования не оставляют выбора. В этом случае увеличивается затраты и время на подготовку и монтаж (изделие дважды проходит стадию монтажа, для него дважды пишутся программы на оборудование, дважды происходит его переналадка, изготавливается два трафарета, стоимость монтажа каждой стороны платы рассчитывается как за отдельное изделие). Кроме того, значительно возрастает стоимость тестового оборудования для проверки таких печатных плат.
Рис. 1. Расстояние между компонентами
В том случае, если одностороннее размещение компонентов невозможно, рекомендуется небольшие, например, пассивные, компоненты разместить на одной стороне платы, а микросхемы и другие «тяжелые» компоненты — на другой стороне.
На двусторонних платах тяжелые и крупногабаритные компоненты необходимо располагать с одной стороны печатной платы, чтобы избежать подклейки и/или проблем при пайке второй стороны.
Контактные площадки
Чтобы избежать перетекания припоя, произвольного смещения компонентов и других дефектов пайки, нельзя допускать расположения переходных отверстий на контактных площадках элементов или в непосредственной близости от них. Как уже говорилось, необходимо, чтобы контактные площадки компонентов были отделены от переходных отверстий, других контактных площадок и т.д. паяльной маской.
Подобное правило очень важно для микросхем с малым шагом выводов — их контактные площадки обязательно должны быть разделены маской. Переходные отверстия, расположенные в непосредственной близости от контактных площадок, необходимо закрыть паяльной маской.
Рис. 3. Контактные площадки и переходные отверстия
Элементы, расположенные внутри полигонов, должны быть отделены от них термобарьерами. Это позволит избежать неравномерного прогрева разных контактных площадок одного и того же компонента во время пайки и, как следствие, смещения этого компонента, дефектов «холодной пайки», «надгробного камня» и т. д.
Так же необходимо соединять контактные площадки и широкие проводники не напрямую, а узким проводником. Параметры этого соединительного проводника выбираются в зависимости от проходящего по нему тока. Это позволит избежать эффекта «холодной пайки».
Рис. 4. Разделение контактных площадок и полигонов
Одним из наиболее важных моментов при проектировании печатных узлов является соблюдение форм и размеров контактных площадок. Именно несоответствие этих параметров зачастую приводит к возникновению таких нежелательных явлений, как эффект «надгробного камня» или «транспаранта», непропай одного из выводов компонента, отсутствие контакта в паяном соединении, недопустимо большое смещение элемента. Поэтому при проектировании изделия необходимо учитывать рекомендации производителей компонентов, пользоваться их спецификациями, а для наиболее распространенных компонентов — стандартами IPC и JEDEC, и в частности, новым стандартом IPC-7351A, регламентирующим размеры контактных площадок и другие параметры печатных узлов, критичные для поверхностного монтажа плат.
Рис. 5. Маска между КП микросхем с малым шагом
Микросхемы в корпусах BGA
При проектировании контактных площадок под компоненты в корпусе BGA мы настоятельно рекомендуем внимательно ознакомиться и следовать рекомендациям разработчиков микросхем. Среди общих моментов, касающихся контактных площадок таких компонентов, можно выделить следующее.
Контактные площадки BGA, также как и других компонентов, должны быть изолированы термобарьерами от полигонов питания и «земли».
Переходные отверстия должны быть отделены проводником и закрыты маской. Различают два типа контактных площадок под BGA в зависимости от вскрытия вокруг них паяльной маски: NSMD — Non Solder Mask Defined — не определенные вскрытием от паяльной маски, и SMD — Solder Mask Defined, то есть определенные паяльной маской. В первом случае площадка и небольшая область вокруг нее полностью вскрыты от маски (Рис.6а). Во втором случае вскрытие от маски выполняется с небольшим покрытием контактной площадки маской (Рис.6б).
Рис. 6. NSMD и SMD площадки BGA
Первый вариант обеспечивает большую прочность паяного соединения, за счет большей площади контакта и контакта с боковыми сторонами контактной площадки, а так же лучшее центрирование компонента и является более гибким и технологичным, как при производстве печатных плат так и при монтаже.
