Что такое cos фи в трехфазной сети
Перейти к содержимому

Что такое cos фи в трехфазной сети

  • автор:

Реактивная мощность и cos фи

Рассмотрим такие понятия, как: реактивная мощность, коэффициент мощности ( cos фи), низкое значение Cos FI и способы его повышения.

Что такое реактивная мощность?

Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность. И хотя определение выглядит весьма простым, само понятие реактивной мощности весьма зачастую туманно и запутанно даже для людей с неплохой технической подготовкой.

Объяснение понятия реактивной мощности основывается на том, что в системе переменного тока в случае, когда напряжение и ток возрастают и уменьшаются одновременно, передается только активная мощность, а когда между током и напряжением есть сдвиг во времени (сдвиг по фазе), передается как активная, так и реактивная мощность. Однако, при расчете среднего за период значения, присутствует только среднее значение активной мощности, которое приводит к «чистой» передаче энергии из одной точки в другую, тогда как среднее значение реактивной мощности равно нулю, независимо от структуры и режима работы системы.

В случае реактивной мощности количество энергии, протекающее в одном направлении равно количеству энергии, протекающему в противоположном направлении (иначе говоря, реактивные элементы сети – конденсаторы, индуктивности и др. – обмениваются реактивной энергией). Это означает, что реактивная мощность не производится и не потребляется.

Но, в действительности, мы наблюдаем потери реактивной мощности и внедряем много различного оборудования для ее компенсации, чтобы уменьшить потребление электроэнергии и затраты.

Заблуждения о законе сохранения энергии

Закон сохранения энергии, не подвергаемый сомнению, гласит: «энергия ни откуда не возникает и никуда не исчезает», а мы все еще продолжаем говорить о «сбережении энергии»!! Заблуждения возникают тогда, когда мы рассуждаем о законе сохранения, игнорируя другие законы термодинамики, в частности закон, гласящий, что энтропия («низкосортная» энергия) постоянно увеличивается. В математическом смысле «полная» энергия не имеет значения для потребителя энергии, следовательно, он должен заботиться об эффективности ее преобразования и сохранения. Точно так же, несмотря на то, что мы можем доказать математически, что потери реактивной мощности не являются реальными потерями и реактивная энергия вообще не тратится, у нас есть целый ряд причин для коррекции реактивной мощности. Это проще объяснить на основе физических аналогий.

Физические аналогии

Предположим, нам надо заполнить водой резервуар, выливая по одному ведру за раз. Единственный способ сделать это – подняться по лестнице с ведром воды и вылить ведро в емкость. Вылив ведро, мы должны спуститься по лестнице за следующим ведром. За этот цикл (подъем по лестнице и спуск) мы проделали определенную работу, причем энергия, затраченная на подъем, больше энергии, требуемой для спуска.

Если бы мы поднялись по лестнице с пустым ведром и с ним же спустились, то мы не совершили бы никакой работы. Но энергия для подъема и спуска осталась бы такой же. И хотя мы не совершали никакой полезной работы, мы затратили некоторое количество энергии.

Таким образом, энергия, необходимая на подъем и спуск по лестнице с пустыми руками, требует реактивной мощности, но не полезной. А энергия, затраченная на подъем с ведром воды и спуск с пустым ведром, требует как активной мощности, так и реактивной.

Аналогия может быть распространена и на трехфазные системы, если поставить три лестницы к резервуару и заставить трех человек подниматься по ним в такой последовательности, чтобы наполнение резервуара было непрерывным.

Что вызывает низкий коэффициент мощности cos φ (cos фи) в электрической системе?

Перечислим некоторые причины, которые способствуют возникновению в системе низкого коэффициента мощности:

  • индуктивные нагрузки, особенно недогруженные асинхронные двигатели и трансформаторы;
  • индукционные печи и дуговые печи с реакторами;
  • дуговые лампы;
  • токоограничивающие реакторы;
  • повышенное напряжение.

Реактивная мощность, потребляемая этими нагрузками, увеличивает значение полной мощности в распределительной сети, и такое увеличение реактивной и полной мощности вызывает снижение коэффициента мощности.

