Как определить направление вектора магнитной индукции
Перейти к содержимому

Как определить направление вектора магнитной индукции

  • автор:

Как определить направление вектора магнитной индукции

§ 2. магнитная индукция. правило буравчика. вихревой характер магнитного поля

Магнитное поле характеризуется вектором магнитной индукции. Правило буравчика позволяет определить направление вектора магнитной индукции проводника с током. Все магнитные поля вихревые.

Характеристикой магнитного поля является вектор магнитной индукции или индукции магнитного поля , обозначаемый В . За направление вектора магнитной индукции в данной точке поля принимают направление, в котором указывает N —полюс свободно вращающейся магнитной стрелки (рис. 2а). Ориентацию рамки с током в магнитном поле тоже можно использовать для определения направления вектора магнитной индукции, так как её плоскость устанавливается в поле перпендикулярно вектору магнитной индукции (см. §1). При этом направление вектора магнитной индукции определяют с помощью правила правого буравчика, согласно которому, если вращать ручку буравчика по направлению тока в рамке, то сам буравчик будет перемещаться в направлении вектора магнитной индукции (рис. 2б). Направление, в котором перемещается правый буравчик, ещё называют положительной нормалью к плоскости рамки с током.

Линиями магнитной индукции называют линии, касательные к которым имеют то же направление, что и вектор магнитной индукции в этой точке поля. Линии магнитной индукции служат силовыми характеристиками поля, как и силовые линии электрического поля. Очевидно, что, как и силовые линии электрического поля, линии магнитной индукции не могут пересекаться между собой. Картину линий магнитной индукции поля можно построить с помощью магнитной стрелки или рамки с током, помещая их в различные точки поля.

Как следует из опытов Эрстеда (см. §1), прямолинейный проводник с током создаёт вокруг себя магнитное поле. На рис.2в показаны линии магнитной индукции поля прямолинейного проводника, которые представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной этому проводнику. Направление вектора магнитной индукции в этом случае можно определить опять же с помощью правого буравчика: если направление поступательного движения буравчика совпадает с направлением тока, то направление движения ручки буравчика указывает на направление вектора магнитной индукции.

Видно (см. рис.2в), что линии магнитной индукции прямолинейного проводника с током оказались замкнутыми, т.е. линиями без начала и конца. Поля, характеризуемые замкнутыми силовыми линиями, называют вихревыми. Из курса физики за 10 класс известно, что силовые линии электростатического поля всегда имеют начало и конец, начинаясь на положительных и оканчиваясь на отрицательных электрических зарядах. В отличие от электростатических все магнитные поля являются вихревыми.

Замкнутость линий магнитной индукции – фундаментальное свойство магнитного поля, вызванное тем, что изолированных магнитных зарядов, подобных электрическим, не существует. Любое магнитное поле, возникающее при движении электрических зарядов, всегда содержит N и S -полюса, и сколько бы мы ни дробили постоянный магнит, каждая его песчинка всегда будет содержать разноимённые магнитные полюса.

Вопросы для повторения:

· Как магнитная стрелка и рамка с током помогают определить направление вектора магнитной индукции?

· Дайте определение линий магнитной индукции.

· Опишите магнитное поле прямолинейного проводника с током.

· Как правило буравчика помогает определить направление вектора магнитной индукции прямолинейного проводника с током?

· Какие поля называют вихревыми?

Рис. 2. (а) – определение направления вектора магнитной индукции с помощью магнитной стрелки; (б) — применение правила буравчика для определения направления вектора магнитной индукции и положительной нормали рамки с током; (в) — применение правила буравчика для определения направления вектора магнитной индукции прямолинейного проводника с током.

Физика. 10 класс

§ 28. Индукция магнитного поля. Линии индукции магнитного поля

Для описания электростатического поля используют его основную характеристику — напряжённость . Существует ли аналогичная характеристика для описания магнитного поля?

Направление индукции магнитного поля. Основной характеристикой, используемой для описания магнитного поля, является физическая векторная величина — индукция магнитного поля . Зная индукцию магнитного поля, можно определить силу, действующую на проводник с током (движущийся заряд) в магнитном поле.

Для определения направления индукции магнитного поля используют ориентирующее действие магнитного поля на магнитную стрелку или рамку с током.

За направление индукции магнитного поля в данной точке поля принимают направление от южного полюса S к северному полюсу N свободно устанавливающейся магнитной стрелки, расположенной в рассматриваемой точке ( рис. 143 ).

Направление магнитной индукции в том месте магнитного поля, где расположена небольшая плоская рамка с током, совпадает с направлением положительной нормали к плоскости рамки. Направлением положительной нормали принято считать направление движения буравчика, рукоятку которого вращают в направлении тока в рамке. В исследуемом магнитном поле направление положительной нормали совпадает с направлением от южного полюса S к северному полюсу N магнитной стрелки ( рис. 143.1 ).

Рис.

В магнитном поле прямолинейного проводника с током магнитные стрелки располагаются по касательным к окружностям ( рис. 144 ), центры которых лежат на оси проводника.

На практике часто приходится иметь дело с магнитными полями электрических токов, проходящих по катушкам (соленоидам). В магнитном поле катушки с током магнитные стрелки устанавливаются по касательным к замкнутым кривым, охватывающим витки катушки ( рис. 145 ).

Направление вектора магнитной индукции

Магнитное поле характеризуют при помощи вектора магнитной индукции ( ).

Если свободно вращающуюся магнитную стрелку, которая является небольшим магнитом, обладающим полюсами (северным (N) и южным(S)), поместить в магнитное поле, то она будет поворачиваться до тех пор, пока не установится определённым образом. Аналогично ведет себя рамка с током, повешенная на гибком подвесе, имеющая возможность поворачиваться. Способность магнитного поля ориентировать магнитную стрелку используют для того, чтобы определить направление вектора магнитной индукции.

Направление вектора магнитной индукции

Так, направлением вектора магнитной индукции считают направление, которое указывает северный полюс магнитной стрелки, которая может свободно поворачиваться в магнитном поле.

Такое же направление имеет положительная нормаль к замкнутому контуру с током. Направление положительной нормали определяют при помощи правила правого винта (буравчика): положительная нормаль направлена туда, куда поступательно перемещался бы буравчик, если бы его головку вращали по направлению течения тока в контуре.

Применяя контур с током или магнитную стрелку, можно выяснить, как направлен вектор магнитной индукции магнитного поля в любой точке.

Для определения направления вектора иногда удобно использовать так называемое правило правой руки. Его применяют следующим образом. Пытаются в воображении охватить правой рукой проводник таки образом, чтобы при этом большой палец указывал направление силы тока, тогда кончики остальных пальцев направлены так же как вектор магнитной индукции.

Частные случаи направления вектора магнитной индукции прямого тока

Если магнитное поле в пространстве создается прямолинейным проводником с током, то магнитная стрелка будет в любой точке поля устанавливаться по касательной к окружностям, центры которых лежат на оси проводника, а плоскости перпендикулярны проводу. При этом направление вектора магнитной индукции определим, используя правило правого винта. Если винт вращать так, что он будет поступательно двигаться по направлению силы тока в проводе, то вращение головки винта совпадает с направлением вектора . На рис. 1 направлен от нас, перпендикулярно плоскости рисунка.

Направление вектора магнитной индукции, рисунок 1

Ориентируясь на местности при помощи компаса, мы каждый раз проводим опыт по определению направления вектора Земного поля.

Пусть в магнитном поле движется заряженная частица, тогда на нее действует сила Лоренца ( ), которая определена как:

\[{\overline{F}}_L=q\left[\overline{v}\times \overline{B}\right] \qquad (1)\]

q></p><div class='code-block code-block-10' style='margin: 8px 0; clear: both;'>
<!-- 10paikmaster -->
<script src=

где q – заряд частицы; – вектор скорости частицы. Сила Лоренца и вектор магнитной индукции всегда взаимно перпендикулярны. Для заряда большего нуля (0″ width=»43″ height=»16″ />), тройка векторов и связана правилом правого винта (рис.2).

Направление вектора магнитной индукции, рисунок 2

Линии магнитного поля и направление вектора B

Визуализировать картину магнитного поля можно при помощи линий магнитной индукции. Линиями магнитной индукции поля называют линий, для которых касательными в любой точке являются векторы магнитной индукции рассматриваемого поля. Для прямого проводника с током линиями магнитной индукции являются концентрические окружности, плоскости их перпендикулярны проводнику, центры на оси провода. Специфика линий магнитного поля заключена в том, что они бесконечны и являются всегда замкнутыми (или уходящими в бесконечность). Это означает, что магнитное поле является вихревым.

