Свойства силовых линий электрического поля
Напряжённость — физическая величина, характеризующая поле:
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q:
.
Также иногда называется силовой характеристикой электрического поля.
Математически зависимость вектора от координат пространства само задаёт векторное поле.
Модуль напряжённости электрического поля в СИ измеряется в В/м (Вольт на метр).
вакууме (или в отсутствии среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряженность магнитного поля совпадает с вектором магнитной индукции.
В магнетиках (магнитных средах) напряженность магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
В вакууме Н. э. п. удовлетворяет принципу суперпозиции, согласно которому полная напряжённость поля в точке равна геометрической сумме напряжённостей полей, создаваемых отдельными заряженными частицами.
Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
В СИ: , где μ0 — магнитная постоянная
Напряжение. Отношение работы, совершаемой любым электрическим полем при перемещении положительного заряда из одной точки поля в другую, к значению заряда называется напряжением между этими точками:
.
Отсюда работа сил электрического поля при перемещении заряда равна произведению напряжения U между точками на заряд q:
В электростатическом поле напряжение между двумя любыми точками равно разности потенциалов этих точек:
. (40.9)
Как будет показано далее, равенство (40.9) может не выполняться, если электрическое поле непотенциальное. В непотенциальных электрических полях работа сил поля при перемещении электрического заряда зависит от траектории движения заряда из одной точки в другую.
14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q:
Также иногда называется силовой характеристикой электрического поля.
Математически зависимость вектора от координат пространства само задаёт векторное поле.
Модуль напряжённости электрического поля в СИ измеряется в В/м (Вольт на метр).
вакууме (или в отсутствии среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряженность магнитного поля совпадает с вектором магнитной индукции.
В магнетиках (магнитных средах) напряженность магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
Для установления связи между силовой характеристикой электрического поля — напряжённостью и его энергетической характеристикой — потенциалом рассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q E dl, эта же работа равна убыли потенциальной энергии заряда q: dA = — dWп = — q d , где d — изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: E dl = -d или в декартовой системе координат
Ex dx + Ey dy + Ez dz = -d , (1.8)
где Ex, Ey, Ez — проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем
.
Стоящее в скобках выражение является градиентом потенциала j, т. е.
E = — grad = -Ñ .
Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала.
Напряженность поля связана с разностью потенциалов формулой E=U/∆d,
Где U-разность потенциалов между двумя точками на одной силовой линии, находящимися на малом расстоянии ∆d друг от друга.
Напряженность поля Ē направлена в сторону убывания потенциала.
Единица измерения напряженности 1В/м.
Все точки поверхности, перпендикулярной силовым линиям, имеют один и тот же6 потенциал. Поверхности равного потенциала называют эквипотенциальными. Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону уменьшения потенциала.
Для измерения разности потенциалов используют прибор электрометр.
Что такое силовые линии электрического поля. электростатика
Электрическое поле наглядно изображается с помощью силовых линий. Силовой линией электрического поля называется линия, в каждой точке которой касательная совпадает с вектором напряженности поля. Силовые линии проводятся с такой густотой, чтобы число линий, пронизывающих воображаемую площадку 1м2, перпендикулярную полю, равнялось величине напряженности поля в данном месте. Тогда по изображению электрического поля можно судить не только о направлении, но и о величине напряженности поля. Электрическое поле называется однородным, если во всех его точках напряженность Е одинакова. В противном случае поле называется неоднородным.
При положительном заряде, образующем поле, вектор напряженности направлен вдоль радиуса от заряда, при отрицательном — вдоль радиуса по направлению к заряду. Исходя из положительного заряда (или входя в отрицательный заряд) силовые линии теоретически простираются до бесконечности.
Остальные ответы
Похожие вопросы
Силовые линии электрического поля
Электрическое поле изображают с помощью силовых линий. Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.
Свойства силовых линий электрического поля
- Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.
- Силовые линии электрического поля всегда перпендикулярны поверхности проводника.
- Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным(если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).
Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр (Кл/м), в Кулонах на квадратный метр (Кл/м²) и в Кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды. Линейная, поверхностная и объемная плотности заряда, обозначаются обычно функциями ,и, соответственно, где— эторадиус-вектор. Зная эти функции мы можем определить полный заряд:
§5 Поток вектора напряженности
Определим поток вектора через произвольную поверхность dS,— нормаль к поверхности.α — угол между нормалью и силовой линией вектора. Можно ввести вектор площади.ПОТОКОМ ВЕКТОРАназывается скалярная величина ФЕ равная скалярному произведению вектора напряженности на вектор площадиДля однородного поля Для неоднородного поля где — проекцияна,— проекцияна. В случае криволинейной поверхности S ее нужно разбить на элементарные поверхности dS, рассчитать поток через элементарную поверхность, а общий поток будет равен сумме или в пределе интегралу от элементарных потоков где — интеграл по замкнутой поверхности S (например, по сфере, цилиндру, кубу и т.д.) Поток вектора является алгебраической величиной: зависит не только от конфигурации поля, но и от выбора направления. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т.е. нормаль, направленная наружу области, охватываемой поверхностью. Для однородного поля поток через замкнутую поверхность равен нуля. В случае неоднородного поля . 3. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью. Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.
- Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен
По теореме Гаусса Следовательно
(13.8) |
- Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии с вышеприведенным уравнением, можно написать
(13.9) |
2. Электростатическое поле шара. Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью . В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара
(13.10) |
а на его поверхности (r=R)
(13.11) |
В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен с другой стороны, в соответствии с теоремой Гаусса Из сопоставления последних выражений следует
(13.12) |
где— диэлектрическая проницаемость внутри шара. Зависимость напряженности поля, создаваемого заряженной сферой, от расстояния до центра шара приведена на (рис.13.10) 3. Напряженность поля равномерно заряженной бесконечной прямолинейной нити (или цилиндра). Предположим, что полая цилиндрическая поверхность радиуса R заряжена с постоянной линейной плотностью . Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность По теореме Гаусса Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:
(13.13) |
4. Напряженность поля, создаваемого, бесконечной равномерно заряженной плоскостью. Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10). Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток векторачерез противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом,С другой стороны по теореме Гаусса Следовательно но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна
(13.14) |
В это выражение не входят координаты, следовательно электростатическое поле будет однородным, а напряженность его в любой точке поля одинакова. 5. Напряженность поля, создаваемого двумя бесконечными параллельными плоскостями, заряженными разноименно с одинаковыми плотностями. Как видно из рисунка 13.13, напряженность поля между двумя бесконечными параллельными плоскостями, имеющими поверхностные плотности зарядов и, равны сумме напряженностей полей, создаваемых пластинами, т.е. Таким образом,
(13.15) |
Вне пластины векторы от каждой из них направлены в противоположные стороны и взаимно уничтожаются. Поэтому напряженность поля в пространстве, окружающем пластины, будет равна нулю Е=0.
Физика помогите что показывает силовые линии электрического поля?
Электрическое поле изображают с помощью силовых линий.
Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.
Свойства силовых линий электрического поляСиловые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных. Силовые линии электрического поля всегда перпендикулярны поверхности проводника. Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке) , однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).
Вектор напряженности поля они показывают.
Касательная к силовой линии в каждой её точке совпадает с направлением вектора напряженности поля (Е) .
Это геометрическая интерпретация