Для чего в машинах постоянного тока используется коллектор?
Коллектор — это система медных пластин, изолированных друг от друга и от вала якоря. К пластинам припаяны отводы от обмотки якоря. Для соединения коллектора с зажимами машины и внешней цепью служат скользящие контакты (щетки).
Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).
Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины .
Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса. На рис. 1. показан общий вид коллектора электрической машины .
Для рассмотрения работы коллектора обратимся к рис. 2, на котором рамка с проводниками А и В показана в разрезе. Для большей наглядности проводник А показан толстым кружком, а проводник В двумя тонкими кружками.
Щетки замкнуты на внешнее сопротивление тогда э. д. с., индуктируемая в проводниках, будет вызывать в замкнутой цепи электрический ток. Поэтому при рассмотрении работы коллектора можно говорить не об индуктированной э. д. с., а об индуктированном электрическом токе.
Рис. 1. Коллектор электрической машины
Рис. 2. Упрощенное изображения коллектора
Рис. 3. Выпрямление переменного тока с помощью коллектора
Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.
Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.
Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.
Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось .
В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.
В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.
Рис. 4. Коллектор двигателя постоянного тока
Представление о характере изменения тока во внешней цепи за один оборот рамки, снабженной коллектором, дает кривая рис. 5. Из кривой видно, что наибольших значений ток достигает в точках, соответствующих 90° и 270°, т. е. когда проводники пересекают силовые линии непосредственно под полюсами. В точках 0° (360°) и 180° ток во внешней цепи равен нулю, так как проводники, проходя нейтральную линию, силовых линий не пересекают.
Рис. 5. Кривая изменения тока во внешней цепи за один оборот рамки после выпрямления коллектором
Из кривой нетрудно заключить, что хотя направление тока во внешней цепи и остается неизменным, но величина его все время меняется в пределах от нуля до максимума.
Электрический ток, постоянный по направлению, но переменный по величине, носит название пульсирующего тока. Для практических целей пульсирующий ток очень неудобен. Поэтому в генераторах стремятся сгладить пульсации и сделать ток более ровным.
В отличие от генераторов, в двигателях постоянного тока коллектор выполняет роль автоматического переключателя направления тока во вращающихся проводниках якоря. Если в генераторе коллектор служит для выпрямления переменного тока в постоянный, то в электродвигателе роль коллектора сводится к распределению тока в обмотках якоря таким образом, чтобы в течение всего времени работы электродвигателя в проводниках, находящихся в данный момент под северным полюсом, ток проходил постоянно в каком-либо одном направлении, а в проводниках, находящихся под южным полюсом, — в противоположном направлении.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Продукция
Коллектор для электродвигателей постоянного тока
Коллектор — один из основных и наиболее ответственных узлов тягового двигателя постоянного тока. Коллектор наиболее нагружен в электрическом отношении, и условиями его надежной работы ограничиваются предельные мощности тяговых двигателей. Диаметр коллектора современных тяговых двигателей превышает 800 мм, число пластин достигает 600.
Медные пластины коллектора имеют в сечении форму клина. Одна от другой они изолированы прокладками из коллекторного миканита. Миканит изготовляют из лепестков слюды, обладающей очень высокими электрической прочностью и теплостойкостью, а также влагостойкостью.
Склеивают лепестки специальными лаками или смолами. В нижней части коллекторные и изоляционные пластины имеют форму так называемого «ласточкиного хвоста». «Ласточкины хвосты» пластин и прокладок надежно зажаты между коробкой коллектора и нажимной шайбой, стянутыми болтами. Такое крепление обеспечивает сохранение строго цилиндрической формы коллектора, что очень важно, так как к поверхности коллектора все время прижимаются щетки. Стоит хотя бы одной пластине выйти за очертания окружности коллектора, как щетки начнут подпрыгивать, искрить, что может привести к повреждению двигателя! То же самое может произойти при недостаточно высоком качестве обработки коллектора, а также в случае образования на его поверхности вмятин и выступов.
От коробки и нажимной шайбы коллекторные пластины изолируют, прокладывая конусы и цилиндр, изготовленные из миканита. Коллекторные пластины имеют выступы, называемые петушками. В петушках сделаны прорези, куда впаивают концы секций обмотки якоря.
Во время работы двигателя щетки истирают поверхность коллектора. Миканит более износостоек, чем медь, поэтому в процессе работы поверхность коллектора может стать волнистой. Чтобы этого не произошло, изоляцию в промежутках между медными пластинами после сборки коллектора делают меньшей высоты — продороживают коллектор специальными фрезами.
- Электрогидравлические толкатели и колодочные тормоза
- Машины переменного тока
- Машины постоянного тока
- Электродвигатели постоянного тока крановые
- Электродвигатели постоянного тока экскаваторные
- Генераторы постоянного тока
- Коллекторы для электродвигателей постоянного тока
Что такое коллектор в электродвигателе
Коллекторные двигатели постоянного тока 12В и 24В.
Продажа в Санкт-Петербурге, Москве, поставки по РоссииСтраница, которую вы запрашиваете, не существует
Возможно, она была удалена, или был введен неверный адрес. Попробуйте вернуться на главную страницу или воспользуйтесь навигацией.
Полюстровский проспект, дом 43 литера А — бизнес центр «Полюс»
Варшавское шоссе, д. 32, оф. 309
Коллекторные двигатели, источники питания, драйверы и контроллеры
Коллекторные и бесколлекторные электродвигатели постоянного тока. Устройство и принцип работы
Трудно себе представить современное производство без различного оборудования и без электродвигателей, которые приводят его в действие. Исправная работа электродвигателя – гарантия качественного производственного процесса в любой промышленной отрасли.
Устройство электродвигателя постоянного тока таково, что он может работать только от постоянного тока. Данный вид электродвигателей разделяются на двигатели с коллектором и без него.
Коллекторный двигатель
Этот двигатель имеет коллектор, ротор, индуктор, статор, якорь, щетки. Ротор вращается, в отличие от статора, который неподвижен. Частью коллекторного устройства является индуктор, который создает магнитный поток и организует время, когда происходит возбуждение двигателя. Индуктор обладает обмоткой или магнитами. Якорь также является частью коллекторного двигателя. Частью устройства является пара щеток. Электрический ток, поступающий от источника питания, подходит к якорю через щетки. Изготавливают их из графита, хотя могут использоваться и другие материалы. Обычно коллекторные электродвигатели постоянного тока имеют две щетки, но, могут быть и исключения, когда используется несколько пар. Одну щетку соединяют с плюсом источника питания, а другая соединяется с минусом.Коллектор является частью двигателя, который непосредственно контактирует с парой щеток – вместе они распределяют электрический ток по якорным обмоточным катушкам.
Электродвигатель на постоянных магнитах имеет относительно невысокую стоимость и используется во многих промышленных сферах, поскольку имеют широчайший диапазон мощностей, начиная с сотых долей Ватта, заканчивая десятками МегаВатт. Большим размахом обладает и частота вращения.
Используют электродвигатель на постоянных магнитах в устройстве бытовой техники, часто его устанавливают и в детские игрушки.
Коллекторные электродвигатели используют там, где необходима высокая скорость рабочих элементов: пылесосы, миксеры и т.п.
Бесколлекторный двигатель
Этот вид двигателей появился на рынке сравнительно недавно. Они не имеют коллекторно-щеточного узла — это является большим преимуществом, поскольку такой двигатель не создает радиопомех.
Бесколлекторный электродвигатель постоянного тока обладает высоким КПД – намного выше, чем у коллекторного собрата. При этом намного проще устроена сама конструкция двигателя, так как в ней отсутствует узел со щетками. Более того, бесколлекторные моторы имеют очень низкую степень изнашивания.
Бесколлекторные двигатели имеют подшипники, что влияет на их стоимость – она несколько выше стоимости коллекторных собратьев.
Бесколлекторный электродвигатель постоянного тока обладает самосинхронизацией. В основе его работы лежит принцип частотного регулирования – оно происходит вследствие управления вектором (направлением) магнитного поля, создаваемое статором, на которое оказывает влияние место положения ротора.
Такое влияние возможно из-за того, что ротор не что иное, как постоянные магниты, которые создают постоянное магнитное поле, а индуктор находится на роторе, т.е. в зоне влияния поля. Обмотка якоря находится на статоре. В зависимости от положения ротора формируется напряжение, питающее обмотки двигателя. Контроллер осуществляет управление током при помощи широтно-импульсной модуляции, которая протекает через обмотки двигателя.