Принцип суперпозиции вектора B

Если магнитное поле создано не одним, а совокупностью токов или движущихся зарядов, то оно находится как векторная сумма отдельных полей, создаваемых каждым током или движущимся зарядом отдельно. В виде формулы принцип суперпозиции записывают как:

\[\overline{B}=\sum{{\overline{B}}_i} \qquad (2)\]

Примеры решения задач

Задание Какова величина и направление вектора магнитной индукции в точке, в которой имеются два магнитных поля одновременно? Одно из них равно по величине 0,004 Тл и направлено горизонтально с востока на запад, другое Тл направлено вертикально сверху вниз.
Решение Изобразим направления полей описанных в данных (рис.3).

Направление вектора магнитной индукции, пример 1

Так как магнитная индукция величина векторная и имеет направление, то складывать векторы и следует с учетом их направлений, например, используя правило параллелограмма. То есть имеем:

\[\overline{B}={\overline{B}}_1+{\overline{B}}_2 \qquad (1.1)\]

По условию векторы и направлены перпендикулярно друг к другу, результирующий вектор магнитной индукции будет направлен по диагонали прямоугольника, как показано на рис. 3.

Найдем величину вектора , используя теорему Пифагора:

\[B=\sqrt{{\left(3\cdot {10}^{-3}\right)}^2+{\left(4\cdot {10}^{-3}\right)}^2}=5\cdot {10}^{-3}\left(Tl\right)\]

Найдем угол ( ), который составляет с вертикалью вектор . Для этого найдем отношение модулей векторов и .

Магнитное действие тока. Вектор магнитной индукции. Магнитный поток.

Магнитное действие электрического тока

1820 г. X. Эрстед — датский физик, открыл магнитное дей­ствие тока. (Опыт: действие электрического тока на магнитную стрелку). 1820 г. А. Ампер — французский ученый, открыл механическое взаимо­действие токов и установил закон это­го взаимодействия.

Магнитное действие электрического тока

Магнитное взаимодействие, как и электрическое, удобно рассматриватьвводя понятие магнитного поля:

  1. Магнитное поле порождается током, т. е. движущимися электрическими зарядами.
  2. Магнитное поле обнаруживается по дейст­вию на магнитную стрелку или на электрический ток (движущиеся электрические заряды).

Магнитное поле порождается током, т. е. движущимися электрическими зарядами. противоположно направленные токи отталкиваются, однонаправленные токи притягиваются

Для двух параллельных бесконечно длинных проводников было установлено:

противоположно направленные токи отталкиваются,

однонаправленные токи притягиваются,

причем , где k — коэффициент пропорциональности.

Отсюда устанавливается единица силы тока ампер в СИ: сила тока равна 1 А , если между отрезками двух бесконечных проводников по 1 м каждый, находящимися в вакууме на расстоянии 1 м друг от друга, действует сила магнитного взаимодействия 2 . 10 7 Н .

В СИ удобно ввести магнитную проницаемость вакуума

В СИ удобно ввести магнитную проницаемость вакуума .

В СИ удобно ввести магнитную проницаемость вакуума

Вектор магнитной индукции.

Вектор магнитной индукции (В) – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика: если направление поступательного движения буравчика (винта с правой нарезкой) совпадает с направлением тока, то направление вращения ручки буравчика покажет направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линиям.

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика

На практике удобно пользоваться следующим правилом: если большой палец правой руки направить по току, то направление обхвата тока остальными пальцами совпадет с направлением линий магнитной индукции.

Модуль вектора магнитной индукции

Магнитная индукция В зависит от I и r , где r — расстояние от проводника с током до исследуемой точки. Если расстояние от проводника много меньше его длины (т. е. рассматривать модель бесконечно длинного проводника), то ,

где k — коэффициент пропорциональности. Подставляя эту формулу в уравнение для силы взаимодействия двух проводников с током, получим F=B . I . ℓ.

Отсюда .

Таким образом, модуль вектора магнитной индукции есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Единица измерения в СИ — тесла (Тл). Единица названа в честь сербского электротехника Н. Тесла.

Магнитный поток

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Магнитный поток (поток линий магнитной индукции)

, где Вcosα представляет собой проекцию вектора В на нормаль к плоскости контура. Магнитный поток показывает, какое количество линий магнитной индукции пронизывает данный контур.

Магнитный поток (поток линий магнитной индукции)

Единица магнитного потока в СИ — вебер (Вб) . В честь немецкого физика В. Вебера.

Единица магнитного потока в СИ - вебер (Вб)

Опыт показывает, что линии магнитной индукции всегда замкнуты, и полный магнитный поток через замкнутую поверхность равен нулю. Этот факт является следствием отсутствия магнитных зарядов в природе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *