Применение электрических сетей с изолированной нейтралью
Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству либо присоединенная к нему через большое сопротивление.
Электрические сети с изолированной нейтралью применяются в электрических сетях на напряжении 380 — 660 В и 3 — 35 кВ.
Применение сетей с изолированной нейтралью при напряжении до 1000 В
Трехпроводные электрические сети с изолированной нейтралью применяются на напряжении 380 — 660 В при необходимости соблюдения повышенных требований электробезопасности (электрические сети угольных шахт, калийных рудников, торфяных разработок, передвижных установок). Сети передвижных электроустановок могут выполняться четырехпроводными.
В нормальном режиме работы напряжения фаз сети относительно земли симметричны и численно равны фазному напряжению установки, а токи в фазах источника — фазным токам нагрузки.
В сетях напряжением до 1 кВ (как правило, небольшой протяженности) пренебрегают емкостной проводимостью фаз относительно земли.
При касании человеком фазы сети проходящий через его тело ток
I ч = 3 U ф/(3 r ч + z)
где U ф — фазное напряжение; r ч — сопротивление тела человека (принимается равным 1 кО м ); z — полное сопротивление из оляции фазы относительно земли (составляет 100 кОм и более на фазу).
Поскольку z >> r ч , ток I, незначителен. Следовательно, прикосновение человека к фазе относительно безопасно. Именно это обстоятельство обусловливает применение изолированной нейтрали в электроустановках указанных объектов, помещения которых с точки зрения опасности поражения людей электрическим током относятся к помещениям особо опасным или с повышенной опасностью.
При неисправной изоляции, когда z ч, человек, касаясь фазы, попадает под фазное напряжение. В этом случае ток. проходящий через тело человека, может превосходить смертельно опасное значение.
При однофазных замыканиях на землю напряжение исправных фаз относительно земли возрастает до линейного и ток, проходящий через тело человека при его прикосновении к неповрежденной фазе в момент замыкания, всегда опасен, так как достигает нескольких сотен миллиампер (здесь z ч и вместо значения U ф в формулу следует подставлять линейное значение напряжения , т. с. √ 3 .
Следствием сказанного является применение в таких сетях в качестве защитной меры защитного отключения или заземления в сочетании с контролем состояния и золя ции сети. Длительная работа сети при однофазных замыканиях на землю в указанных электроустановках не допускается.
Основанием для применения заземления в сочетании с контролем изоляции сечи служит то обстоятельство, что ток глухого замыкания на землю I з в сетях с изолированной нейтралью не зависит от сопротивления заземления корпусов электрооборудования, нормально не находящихся под напряжением (в связи с тем, что проводимость в месте замыкания на землю значительно превосходит сумму проводимостей нейтрали, изоляции и емкости фаз отно сит ельно земли), и напряжение поврежденной фазы относительно земли Uz составляет небольшую часть фазного напряжения источника.
Значения величин I з и Uz при симметричных сопротивлениях изоляции относительно земли определяются так:
I з = 3 U ф/ z , Uz = I з х rz = 3 U ф х ( rz/z)
где rz — сопротивление заземления корпусов электрооборудования. Так как z >> rz , то Uz
Как видно из формул, в сетях с изолированной нейтралью замыкание одной фазы на землю не вызывает токов короткого замыкания, ток I, составляет несколько миллиампер. Защитное отключение обеспечивает автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током и в подземных сетях строится на основе автоматического контроля за состоянием изоляции.
Применение сетей с изолированной нейтралью при напряжении выше 1000 В
К трехпроводным электрическим сетям напряжением выше 1 кВ с изолированной нейтралью (с малыми токами замыкания на землю) относятся сети напряжением 3 — 33 кВ. Здесь емкостной проводимостью фаз относительно земли пренебречь нельзя.
В нормальном режиме токи в фазах источника определяются геометрической суммо й нагрузок и емкостных токов фаз относительно земли Геометрическая сумма емкостных токов трех фаз равна нулю, поэтому ток в земле не проходит.
При глухом замыкании на землю напряжение относительно земли этой поврежденной фазы становится примерно равным нулю , а напряжения относительно земли двух других (поврежденных) фаз увеличиваются до линейных значений. Емкостные токи неповрежденных фаз также увеличиваются в √3 раз, поскольку к емкостям фаз уже приложены не фазные, а линейные напряжения. В результате емкостный ток однофазного замыкания на землю оказывается в 3 раза большим нормального емкостного тока фазы.
Абсолютное значение указанных токов относительно невелико. Так, для воздушной линии электропередачи напряжением 10 кВ и длиной 10 км емкостный ток равен п римерно 0,3 А , а для кабельной линии такого же напряжения и протяженности — 10 А .
Применение трехпроводной сети напряжением 3 — 35 кВ с изолированной нейтралью обусловлено не требованиями электробезопасности (такие сети всегда опасны для человека), а возможностью обеспечения нормальной работы электроприемников, включенных на междуфазное напряжение, в течение определенного промежутка времени. Дело в том, что при однофазных замыканиях на землю в сетях с изолированной нейтралью междуфазное напряжения остаются неизменными по величине и сдвинутыми по фазе на угол 120°.
Повышение напряжения в неповрежденных фазах до линейного значения распространяется н а всю есть, и при длительном воздействии возможно повреждение изоляции и последующее короткое замыкание между фазами. Поэтому в таких сетях для быстрого отыскания замыканий на землю должен выполняться автоматический контроль изоляции, действующий на сигнал при уменьшении сопротивления изоляции одной из фаз ниже заданного значения.
В сетях, питающих подстанции передвижных установок, торфяных разработок, угольных шах т и калийных рудников защита от замыканий на землю должна действовать на отключение.
При замыкании фазы на землю через перемежающуюся дугу могут возникнуть резонансные явления и опасные перенапряжения до (2 , 5 — 3,9)Uф, которые при ослабленной изоляции приводят к ее пробою и короткому замыканию. Поэтому уровень линейной изоляции определяется кратностью резонансных перенапряжений.
Перемежающиеся дуги возникают в сетях при емкостных токах замыкания на землю свыше 10 и 15 А при напряжении соответственно 35 и 20 кВ, свыше 20 и 30 А при напряжении соответственно 6 и 10 кВ.
Для исключения возможности возникновения перемежающихся дуг и устранения связанных с этим опасных последствий для изоляции электрооборудования в нейтраль трехпроводной сети включают индуктивный дугогасящий реактор. Индуктивность реактора подбирают таким обра з ом, чтобы емкостный ток в месте замыкания на землю был возможно меньшим и в то же время обеспечивал работу релейной зашиты, реагирующей на однофазное замыкание на землю.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Словарь специальных терминов
Электрическая сеть представляет совокупность электроустановок, служащих для передачи и распределения электрической энергии, состоящая из подстанций распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи. Работа электроустановки 3-х фазного переменного тока промышленной частоты 50 Гц во многом определяется режимом работы нейтралей генераторов или трансформаторов. Практикуется в основном два вида централей, изолированная нейтраль и заземленная нейтраль.
Изолированная нейтраль — это нейтраль генератора или трансформатора, которая не присоединена к заземляющему устройству или присоединена через устройства с большим электрическим сопротивлением (приборы сигнализации, защиты, дугогасительные реакторы). Заземленная нейтраль — это нейтраль генератора или трансформатора, присоединенная непосредственно к заземляющему устройству или через малое электрическое сопротивление. От режима работы нейтралей зависит в значительной степени уровень изоляции электроустановок, выбор коммутационной аппаратуры, величины перенапряжений и способы их ограничения, величины токов однофазных коротких замыканий на землю (корпус), условия работы релейной защиты и т.п.
Замыканием на землю называется случайное соединение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредственно с землей.
Замыканием на корпус называется случайное соединение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением.
Электроустановки, в которых ток замыкания на землю (корпус) не превышает 500 А, считаются электроустановками с малыми токами замыкания на землю. Электроустановки с током замыкания на землю (корпус) более 500 А считаются электроустановками с большими токами замыкания на землю.
С малыми токами однофазного замыкания на землю (033) работают электроустановки напряжением до и выше 1000 В с изолированной нейтралью генератора или трансформатора. Это 3-фазные электроустановки с линейным напряжением соответственно 220-380-660 В и 3-35 кВ.
С большими токами замыкания на землю работают электроустановки с заземленной нейтралью (эффективно заземленной нейтралью) напряжением 110 кВ и выше. С заземленной нейтралью работают также 4 проводные 3-фазные электрические сети напряжением до 1000 В, в которых токи 033 могут не иметь больших значений. Это электроустановки напряжением 220/127 В, 380/220 В, 660/380 В.
Однофазные аварийные замыкания на землю (корпус) составляют до 75% от всех видов повреждений в электроустановках.
Режим работы нейтрали в значительной степени влияет также на условия электробезопасности людей. В электроустановках с изолированной и заземленной нейтралью применяются разные электрозащитные мероприятия, которые будут рассмотрены ниже. Электроустановки по условиям электробезопасности разделяются на электроустановки напряжением до 1000 В включительно и выше 1000 В.
а) Электроустановки с изолированной нейтралью.
Рассмотрим работу электрической сети с изолированной нейтралью генератора.
Каждый провод сети с изолированной нейтралью относительно земли обладает определенной величиной сопротивления изоляции, а также определенной величиной электрической емкости, т.к. каждый из проводов можно рассматривать, как протяженный конденсатор. На воздушных линиях обкладками конденсатора являются проводник и земля, а диэлектриком воздух; на кабельных линиях обкладками конденсатора являются жила кабеля и металлическая оболочка кабеля, соединенная с землей, а диэлектриком служит изоляция жил кабеля. Сопротивление изоляции измеряется в мегаоммах. (1 мОм = 10 6 Ом); емкость измеряется в микрофарадах (1 мкФ = 10 -6 Ф). Это означает, что при нормальном режиме работы электроустановки через сопротивления изоляции и землю протекают токи утечки, а через конденсаторы на землю протекают токи, называемые емкостными (ICO).
В исправной электрической сети геометрическая сумма токов утечки и емкостных токов (т.е. с учетом сдвига фаз в 3-х фазной сети на 120°) равна нулю.
Эти токи равномерно распределены по всей длине проводов. При этом между каждой фазой сети и землей будет действовать фазное напряжение сети (Vф= Vл:√3).
Токи утечки можно определить по формуле:
Например, при Vл = 380 В и Rиз = 1 мОм ток утечки будет равен:
Емкостные токи определяются по формуле:
Их величина зависит от величины напряжения электрической сети и протяженности воздушных и кабельных линий.
Приближенно Iсо можно определить по следующим формулам:
Ico = (V∙e):350 (A) — для воздушных линий
Ico = (V∙e):10 (A) — для кабельных линий
где V — линейное напряжение сети (кВ)
е — длина сети (км)
При нормальных условиях работы сети токи утечки и емкостные токи невелики и не оказывают влияния на нагрузку генераторов или трансформаторов.
При возникновении замыкания одной из фаз на землю, земля получает потенциал поврежденной фазы, а между исправными фазами и землей будет линейное напряжение. Под действием этого линейного напряжения через место замыкания и через землю будут протекать токи утечки и емкостные токи двух исправных фаз.
Ток замыкания на землю возрастает в 3 раза и имеет, как правило, ёмкостной характер:
Если замыкание на землю неметаллическое, то в месте замыкания может возникать, так называемая, перемежающаяся дуга, которая периодически гаснет и загорается при токах Iс более 5—10 А. При этом могут возникать опасные для изоляции электрооборудования перенапряжения относительно земли, достигающие величины равной (3—4) Vф сети, что может привести к пробою изоляции и возникновению 2-фазных коротких замыканий. Опасность дуговых перенапряжений для изоляции возрастает с увеличением напряжения электрической сети, поэтому величина токов замыкания на землю Iс нормируется. В сетях напряжением 6 кВ — Iс не должно превышать 30 А, в сетях 10 кВ — не превышать 20 А, в сетях 35 кВ — не превышать 10 А.
С целью уменьшения токов замыкания на землю в сетях 3—35 кВ применяют компенсацию емкостных токов замыкания на землю путем заземления нейтралей генераторов или трансформаторов через специальные дугогасящие катушки.
Так как емкостной ток замыкания на землю и индуктивный ток дугогасящей катушки отличаются по фазе на 180°, то в месте замыкания на землю они компенсируют друг друга. В результате ток замыкания на землю не будет превышать 5—10 А, благодаря чему не возникает перемежающаяся дуга.
С точки зрения электробезопасности возникает повышенная опасность для людей, т.к. человек, касающийся неповрежденной фазы и корпуса, оказывается под действием линейного напряжения.
При однофазных замыканиях на землю не нарушается система межфазных напряжений, устойчивость работы электрической сети и потребителей, поэтому не требуется немедленное отключение питающих линий энергоснабжения, чтобы не создавать перерыва в электроснабжении потребителей.
Исключение составляют электроустановки, где требуются повышенные условия электробезопасности (электроустановки торфоразработок, угольных шахт, передвижные электроустановки). В этих электроустановках применяется немедленное отключение токов 033. Отключаются релейной защитой также синхронные генераторы и двигатели при внутренних замыканиях обмоток статора на корпус при IО 5-10А из-за возможного выгорания железа статора.
В электрических сетях с изолированной нейтралью однофазные замыкания составляют до 63% от всех повреждений.
ПТЭ электроустановок потребителей допускают работу электрических питающих сетей с однофазным замыканием на землю в течение 2-х часов с обязательным нахождением и отключением поврежденной питающей линии.
В сетях с изолированной нейтралью должен осуществляться непрерывный контроль изоляции.
Трехфазная электрическая сеть до 1000 В, которая связана с сетью напряжением выше 1000 В через понижающий трансформатор, должна быть защищена пробивным предохранителем на случай повреждения изоляции между обмотками высшего и низшего напряжения. Пробивной предохранитель устанавливается на нейтрали трансформатора или на фазе обмотки низшего напряжения.
Должен предусматриваться контроль за целостностью пробивных предохранителей.
б) Электроустановки с эффективно заземленной нейтралью.
В 3-фазных электроустановках напряжением 110 кВ и выше при нормальном режиме работы между каждым фазным проводом сети и землей имеет место фазное напряжение электрической сети.
При возникновении замыкания одной из фаз на землю образуется короткозамкнутый контур через землю и нейтраль источника питания, к которому приложено фазное напряжение сети.
При этом токи 033 могут достигать значений в несколько десятков килоампер.
Длительное протекание таких токов может вызвать повреждение электрооборудования, поэтому в этих электроустановках предусматривается быстрое отключение их устройствами релейной защиты. В этом случае также устраняются перенапряжения, вызываемые перемежающимися дугами, что имеет место в электроустановках с изолированной нейтралью. Недостатком указанных электроустановок является возникновение перерыва в питании электропотребителей после отключения токов 033, а также значительная стоимость заземляющего устройства, которое согласно ПУЭ, должно обладать весьма малым сопротивлением (R≤0,5ом). 3-фазные четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В относятся к сетям с занулением, работа которых рассматривается ниже.
в) Электроустановки постоянного тока.
В электроустановках постоянного тока с номинальным напряжением электроприёмников 110—220—440 В каждый из проводов имеет относительно земли некоторое сопротивление изоляции, распределенное по всей его длине. При этом между «плюсовым» и «минусовым» полюсом через сопротивления изоляции проводов и землю образуется электрическая цепь, и протекают некоторые токи утечки.
При нормальном режиме работы токи утечки незначительны.
Если сопротивления изоляции каждого из проводов относительно земли одинаковы, то каждый из проводов будет иметь относительно земли напряжение равное 0,5 Vном сети. При неодинаковых сопротивлениях изоляции относительно земли напряжения распределяются таким образом, что их сумма будет равна Vном сети.
При замыкании одного из проводов на землю между землей и другим рабочим проводом возникает напряжение, равное полному напряжению сети.
Это значительно увеличивает опасность поражения человека при касании неповрежденного провода. Режим работы электроустановки а этом случае не нарушается, если не применено защитное отключение.
В этих электроустановках должен осуществляться непрерывный контроль изоляции. В электроустановках, применяемых для систем электрической тяги, приняты следующие величины номинальных напряжений электроприемников:
Городской наземный транспорт (трамвай, троллейбус) — 550 В; метрополитен — 750 В;
магистральные и пригородные железные дороги — 3000 В;
промышленный электротранспорт: подземный — 250 В; наземный — 500 В, 1500 В.
На шинах питающих тяговых подстанций номинальные напряжения приняты на 10% выше, чем на токоприемниках подвижного состава.
В тяговых электрических сетях контактный провод и контактный рельс на метрополитене являются плюсовым полюсом источника постоянного тока, которые изолированы от земли с помощью специальных изоляторов, закрепленных на металлических или железобетонных конструкциях опор контактной сети и других сооружениях.
Ходовые рельсы являются минусовым полюсом источника тока. Все металлические части опор контактной сети и других сооружений заземляются на ходовые рельсы с помощью специальных заземляющих проводников.
В случаях нарушения изоляции контактной сети, обрыва контактной сети, замыкания разнополярных проводов, неисправности в подвижном составе и т.д. возникают короткие замыкания. Из-за устойчивого горения дуги постоянного тока при коротких замыканиях могут возникнуть пережоги контактных проводов, разрушиться токоприемники и другое электрооборудование, возникнуть пожары на подвижном составе, что может вызвать длительный перерыв в движении подвижного состава и угрозу для жизни людей.
Поэтому в системе электрической тяги предусматривается быстрое, надежное, селективное отключение токов короткого замыкания на поврежденных участках контактной сети с помощью быстродействующих автоматических выключателей постоянного тока, имеющих собственное время отключения порядка 0,04—0,05 секунд.
Для обеспечения четкого отключения токов короткого замыкания на участках контактной сети должны быть соблюдены условия, при которых токи короткого замыкания были бы больше максимальных расчетных токов нагрузки линии и установок зашиты быстродействующих линейных выключателей.
Если указанные условия не выполняются, то применяются специальные технические мероприятия, способствующие надежному отключению быстродействующих выключателей. Это позволяет обеспечить также повышенную электробезопасность людей.
Изолированная нейтраль. Устройство и работа. Применение
Понятие «изолированная нейтраль» неразрывно связано со способами передачи энергии, а также с защитой потребителя в трехфазных электрических сетях переменного тока. Для решения этих задач применяются линейные системы из 4-х проводов с равномерно распределенной нагрузкой по каждой из фаз. Достичь этого удается за счет введения в электрическую цепь нулевой жилы, называемой нейтралью.
Ее наличие, помимо создания обратной цепочки для рабочего тока, позволяет устанавливать в линии приборы релейной защиты, а также организовать повторное заземление на стороне потребителя. Для этого на обслуживаемом объекте обустраивается защитный контур, соединяемый отдельной шиной с нейтральным проводом трехфазной цепи.
Что такое изолированная нейтраль и в каких случаях она применяется
Изолированная нейтраль – это нулевая точка трехфазной сети, не заземленная на стороне источника электроэнергии (генератора переменного тока или трансформатора на подстанции). Сюда же относятся случаи, когда она соединяется с землей через вспомогательные приборы с большим внутренним сопротивлением (защитные, измерительные устройства или средства сигнализации).
Подобное решение нередко применяется в российских энергосистемах, где нейтраль вообще не предусмотрена. Такая возможность объясняется тем, что в высоковольтных линиях электропередач 6-10 кВ в качестве схемы распределения фаз применяется «треугольник«.
При изолированной нейтрали важно предусмотреть обязательное заземление оборудования на приемной стороне, защитив таким способом пользователя от удара током.
В отечественных силовых сетях изолированная нейтраль применяется в следующих системах передачи электроэнергии:
- 3-фазные сети с действующим напряжением до 1 кВ (система заземления IT).
- Их аналоги с напряжениями от 6 до 35 кВ (использование разрешено при допустимых значениях токов замыкания).
- Низковольтные цепи, оснащенные защитными и измерительными устройствами в различных исполнениях (разделительными трансформаторами, в частности).
Изолированная нейтраль в сетях с напряжениями до 1000 В и низковольтные цепи
При эксплуатации электрических сетей, рассчитанных на напряжения 380 или 660 В, особое внимание уделяется безопасности обслуживающего персонала и исключению случайного искрообразования.
К объектам, на которых используются такие сети, относят:
- Угольные шахты.
- Рудники и торфяные разработки.
- Мобильные (передвижные) станции.
- Особо опасные помещения, в которых хранятся легко воспламеняющиеся и взрывчатые вещества.
Особенность этих систем состоит в том, что при напряжениях до 1 кВ в сетях небольшой протяженности емкостная проводимость относительно земли очень мала. По этой причине при случайном касании человеком одной из фаз ток, проходящий через его тело, сравнительно невелик и практически безопасен. Это объясняется тем, что замкнутой цепи для его протекания не образуется.
Именно поэтому использование изолированной нейтрали в электроустановках перечисленных объектов считается не только целесообразным, но и соответствующим требованиям ТБ. Низковольтные цепи с защитными устройствами различного типа относятся к этой же категории трехфазных силовых сетей.
Сети с напряжением более 1 кВ
К электрическим сетям этого класса, отличающимся небольшими по величине токами замыкания, относятся силовые трехфазные линии напряжением до 35 кВ. В этом случае емкостной составляющей токов утечки пренебречь уже не удается. В штатном режиме токовые показатели в каждой из фаз определяются векторной суммой импедансов, образующихся из-за емкостных утечек в землю. Поскольку геометрическая сумма рабочих токов в каждой из фаз равна нулю – утечки в землю в этом случае практически отсутствуют.
В аварийных ситуациях (при замыкании на грунт) потенциал поврежденной фазы падает до нуля, а напряжения на двух других – возрастают до линейных величин (380 В). Емкостные токи в оставшихся неповрежденными линиях также увеличиваются в √3 раз. Это объясняется тем, что к образующим емкость линиям прикладываются не фазные, а линейные напряжения. В итоге емкостный ток замыкания на землю оказывается в 3 раза большим, чем тот же показатель в штатном режиме.
В нормальных условиях рабочие значения указанных величин относительно невелики. К примеру, для (высоковольтных линий) ВЛ 10 кВ протяженностью порядка 10 км емкостный ток составляет всего 0,3 А, а для кабельной линии с теми же параметрами от равен 1,0 А.
Популярность ВЛ напряжением 3-35 кВ, в состав которых входит изолированная нейтраль, связана не только с их безопасностью (при нарушении правил эксплуатации они все равно опасны для пользователя). Их привлекательность объясняется способностью обеспечить нормальные условия работы оборудования при линейном напряжении.
Требования к изоляции ВЛ
При замыкании фазы высоковольтных систем на землю возможно возникновение перемежающейся дуги, сопровождающейся опасными перенапряжениями и резонансными явлениями. При величине этих перенапряжений, достигающих (2,5-3,9) Uф в случае поврежденной или изношенной изоляции возможен ее пробой и короткое замыкание в линии. Именно поэтому провода в ВЛ подбираются с учетом качества линейной изоляции, определяемой кратностью резонансных явлений.
Возникновение перемежающейся дуги возможно при величинах емкостных токов замыкания на землю порядка 10, 15, 20 или 30 А для различных условий эксплуатации. Два нижних токовый предела относится к сетям с рабочими напряжениями 35 и 20 кВ. При напряжениях 6 и 10 кВ они составляют соответственно 20 и 30 А и более.
Для исключения проявлений опасного для оборудования и человека эффекта в нейтрали трехфазных сетей устанавливается компенсирующий реактор в виде дугогасящего индуктивного элемента. Его основной показатель (индуктивность) подбирается из того расчета, чтобы по возможности полностью компенсировать емкостный ток в месте замыкания. Вместе с тем он должен быть достаточным для того, чтобы во время аварии срабатывали исполнительные цепи релейной зашиты.
Преимущества и недостатки электрических сетей с изолированной нейтралью
К преимуществам, относят:
- Замыкание фазы на землю при изолированной нейтрали не означает КЗ, поскольку прямое электрическое соединение между ними отсутствует.
- Токи однофазного замыкания (ОЗЗ) незначительны по величине.
- Допустимость работы системы в режиме ОЗЗ некоторое время, достаточное для отыскания неисправности и ее устранения.
- Емкостной характер токов замыкания, объясняемый особым типом связи, существующей между кабельными/воздушными линиями с электрооборудованием и землей.
Плюсом этого способа организации 4-х проводной линии также считается отсутствие активной токовой составляющей. Последнее объясняется тем, что резистивной связи между землей и нейтралью в этом случае не существует.
Изолированная нейтраль в составе трехфазных цепей передачи электроэнергии применяется крайне редко, поскольку у нее имеется ряд серьезных недостатков. К ним относятся:
- Сложность выявления и устранения неисправностей.
- Необходимость надежной изоляции линейных проводников.
- Опасность поражения высоким напряжением при длительном замыкании на землю.
- Невозможность обеспечить нормальную работу релейной защиты при 1-фазных замыканиях.
- Возможность повреждения изоляции из-за воздействия на нее дуговых перенапряжений. Случайные разрушения могут обнаружиться на любых участках ВЛ или кабельной укладки из-за пробоя изоляции в проблемных местах.
Все перечисленное позволяет заключить, что недостатки этих систем при напряжениях выше 1 кВ превышают их достоинства. Однако в определенных условиях этот режим достаточно эффективен и не нарушает требований, предъявляемых к электросетям нормативными документами (ПУЭ, в частности).
Области применения
Как правило, изолированная нейтраль используется на участках линий, к которым предъявляются повышенные требования в части безопасности эксплуатации. Кроме того, она востребована на объектах, где нет возможности обустроить полноценное заземление. К таким местам относятся:
- Морские суда, а также нефте- и газодобывающие платформы.
- Шахты и подобные им объекты, связанные с добычей полезных ископаемых при рабочих напряжениях 380-660 В.
- Подземные службы гражданского назначения (метро, в частности).
- Цепи управления рельсовыми подъемными кранами.
- Осветительные сети.
В открытом море и на платформах использование корпуса в качестве заземления невозможно, поскольку он имеет специальную анодную защиту. К тому же в зоне стекания тока в жидкую среду защитный слой со временем разрушается.
Изолированная нейтраль также применяется в бытовых генераторах, работающих на различных видах горючего топлива (бензине, газе или солярке).
Этот способ организации питающих линий широко распространен в виде понижающих/разделительных трансформаторов, необходимых для безопасной эксплуатации переносных светильников. Последние предназначаются для работы в особо опасных условиях и в замкнутых пространствах, к которым относятся траншеи, цистерны и помещения с повышенным уровнем влажности.
Похожие темы:
- Глухозаземленная нейтраль. Устройство и работа. Применение
- Устройство заземления. Виды и особенности. Правила и монтаж
- Уравнивания потенциалов. Виды и применение. Установка
- Защитное зануление. Работа и устройство. Применение и особенности
Нейтраль трансформатора
Нейтраль трансформатора точка соединения фазных обмоток при схеме подключения «звезда». Разность потенциалов в этой точке равна нулю. Разность потенциалов между концами фаз и нейтралью соответствует линейному напряжению между фазами.
При замыкании на землю изменяется симметрия электрической системы; изменяется значение напряжения между землей и фазами; образуются токи замыкания на землю, возникает перенапряжение в сети. Степень искажения симметрии зависит от выбранного режима присоединения нейтрали.
Выбранный режим должен обеспечивать безопасность обслуживающего персонала, экономичность электроустановки, бесперебойность электроснабжения потребителей и надежность работы.
Нейтрали трансформаторов электрических установок заземляются непосредственно, либо через активные или индуктивные сопротивления, либо изолируются от земли.
- Глухозаземленная нейтраль присоединяется к заземляющему устройству непосредственно.
- Изолированная нейтраль не соединена с заземлением.
- Резонанснозаземленная (компенсированная) нейтраль соединяется через индуктивное сопротивление (реактор) компенсирующее ёмкостный ток сети.
- Резистивнозаземленная нейтраль заземляется через активное сопротивление (резистор).
- Сетью с эффективнозаземленной нейтралью считается сеть напряжением свыше 1 кВ, коэффициент замыкания на землю которого не более 1,4.
Заземляющее устройство, к которому присоединяется нейтраль трансформатора или генератора должно иметь сопротивление не выше 4 Ом для электроустановок с напряжением 380/220В.
В отличие от защитного заземления, заземление нейтрали трансформатора или генератора называется рабочим заземлением.
Для выбора метода заземления нейтрали не утверждены стандарты. При проектировании электрических систем, энергетических установок и линий необходимо руководствоваться практикой эксплуатации существующих установок, директивными рекомендациями по предотвращению перенапряжений и параметрами электрооборудования.