Преимуществом второго варианта является повышение прочности соединения контактной площадки и диэлектрика печатной платы. Его применение оправдано, если в процессе дальнейшей сборки, тестирования или эксплуатации плата может подвергаться значительным изгибам или другому физическому напряжению, а так же при эксплуатации при высоких перепадах температуры или если изделие будет проходить очень жесткие температурные испытания.
Если в документах производителя нет специальных указаний на тип площадки, рекомендуется применять NSMD тип.
Особенностью микросхем BGA является то, что их выводы скрыты под корпусом, что затрудняет проверку качества их монтажа. Основным средством инспекции паяных соединений таких микросхем является рентгеноскопический контроль. Но и в этом случае некоторые дефекты, даже такие как непропай отдельных выводов бывает сложно обнаружить. Для того, что бы повысить эффективность контроля пайки этих микросхем рекомендуется придавать контактным площадкам специальную форму (Рис.7).
При использовании таких контактных площадок паяное соединение принимает характерную форму, что значительно повышает эффективность проверки, особенно в автоматическом режиме.
Рис. 7. Площадки BGA, оптимизированные под рентген-контроль
Монтаж печатной платы: быстрый старт с нуля
Если вы помните мой предыдущий пост, там было высказано желание разобраться, что и как можно добавить к понравившейся мне модели, чтобы DIY forever. Большое спасибо пользователям UseTi, Phmphx, lomalkin и в особенности n4k4m1sh1, которые поделились интересными идеями на эту тему в комментариях. Понятно, что для поставленных целей нужны два навыка, один из которых — монтаж печатной платы. А значит сегодня мы будем паять, с нуля.
С полки детского магазина был взят очередной набор, конкретно этот.
Итак, тестируем «Набор Юного электронщика». Получится ли с его помощью собрать рабочие конструкции с нуля не имея предварительных навыков, как это до того у нас получилось с механической моделью?
В наборе уже есть всё, чтобы быстро совершить сборку:
- паяльник, припой с каналом флюса (очень удобно!) и кусачки
- мультиметр
- две печатных платы с деталями
Также, в набор входят две брошюры:
1. Методическое пособие, которое содержит общие сведения о приборах, деталях и процессе пайки.
2. Инструкция к сбору двух входящих в набор устройтсв и последующей настройки одного из них.
Брошюры хорошие, но, если вы помните, мне больше понравилась инструкция к роботу, где не было слов — только изображения + пошагово расписана сборка. В инструкции к этому набору пошаговой инструкции нет. В чем-то это и хорошо, потому что если ориентироваться на эти две брошюры, хочешь-не хочешь, придётся сначала всё прочитать и понять, и только затем действовать — то есть, они приучают мыслить системно. Но немного не хватает динамики, и, мне кажется, детям этого тоже может не хватать ещё больше, чем мне. Поэтому если будете собирать нечто подобное, надеюсь, этот пост сильно сэкономит вам время.
Дополнительные инструменты
Чего нет в наборе, но понадобится или может понадобится:
1. Пинцет. Мы взяли маникюрный.
2. Батарейка «Крона» на 9В
3. Крестообразная отвертка — в одной из схем есть клемма. Затянуть в ней провода получится часовой крестообразной отверткой.
4. Приспособление для пайки «третья рука» — вот уж без чего можно обойтись, хотя в инструкции и брошюре она постоянно упоминается. Конечно, с нею было бы удобнее, но если просто собрать все детали на плате, а затем её перевернуть, то обе входящих в набор платы будут относительно устойчивы и паять будет в принципе удобно и без дополнительных приспособлений.
5. Лупа
6. Оловоотсос
7. Очки и респиратор
8. Подставка для паяльника
9. Вентилятор\вытяжка
Из всего этого списка совсем туго придётся только без первых двух пунктов. Подставкой для паяльника у нас в этот раз стал робот из предыдущего поста. Остальное для монтажа двух маленьких плат было бы действительно лишним.
Зато нелишним будет напомнить, что при пайке выделяются пары олова, которые не слишком полезны для здоровья. Собственно пайка двух входящих в комплект схем заняла у меня не более 10 минут и мне не поплохело. Однако небольшой вентилятор, отгоняющий дым в сторону, или хотя бы открытое окно — это стандартная и очень хорошая практика. Кроме того, после пайки нужно вымыть руки. Глаза тоже нужно беречь — отлететь может откушенная кусачками ножка детали или в процессе пайки может отлететь капелька горячего олова (хотя у нас не отлетало). Поэтому надевайте защитные очки. Берегите себя!
Питание
Для начала, всё что нам понадобится — это докупленная отдельно батарейка «Крона». В наборе есть разъем под неё, который, по инструкции, надо впаять в первую схему. Мой совет: не делайте этого, оставьте её так и используйте в обеих схемах — и для тестирования первой, и для настройки второй.
Устройства, которые мы соберём, потребляют какое-то безумное количество мА\час.
Если речь идёт об электрической цепи, то наши ресурсы и то, как мы их быстро потратим, измеряются в А\ч (Ампер в час, mAh). Ёмкость типичной «Кроны» (по паспорту):
Первое устройство, «Хамелеон», потребляет до 200 мА·ч. Поэтому нашей Кроны этой схеме хватит на:
625мАч/200мА = 3,125 часа.
а значит использовать её рекомендуется только для проверки работы схемы. Хорошим выходом будет аккумулятор на 12 вольт и ёмкостью не менее 0,5 А·ч.
мА·ч — это то, как быстро сядет батарейка! =)
Было бы круто иметь возможность припаять на платы один из таких разъёмов, и затем включить в него вот такой лабораторный блок питания. Но ни под один из доступных разъёмов на плате нет подходящих отверстий. Следовательно, подключить блок питания мы пока не можем.
Первый блин комом или сразу troubleshooting
Есть такой анекдот: купил человек самолёт и журнал с описанием «Как делать мёртвую петлю». Следуя инструкции, сел в самолёт, взлетел, начал делать мёртвую петлю — всё получается. Переворачивает страницу, а там: «… выход из мёртвой петли читайте в следующем номере».
Можно много говорить о культуре пайки и о том, что это целое искусство. Одно останется неизменным: если делаешь что-то в первый раз и по книжке, то сначала может не получится. Вот наша первая плата, набор «Хамелеон», вернее то, что из неё получилось. Какие ошибки были допущены?
1. Нарушена технология пайки, как результат — непропаянные контакты, которые лучше выпаять и впаять снова (не перепутав полярность!)
2. Нарушена технология работы: каждая деталь впаивалась по очереди. Ниже вы увидите, насколько выгоднее в этом плане послушать инструкцию и сначала собрать все детали, а потом закрепить их.
Результат: детали красиво стоят в кривь и в кось, а из трех цепочек диодов загорелась в итоге только одна.
Возможное решение: выпаять все детали и впаять заново.
Позитивный момент: можно найти всегда. В данном случае у нас нигде нет «паразитарных перемычек». Правда, удалять их достаточно просто в любом случае: просто провести жалом паяльника и разделить спаявшиеся вместе контакты.
Паять!
Итак, первая схема не получилась у нас из-за нарушения технологии пайки, поэтому сразу обговорим этот простой и на самом деле приятный момент.
В брошюре достаточно наглядно показано и рассказано, как паять, но, к сожалению, мне это не сильно помогло, т. к. там сказано «как надо», а хотелось бы понять саму технику.
Пожалуй, лучшая рекомендация, которую удалось найти, была в этом посте. Приведу её целиком:
- Деталь вставляется в плату и должна быть закреплена (у вас не будет второй руки, чтобы держать).
- В одну руку берется паяльник, в другую — проволочка припоя (удобно, если он в специальном диспенсере, как на картинке).
- Припой на паяльник брать НЕ НАДО.
- Касаетесь кончиком паяльника места пайки и греете его. Обычно, это секунды 3-4. (на самом деле 1-2 с. — прим. А.Ч.)
- Затем, не убирая паяльника, второй рукой касаетесь кончиком проволочки припоя с флюсом места пайки. В реальности, в этом месте соприкасаются сразу все три части: элемент пайки и его отверстие на плате, паяльник и припой. Через секунду происходит «пшшшшш», кончик проволочки припоя плавится (и из него вытекает немного флюса) и необходимое его количество переходит на место пайки. После секунды можно убирать паяльник с припоем и подуть.
Дополнительно могу порекомендовать иллюстрированный комикс, переведённый хабрапользователем atarity.
Также, время от времени на жале паяльника образуется нагар и его нужно чистить. Для этого в индустрии используются специальные целлюлозные губки, обязательно смоченные водой. В нашем случае нагар можно снять просто стряхнув его механически — например, тупой стороной ножа.
Пошаговая инструкция
После того как первое устройство было нами несправедливо загублено, появилось понимание того, как выстроить процесс более эффективно. Надеюсь, эта пошаговая инструкция поможет вам так же быстро собрать свой собственный набор.
Итак, у нас есть горсть деталей и мы понятия не имеем что к чему. Берём симпатичный маникюрный пинцет (что было дома) и выбираем из этой груды все резисторы.
Вот так они выглядят. Если внимательно присмотреться, мы увидим что у нас 8 одинаковых, ещё 2 одинаковых и 1 «сам по себе». Присматриваться нужно к полосатой маркировке на корпусе. На плате место для резистора обозначается R (resistor). Первые 8 одинаковых становятся в ряд внизу, как это видно на плате, ещё 2 одинаковых слева вверху и один, который «сам по себе» — собственно, монтируется «сам по себе».
На этом этапе, не упустите возможность поиграть с мультиметром. В брошюре подробно описано, как измерить сопротивление резистора.
Хорошая новость: у резисторов нет полярности. Это значит, что нам не важно, какой стороной мы их посадим на плату. Поэтому, долго не думая, придаём нужную форму контактам, сажаем всех на плату, отрезаем кусачками лишнее. Чтобы было удобно паять, мы положили плату на край небольшой картонной коробки, т. к. если её положить на стол, это не дало бы возможности припаять резисторы немного над платой, как это рекомендуется сделать.
Вот что у нас получится. Всё ещё далеко от идеала, но уже гораздо лучше по сравнению с первым набором! Продолжаем.
Теперь отберём все конденсаторы. На плате места для них обозначаются C (capacitor). Конденсаторы бывают полярные, а бывают неполярные. Это значит, что некоторые конденсаторы, если их посадить на плату «не той стороной» работать не будут и вся цепть работать не будет. Подсказка: желтые конденсаторы неполярны, поэтому просто сажаем их в гнёзда C3 и C4.
Цилиндрические конденсаторы полярны. Как определить полярность? Два способа:
1. До обрезки ножек та, что длиннее — это плюс. Достаточно совместить его с маркировкой «+» в посадочном гнезде конденсатора C1 или C2
2. Синяя полоса на конденсаторе — это «ключ». Она там, где минус. Достаточно разместить её с обратной стороны от маркировки «плюс».
Подсказка: если думать лень, просто посадите полярные конденсаторы как на изображении.
И диоды! Диоды все полярны. Способы определить полярность:
1. Более длинная ножка — плюс.
2. Фаска (скос) на боку основания самого диода. Не очеь удобно, т. к. у прозрачных диодов её не видно почти совсем. Все фаски диодов на данной плате должны оказаться с одной стороны — наружной.
3. Поставьте мультиметр в режим прозвона (значок «wi-fi», а на самом деле — звукового сигнала, на мультиметре), черным проводом (минус) коснитесь короткой ножки, красным (плюс) — длинной. В нашем случае диод загорится. Если поменять полярность — не загорится. Это происходит потому, что диод пропускает ток только в одном направлении.
Если перепутать полярность хотя бы у одного диода, то вся цепочка гореть не будет. Но! Нас эти три способа определения полярности диода не подвели. Последний способ можно ещё раз использовать после монтажа для прозвона цепи и чтобы убедиться, что полярность диодов не нарушена.
У нас осталась только ещё несколько деталей. По часовой стрелке на фото:
Кнопка. Не полярна. Просто поставить и надавить слегка — она закрепится на плате.
Микросхемы: у них есть «ключи» сверху на корпусе. У той, что длиннее, это выемка, которую надо совместить с обозначением на плате. В нашем случае выемка будет смотреть направо, в сторону резисторов. У микросхемы поменьше ключ в виде углубления в левом верхнем углу. Там он и должен оказаться на схеме. Также, эта выемка схематично обозначена на плате, тоже сверху.
Обратите внимание на старые добрые «ламповые» (в смысле — уютные) DIP-микросхемы. Сейчас кроме наборов для творчества их уже мало где встретишь, хотя паять их для меня лично — одно удовольствие, равно как и собирать шестереночные механизмы. В промышленности же на смену традиционным методам, которыми пользовались ещё наши родители и бабушки и дедушки тех, кому предназначается этот набор, пришёл поверхностный монтаж.
Микросхема стабилизатора напряжения. С ней всё просто, перепутать ничего не получится.
Клеммный разъем. Сюда мы будем подключать блок питания. Поэтому важно: у клеммного разъема отверстия под провод должны смотреть наружу платы, иначе их закроет собой близко стоящий конденсатор, и заклепить в клемме провода станет затруднительно (собственно, у нас так и вышло). В случае неправильного размещения клеммного разъема выпаять его без вакуумного оловоотсоса, скорее всего, не получится (у нас не получилось).
Готово! Нам удалось допустить всего одну существенную ошибку при сборке — это расположение клеммного разъема. Но на полярность это не влияет, скорее на удобство эксплуатации.
У нас получилось мини-проверяющее устройство, которое всегда покажет, сколько ещё батарейки осталось. Сейчас мы его настроим на проверку батарейки Крона, которая у нас уже есть и в которой заряд — 9В, пока она не села.
Помните, мы рекомендовали вам не впаивать провода с клеммами для батарейки в первую схему? Если впаяли — выпаяйте, сейчас они нам понадобятся.
Подключаем новую, ещё не севшую батарейку. Соблюдаем полярность (плюсовой разъем клеммы обозначен на плате). Загорелся первый красный светодиод. Схема работает!
Коротко разово нажимаем кнопку. Прибор измеряет напряжение в 9В и запоминает его. Если бы у нас была рядом севшая Крона, можно было бы проверить разность заряда.
Подсказка: быстро разрядить Крону можно при помощи первой схемы если вы её, конечно, правильно собрали. Как мы уже говорили, потребляет она до 200 мА, поэтому разрядит батарейку примерно за три часа.
Собственно, с теми же функциями измерения вольтажа справляется и входящий в набор мультиметр, но делает он это, конечно, не настолько эффектно. При наличии лабораторного блока питания, можно перепрограммировать наше устройство каждый раз под новый вольтаж. То же самое можно сделать, подключая разные батарейки и снова нажимая кнопку «запомнить».
В заключение хочется сказать спасибо тем, кто придумал и создал этот набор. Два дня назад у меня не было ни малейшего понятия о процессе монтажа печатных плат. Сейчас я отличаю резистор от транзистора и могу посадить их на плату, используя ключи, мультиметр и прочие подсказки. Кроме того, одно из устройств мне удалось сразу собрать и запустить в работу! Как всегда, это очень приятно: видеть и держать в руках то, что удалось собрать самостоятельно.
Благодаря этому двухдневному погружению в электронику, мне стало понятно, что ещё я хочу узнать:
1. Как прозванивать смонтированную печатную плату, чтобы найти, где дефект и устранить его, а не перепаивать всю плату целиком (у меня всё ещё есть надежда пересобрать первое устройство!).
2. Как рассчитать энергопотребление схемы и самостоятельно рассчитать, на сколько хватит того или иного заряда аккумулятора?
3. Три показателя, которое мы измерили в процессе сборки при помощи мультиметра — количество вольт в батарейке, сопротивление в омах резисторе, измерение силы тока в амперах. Как они взаимосвязаны и что я могу с этим делать?
4. Как прочитать принципиальную схему устройства и увидеть её на плате? Как совместить п. 3 и п. 4?
Поэтому хочу обратиться к тебе, Хабр. Поделись, пожалуйста, ссылками на статьи и книги по этой теме, которые тебе понравились, которые легко читать, и быстро можно понять.
А также, подскажи, пожалуйста, что бы ты сделал с питанием устройств, клеммами и разъёмами, потому что пока что у меня есть только вариант «два торчащих провода и батарейка Крона».
Надеюсь, этот обзор тоже поможет кому-то «въехать» в нужную тему быстрее и легче. Удачи вам!
- diy или сделай сам
- diy-проекты
- электроника
- радиоэлектроника
- микросхемы
- пайка
- монтаж печатных плат