Как повысить коэффициент мощности cos φ?

Коэффициент мощности можно повысить путем дополнительного подключения в сеть потребителей реактивной мощности, таких как конденсаторы или асинхронные двигатели.

Также его можно увеличить за счет полного использования по нагрузке асинхронных двигателей и трансформаторов и за счет применения высокоскоростных двигателей. Применение автоматической системы переключения отводов обмоток трансформаторов также способствует повышению коэффициента мощности.

При каких обстоятельствах коррекция коэффициента мощности способна:

а) снизить потребление электроэнергии на предприятии?
Повышение коэффициента мощности cos фи (cos φ) на предприятии за счет внедрения любого из вышеупомянутых способов компенсирует потери и уменьшает токовые нагрузки на оборудование электросети, т.е. кабели, распределительные коммутационные устройства, трансформаторы, генерирующие установки и т.д. Это означает, что коррекция коэффициента мощности cos фи там, где она возможна, уменьшит потребление электроэнергии на предприятии и, в свою очередь, снизит стоимость электроэнергии.

Повышение коэффициента мощности cos φ приводит к снижению энергопотребления, когда коррекция реализована на уровне отдельных потребителей (т.е. оборудования) или на уровне распределительного устройства. Но это не приведет к снижению энергопотребления, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети. Если предприятие осуществляет такую коррекцию для своей собственной системы генерации электроэнергии, то в этом случае экономия на стоимости (либо электроэнергии, либо стоимости топлива) будет иметь место за счет снижения потерь в генераторе.

б) сократить только затраты на электроэнергию?
Коррекция коэффициента мощности cos φ (cos фи) приведет только к уменьшению стоимости электроэнергии в случае, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети.

Как правило, cos фи повышают до значения 0.95-0.98, а дальнейшее его повышение до единицы может привести к увеличению срока окупаемости мероприятий по коррекции.

в) снизить затраты и потребление электроэнергии?
Во всех остальных случаях, кроме вышеописанных исключений, повышение коэффициента мощности в конечном итоге приводит к снижению потребления энергии и, следовательно, к снижению стоимости электроэнергии. Однако окупаемость инвестиций за счет повышения коэффициента мощности зависит от типа предприятия и многих других факторов, таких как тариф на электроэнергию, схемы загрузки оборудования, метода производства и использования мощности и т.д.

Коррекция коэффициента мощности cos фи осуществляется за счет индивидуальной или групповой коррекции.

увеличение нагрузочной способности распределительной сети

удельная стоимость (на квар) конденсаторов малых габаритов выше, чем стоимость больших конденсаторов

возможность аппаратного отключения, не требуется дополнительных коммутаций

экономическая целесообразность обычно до 10 л.с.

лучше стабилизация напряжения

затрудненная установка в местах с особыми требованиями (пожаробезопасные и защищенные исполнения)

простота определения типоразмера конденсатора

необходимость в дополнительном оборудовании для обслуживания

конденсаторы, встроенные в оборудование,
могут быть перемещены во время реконструкции

если номинал конденсатора слишком велик – больше, чем мощность намагничивания двигателя, возможно повредить двигатель и другое подключенное оборудование

увеличение нагрузочной способности системы энергоснабжения

необходимость в коммутирующих устройствах для управления величиной емкости

снижение материальных затрат по сравнению с индивидуальной коррекцией

необходимость в индивидуальных коммутирующих устройствах

сокращение количества оборудования для обслуживания / простота доступа для контроля

отсутствие снижения потерь в кабелях ниже
точки коррекции

исключение самовозбуждения асинхронных двигателей из-за высокого значения емкости

высокий срок окупаемости

уменьшение удельной цены на квар для устройств больших типоразмеров

отсутствие вклада в увеличение срока службы/эффективности оборудования

простота регулирования нагрузки энергосистемы; коэффициент мощности cos φ может быть приближен к единице

опережающий коэффициент мощности на предприятиях с собственной генерацией электроэнергии при неправильной коммутации

возможность установки на подстанциях и, следовательно, возможность применения на опасных объектах

вероятность непосредственной коммутации емкостной нагрузки при отключении электроэнергии

Как считать электрическую мощность?

Чтобы обеспечить нормальное функционирование электрической проводки, необходимо ещё на этапе проектирования правильно рассчитать мощность, подобрать кабель подходящего сечения. От этого зависит не только срок эксплуатации системы, но и пожаробезопасность сооружения. Если выбрать сечение ошибочно или неправильно рассчитать мощность, можно столкнуться с такими опасными последствиями, как возгорание электропроводки, короткие замыкания, пожар и пр. При выборе оборудования и кабельно-проводниковой продукции важно учитывать разные критерии, среди которых напряжение, сила тока, особенности эксплуатации сети.

Формула расчёта

В уже функционирующей сети измерить мощность электрического тока можно при помощи специального оборудования. Что же делать на этапе проектирования? Ведь самой цепи ещё нет. В этом случае применяется расчётный метод.

Существует два вида мощности: активная и реактивная. Активная превращается в полезную энергию безвозвратно, считается полезной. Реактивная предусматривает затрату определенного (расчетного согласно установленного оборудования и типа оборудования) количества энергии.

В нашем случае реактивная мощность нам не интересна, и мы не будем ее рассчитывать!

В цепях переменного тока, ток и напряжения сдвигаются относительно друг друга.

Этот сдвиг на угол cos обозначается буквой φ (фи).

При расчёте мощности электрической мощности следует учитывать тип сети:

P=U*I*cosφ — для однофазной;

P=√3*U*I*cosφ — для трехфазной.

U – это напряжение сети,

I – сила тока,

cosφ – коэффициент мощности.

cosφ – коэффициент мощности, это паспортная величина оборудования, если не известно о типе оборудования (например, квартиры), то cosφ – расчетный и берется из инструкции по проектированию (СП 256.1325800.2016)

Зависимость коэффициента мощности

Чтобы рассчитать полную (Обращаем внимание, что имеется ввиду установленная, т.е. полная мощность) мощность, необходимо определить суммарную мощность всей техники и оборудования, которые будут эксплуатироваться, и подключаться к данной электрической сети. Это можно узнать путём суммирования мощностей приборов (этот показатель указан в паспорте товара).

При определении коэффициента мощности учитывается характер нагрузки. К примеру, для нагревательного оборудования он близится к 1. Важно учитывать, что любая активная нагрузка предполагает незначительную реактивную составляющую, поэтому коэффициент мощности будет равен не 1, а 0,95. Для более мощных приборов – 0,8. Напряжение для однофазных цепей принимается 220 В, для трехфазных – 380 В.

Что такое cos фи в трехфазной сети

  • Работа в компании
  • Закупки
  • Библиотека
  • Охрана труда
  • Рус / Eng
  • О заводе
  • Каталог
    • Установки компенсации реактивной мощности
      • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
      • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
      • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
      • Комплектующие для конденсаторных установок
      • Серия PSPE1 (однофазные конденсаторы)
      • Серия PSPE3 (трехфазные конденсаторы)
      • Конденсаторы серии AFC3
      • Конденсаторы серии FA2
      • Конденсаторы серии FA3
      • Конденсаторы серии FB3
      • Конденсаторы серии FO1
      • Конденсаторы серии PO1
      • Конденсаторы серии SPC
      • Серия K78-99 (пластиковый корпус)
      • Серия К78-99 A (алюминиевый корпус)
      • Серия К78-99 AP2 (взрывозащищенный)
      • Серия К78-98 (пластиковый корпус)
      • Серия К78-98 A (алюминиевый корпус)
      • Серия К78-98 АР2 (взрывозащищенный)

      rezident

      • офис: с 9 00 до 17 30
      • склад: с 9 00 до 17 00

      +7 (925) 517-34-27 (отдел продаж);

      +7 (495) 744-31-71 (отдел продаж);
      +7 (926) 673-77-58 (отдел персонала).

      • Охрана труда
      • Установки компенсации реактивной мощности
        • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
        • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
        • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
        • Комплектующие для конденсаторных установок
        • Серия PSPE1 (однофазные конденсаторы)
        • Серия PSPE3 (трехфазные конденсаторы)
        • Конденсаторы серии AFC3
        • Конденсаторы серии FA2
        • Конденсаторы серии FA3
        • Конденсаторы серии FB3
        • Конденсаторы серии FO1
        • Конденсаторы серии PO1
        • Конденсаторы серии SPC
        • Серия K78-99 (пластиковый корпус)
        • Серия К78-99 A (алюминиевый корпус)
        • Серия К78-99 AP2 (взрывозащищенный)
        • Серия К78-98 (пластиковый корпус)
        • Серия К78-98 A (алюминиевый корпус)
        • Серия К78-98 АР2 (взрывозащищенный)

        Сертификаты
        ЗАДАТЬ ВОПРОС
        ЗАДАЙТЕ ВОПРОС ONLINE
        на Ваши вопросы ответят профильные специалисты
        ЗАДАТЬ ВОПРОС
        Спасибо за интерес, проявленный к нашей Компании

        • Словарь терминов
        • Коэффициент мощности

        Коэффициент мощности
        Отправить другу

        Коэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка.

        cos φ = P/S, где:

        • cos φ – коэффициент мощности;
        • Р — активная мощность Вт;
        • S — полная мощность ВА;

        Коэффициент мощности можно определить как расчетным путем, так и измерить специальными приборами. Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы.

        Следует учитывать, что низкий коэффициент мощности потребителя приводит:

        • к необходимости увеличения полной мощности трансформаторов и электрических станций, а также к увеличению сечения питающих линий электропередач;
        • к понижению коэффициента полезного действия вырабатывающих и трансформирующих элементов цепи;
        • к увеличению потерь мощности и напряжения в проводах. При одних и тех же значениях мощности и напряжения уменьшение коэффициента мощности сопровождается увеличением тока в проводах, вследствие чего возрастают потери на нагрев, что, в свою очередь, приводит к падению напряжения в сети;

        Чем меньше коэффициент мощности сети, тем менее загружена сеть активной мощностью и тем меньше коэффициент полезного действия использования сети. В связи с этим необходимо, чтобы как можно большую часть в полной мощности составляла именно активная мощность, а не реактивная, в этом случае коэффициент мощности будет ближе к единице.

        НЕОБХОДИМА КОНСУЛЬТАЦИЯ?
        или заполните простую форму

        Чтобы лучше понять данный вопрос, давайте рассмотрим причины низкого коэффициента мощности:

        • Недогрузка асинхронных электродвигателей. Потребляемая активная мощность уменьшается пропорционально нагрузке, а реактивная мощность изменяется меньше;
        • Неправильный выбор типа электродвигателя. Двигатели быстроходные и большой мощности имеют более высокий коэффициент мощности, чем тихоходные и маломощные;
        • Повышение напряжения в сети. Ведет к увеличению намагничивающего тока индуктивных потребителей реактивной составляющей полного тока;

        Для увеличения коэффициента мощности можно:

        • изменить мощность и тип устанавливаемых электродвигателей;
        • увеличить загрузку электродвигателей в процессе работы;
        • уменьшить время работы в холостом режиме оборудования потребляющего индуктивную мощность;
        • установить установку компенсации реактивной мощности с конденсаторами производства «Нюкон»;

        Преимущества использования конденсаторных установок «Нюкон» для компенсации реактивной мощности

        • малые удельные потери активной мощности установками КРМ (собственные потери косинусных конденсаторов напряжением 0,4 кВ не превышают 0,5 Вт на 1000 ВАр);
        • отсутствие вращающихся частей;
        • удобный монтаж и надежные эксплуатационные характеристики;
        • возможность выбора любого необходимого шага компенсации реактивной мощности;
        • возможность установки и подключения в необходимой точке электросети;
        • отсутствие шума во время работы;
        • малые эксплуатационные затраты;
        • хорошая цена.

        Если Вы желаете купить конденсаторную установку или узнать цену на установки компенсации реактивной мощности, позвоните по телефону указанному ниже или заполните приведенную форму. В этом случае, в ближайшее время мы с Вами свяжемся для уточнения особенностей Вашего проекта, необходимых для расчета стоимости КРМ

        Как измерить коэффициент мощности

        Как измерить коэффициент мощности

        Для измерения косинус фи лучше всего иметь специальные приборы, предназначенные для непосредственного его измерения — фазометры.

        Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между двумя изменяющимися периодически электрическими колебаниями.

        Если таких приборов нет, то измерять коэффициент мощности можно косвенным методом . Например, в однофазной сети косинус фи можно определить по показаниям амперметра, вольтметра и ваттметра:

        cos фи = P / (U х I), где Р, U, I — показания приборов.

        в цепи трехфазного тока cos фи = P w / ( √ 3 х Uл х Iл)

        где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.

        В симметричной трехфазной цепи значение косинус фи можно определить из показаний двух ваттметров P w 1 и P w 2 по формуле

        Общая относительная погрешность рассмотренных методов равна сумме относительных погрешностей каждого прибора, поэтому точность косвенных методов невелика.

        Численное значение косинус фи зависит от характера нагрузки. Если нагрузкой являются лампы накаливания и нагревательные приборы, то косинус фи = 1, если нагрузка содержит еще и асинхронные электродвигатели, то косинус фи

        Поэтому на практике в электрических сетях определяют так называемый средневзвешенный коэффициент мощности за какое-то определенное время, допустим, за сутки или месяц. Для этого в конце рассматриваемого периода снимают показания счетчиков активной и реактивной энергии Wa и Wv и определяют средневзвешенное значение коэффициента мощности по формуле

        Это значение средневзвешенного коэффициента мощности желательно иметь в электрических сетях равным 0,92 — 0,95.

        Как измерить коэффициент мощности

        Использование фазометра для измерения коэффициента мощности

        Измерить непосредственно фазовый сдвиг между напряжением и током нагрузки можно при помощи специальных измерительных приборов — фазометров .

        Наибольшее распространение получили фазометры электродинамической системы , в которых неподвижная катушка включена последовательно с нагрузкой, а подвижные катушки — параллельно нагрузке, так, что ток одной из них отстает от напряжения на угол β1. Для этого последовательно с катушкой включена активно-индуктивная нагрузка, а ток другой опережает напряжение на некоторый угол β2 , для чего включена активно-емкостная нагрузка, причем β1 + β2 = 90 о

        Схема включения фазометра (а) и векторная диаграмма напряжений и токов

        Рис. 1. Схема включения фазометра (а) и векторная диаграмма напряжений и токов (б).

        Угол отклонения стрелки такого прибора зависит только от значения косинуса фи.

        фазометр

        Для измерения фазового сдвига между двумя напряжениями часто применяют цифровые фазометры . В цифровых фазометрах прямого преобразования для измерения фазового сдвига его преобразуют в интервал времени и измеряют последний. Исследуемые напряжения подают на два входа прибора, на цифровом отсчетном устройстве прибора снимают показания числа импульсов, поступающих на счетчик прибора за один период исследуемых напряжений, которое соответствует фазовому сдвигу в градусах (или в долях градуса).

        Из щитовых приборов, предназначенных для измерения, наиболее простой фазометр типа Д31, который может работать в однофазных сетях переменного тока с частотой 50, 500, 1000, 2400, 8000 Гц. Класс точности 2,5. Пределы измерений косинуса фи от 0,5 емкостного фазового сдвига до 1 и от 1 до 0,5 индуктивного фазового сдвига. Фазометры включают через измерительные трансформаторы тока с вторичным током 5 А и измерительные трансформаторы напряжения с вторичным напряжением 100 В.

        Для измерения косинуса фи в трехфазной сети при симметричной нагрузке можно применять щитовые фазометры типа Д301. Класс их точности 1,5. Последовательные цепи включают на ток 5 А непосредственно, а также через трансформатор тока, параллельные цепи включают непосредственно на 127, 220, 380 В, а также через измерительные трансформаторы напряжения.

        Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

        Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

        Не пропустите обновления, подпишитесь на наши соцсети:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *