6.1.4. Успешный и неуспешный циклы апв
При повреждении на линии срабатывает релейная защита и отключает линию. Одновременно запускаются элементы схемы АПВ. Если на отключенной линии повреждение самоликвидируется, то релейная защита, а также реле КТ1 и KL1 возвращаются в исходное положение. Однако реле КТ2 самоудерживается и обеспечивает выполнение программы повторного включения. По истечении выдержки времени t2, порядка 0,5 с, подается сигнал на реле KL2, которое в свою очередь подает сигнал на включение выключателя. Реле KL2 имеет дополнительную, последовательную обмотку, за счет которой якорь удерживается до момента включения выключателя. По истечении выдержки времени t3 замыкается третий контакт реле КТ2.3 и реле КТ2 возвращается в исходное положение.
Релейная защита отключает линию, а устройство АПВ подает сигнал на включение выключателя. В случае устойчивого повреждения релейная защита вторично отключает линию. Выдержка времени t3 выбирается больше времени срабатывания релейной защиты и равняется обычно 810 секундам. Поэтому реле времени КТ2, запущенное при первом срабатывании защиты, продолжает работать. Действие проскальзывающего контакта КТ2.2 было использовано, поэтому сигнала на включение не будет. При замыкании контакта КТ2.3 схема возвращается в исходное положение.
Проскальзывающий контакт КТ2.2 реле КТ2 может застревать, что является недостатком этой схемы. При этом получается затянувшийся импульс на включение, а, следовательно, возможно многократное включение выключателя. Для устранения этого явления цепь включения дополнительно заводится через нормально закрытый контакт реле KL1.1. При очередном отключении выключателя реле KL1 срабатывает и самоудерживается контактом KL1.2. В результате контакты KL1.1 будут удерживаться в разомкнутом состоянии и сигнал на включение не пройдет.
При отключении линии от ключа управления схема АПВ не запускается и повторного включения не будет.
6.1.5. Схема апв с пуском от несоответствия положения ключа управления и выключателя
Пуск схемы АПВ производится от несоответствия положения ключа управления и выключателя. Так, если ключ управления SA находится в положении «включено», а выключатель по какой-либо причине отключился, то устройство АПВ будет запущено и подаст сигнал на повторное включение.
Напомним алгоритм действия автоматики повторного включения. При КЗ на линии срабатывает релейная защита и отключает ее. Через некоторое время автоматика повторно включит линию. Выдержка времени необходима для того, чтобы погасла дуга в месте КЗ. Если КЗ было проходящим, то после повторного включения линия сохранится в работе. На этом действие релейной защиты и АПВ заканчивается.
При устойчивом КЗ на линии за время бестоковой паузы повреждение не ликвидируется. Повторная подача напряжения на линию не приведет к желаемому результату – сохранению линии в работе. Релейная защита повторно отключит линию. Поскольку АПВ однократное, то линия останется в отключенном состоянии. Схема автоматики, реализующая рассмотренный алгоритм, показана на рис. 6.2.
Прежде всего, обратим внимание на ручное управление линией, которое осуществляется ключом SA. Рукоятка этого ключа может занимать три положения – нейтральное, левое и правое. Поворот ключа влево соответствует команде «отключено». В правом положении подается команда на включение.
При возвращении ключа SA в нейтральное положение поданная команда может исчезнуть или сохранится. Сохранение (запоминание) команды на схеме ключа SA отмечено точкой на средней пунктирной линии. Контакты 1-2 замыкаются при повороте ручки ключа вправо и после возврата ручки в нейтральное положение остаются замкнутыми.
Рис. 6.2. Схема АПВ с пуском от несоответствия между положениями
выключателя и ключа управления
Рассмотрим действие схемы по рис. 6.2. При включенном положении SA его контакты 1-2 замкнуты и конденсатор С заряжается через сопротивление 1R. Если выключатель отключился, то его вспомогательные контакты В1.1 замыкают цепь реле KL1. Это реле является пусковым реле схемы АПВ. При пуске устройства АПВ срабатывает реле КТ1, которое контактом КТ1.2 с выдержкой времени подключает конденсатор С к параллельной обмотке реле KL2. Срабатывание этого реле за счёт тока разряда конденсатора обеспечивает подачу сигнала на включение выключателя. В случае успешного АПВ линия сохраняется в работе.
Однократность повторного включения обеспечивается за счет цепочки 1R—С. При включении реле KL2 замыкается контакт КЛ2.1 и конденсатор С разряжается за заданное время. Время заряда конденсатора через сопротивление 1R выбирается в пределах 1520 с. При неуспешном АПВ действием релейной защиты линия вновь отключается. Однако, поскольку конденсатор к этому времени не успевает зарядиться, то очередного повторного включения не произойдет. В отключенном состоянии выключателя конденсатор не может зарядиться, так как он шунтирован обмоткой реле KL2.
В случае ручного отключения выключателя повторное включение не произойдет, поскольку контакты 1 и 2 ключа управления SA разомкнуты и, несмотря на возможное срабатывание реле KL1, КТ1 и KL2, сигнала на включение не будет.
Следует заметить, что при очередном включении линии устройство АПВ становится готовым к действию через 1520 с, т. е. после того как зарядится конденсатор. Поэтому при ручном включении выключателя на поврежденную линию повторного включения не последует.
Реле KL3 обеспечивает доминирующее действие сигнала на отключение. Так, если релейная защита подаст сигнал на отключение, то это реле сработает. Если при этом существует импульс на включение (например, приварились контакты реле KL2), то он не пройдет через разомкнутые контакты KL3.2 реле KL3, а будет переведен на обмотку этого реле. Таким образом, несмотря на наличие импульса на включение, линия будет отключена.
Рассмотренная схема положена в основу устройств автоматического повторного включения с реле типа АПВ-1 и РПВ-58. На схеме дополнительно показаны цепочки ускорения защиты, запрета действия АПВ и некоторые другие детали устройства.
Схема АПВ с пуском от несоответствия может быть использована и на телеуправляемых подстанциях. Наличие телеуправления привносит некоторую специфику в условия работы устройства АПВ. Так, при отключении выключателя с помощью средств телемеханики, ключ управления на самой подстанции остается в положении «включено». Это обстоятельство приводит к несоответствию положения выключателя и ключа управления и служит пусковым импульсом к повторному включению. Однако повторного включения не должно быть, поскольку телеотключение соответствует ручному отключению с помощью ключа управления. Для устранения повторного включения в рассмотренной ситуации предусмотрен запрет действия устройства АПВ. При срабатывании реле телеуправления ТУ одновременно с сигналом на отключение подается минус в точку а. Конденсатор разряжается, и повторное включение не происходит.
Рассмотренный способ запрета может быть использован и в любом другом случае, когда при отключении выключателя повторное включение не требуется.
Словарь специальных терминов
Автоматическое повторное включение (АПВ) — одно из средств релейной защиты, направленное на увеличение надежности электроснабжения. Заключается в автоматическом включении отключенного с помощью аварийной автоматики или по ошибке участка электросети.
Применение
Все повреждения в электрической сети можно условно разделить на два типа: устойчивые и неустойчивые. К устойчивым повреждениям относятся такие, для устранения которых требуется вмешательство оперативного персонала или аварийной бригады. Такие повреждения не самоустраняются со временем, эксплуатация поврежденного участка сети невозможна. К таким повреждениям относятся обрывы проводов, повреждения участков линий, опор ЛЭП, повреждения электрических аппаратов.
Неустойчивые повреждения характеризуются тем, что они самоустраняются в течение короткого промежутка времени после возникновения. Такие повреждения могут возникать, например, при случайном схлестывании проводов. Возникающая при этом электрическая дуга не успевает нанести серьезных повреждений, так как через небольшой промежуток времени после возникновения короткого замыкания цепь обесточивается аварийной автоматикой. Практика показывает, что доля неустойчивых повреждений составляет 50—90% от числа всех повреждений.
Включение отключенного участка сети под напряжение называется повторным включением. В зависимости от того, остался ли этот участок сети в работе или же снова отключился, повторные включения разделяют на успешные и неуспешные. Соответственно, успешное повторное включение указывает на неустойчивый характер повреждения, а неуспешный — на то, что повреждение было устойчивым.
Для того чтобы ускорить и автоматизировать процесс повторного включения, применяют устройства автоматического повторного включения (АПВ).
Устройства АПВ получили широкое применение в электрических сетях. Их использование в сочетании с другими средствами релейной автоматики позволило полностью автоматизировать многие подстанции, избавляя от необходимости держать там оперативный персонал. Кроме того, в ряде случаев АПВ позволяет избежать тяжелых последствий от ошибочных действий обслуживающего персонала или ложных срабатываний релейной защиты на защищаемом участке.
В ПУЭ указано, что устройствами АПВ должны в обязательном порядке снабжаться все воздушные и кабельно-воздушные линии с рабочим напряжением 1кВ и выше. Кроме того, устройствами АПВ снабжаются трансформаторы, сборные шины подстанций и электродвигатели.
Классификация
В зависимости от количества фаз, на которые действуют устройства АПВ, их разделяют на:
- однофазное АПВ — включает одну отключенную фазу (при отключении из-за однофазного короткого замыкания).
- трехфазное АПВ — включает все три фазы участка цепи.
- Комбинированное — включает одну или три фазы в зависимости от характера повреждения участка сети.
Трехфазные АПВ могут в зависимости от условий работы сети разделяться на:
- простые (ТАПВ);
- несинхронные (НАПВ);
- быстродействующие (БАПВ);
- с проверкой наличия напряжения (АПВНН);
- с проверкой отсутствия напряжения (АПВОН);
- с ожиданием синхронизма (АПВОС);
- с улавливанием синхронизма (АПВУС);
- в сочетании с самосинхронизацией генераторов и синхронных компенсаторов (АПВС).
В зависимости от того, какое количество раз подряд требуется совершить повторное включение, АПВ разделяются на АПВ однократного действия, двукратного и т.д. Наибольшее распространение получили АПВ однократного действия, однако в ряде случаев применяются АПВ с другой кратностью действия.
По способу воздействия на выключатель АПВ могут быть:
- механические — они встраиваются в пружинный привод выключателя;
- электрические — воздействуют на электромагнит включения выключателя.
Поскольку механические АПВ работают без выдержки времени, их использование было признано нецелесообразным, и в современных схемах защитной автоматики используются только электрические АПВ.
По типу защищаемого оборудования АПВ разделяются соответственно на АПВ линий, АПВ шин, АПВ электродвигателей и АПВ трансформаторов.
Принцип действия АПВ
Реализация схем АПВ может быть различной, это зависит от конкретного случая, в котором схему применяют. Однако основной принцип заключается в сравнении положения ключа управления выключателем и состояния этого выключателя. То есть, если на схему АПВ поступает сигнал, что выключатель отключился, а со стороны управляющего выключателем ключа приходит сигнал, что ключ в положении «включено», то это означает, что произошло незапланированное (например, аварийное) отключение выключателя. Этот принцип применяется для того, чтобы исключить срабатывание устройств АПВ в случаях, когда произошло запланированное отключение выключателя.
Требование к АПВ
К схемам и устройствам АПВ применяется ряд обязательных требований, связанных с обеспечением надежности электроснабжения. К этим требованиям относятся:
- АПВ должно обязательно срабатывать при аварийном отключении на защищаемом участке сети.
- АПВ не должно срабатывать, если выключатель отключился сразу после включения его через ключ управления. Подобное отключение говорит о том, что в схеме присутствует устойчивое повреждение, и срабатывание устройства АПВ может усугубить ситуацию. Для выполнения этого требования делают так, чтобы устройства АПВ приходили в готовность только через несколько секунд после включения выключателя. Кроме того, АПВ не должно срабатывать во время оперативных переключений, осуществляемых персоналом.
- В схемах АПВ должна присутствовать возможность выведения их для ряда защит (например, после действия газовой защиты трансформатора срабатывание устройств АПВ нежелательно.
- Устройства АПВ должны срабатывать с заданной кратностью. То есть однократное АПВ должно срабатывать 1 раз, двукратное — 2 раза и т.д.
- После успешного включения выключателя схема АПВ должна обязательно самостоятельно вернуться в состояние готовности.
Как работают устройства автоматики повторного включения (АПВ) в электрических сетях
Основными требованиями, предъявляемыми к электроснабжению потребителей, являются надежность и бесперебойность подачи электроэнергии. Транспортные энергетические потоки электрических сетей занимают сотни и тысячи километров. На таких расстояниях на ЛЭП могут воздействовать различные природные и физические процессы, которые повреждают оборудование, создают токи утечек или коротких замыканий.
Чтобы не допустить распространения аварий любые линии электропередач оборудованы защитами, которые постоянно в реальном времени отслеживают все необходимые параметры электрической энергии и в случаях, когда создается неисправность, быстро отключают питание с ЛЭП работой силового выключателя, установленного на стороне генераторного конца линии.
С этой целью все ЛЭП прокладываются между коммутационными транспортными узлами, называемыми электрическими подстанциями, на которых сосредоточены силовые аппараты, устройства измерения, а также защиты и средства автоматики.
Повреждения ЛЭП могут происходить по различным причинам с разной продолжительностью. Их принято разделять на две группы, действующие:
Примером первого проявления неисправности может быть пролет аиста через провода воздушной ЛЭП так, что он расправленными крыльями уменьшает электрическое сопротивление воздушного изоляционного слоя между потенциалами фаз и создает этим путь для прохождения тока короткого замыкания через свое тела.
Для второго случая характерны расстрелы вандалами изоляторов из огнестрельного охотничьего ружья, разрушения опор стихийными бедствиями или ударами транспортных средств, врезавшихся в столбы на больших скоростях при плохой видимости.
В любом из этих случаев защиты почувствуют неисправность и отключат выключатель. Через место короткого замыкания перестанут протекать токи КЗ, образуется бестоковая пауза в электроснабжении.
Но, потребителям электроэнергии необходима поставка электричества, ведь обходиться без него они уже не могут. Поэтому требуется включать линию под напряжение выключателем, причем максимально быстро.
Делается это автоматически в несколько этапов или вручную оперативным персоналом по строго заданному алгоритму.
Как работает автоматика повторного включения (АПВ)
На всех подстанциях энергетики работают силовые выключатели, которые могут управляться системами автоматики или действиями диспетчера. Для этого они оборудованы соленоидами:
- включения;
- отключения.
Подача напряжения на соответствующий соленоид приводит к коммутациям первичной сети. Рассмотрим вариант автоматического управления выключателями специальными устройствами АПВ.
После отключения ЛЭП защитами сразу начинает работать автоматика повторного включения. Но, она подает напряжение на линию не мгновенно после отключения, а с выдержкой времени, требуемой для самоликвидации кратковременных причин, например, падения пораженного электрическим током аиста на землю.
Для каждого вида ЛЭП на основе проведения статистических исследований рекомендуются свои времена, обеспечивающие период ликвидации кратковременных аварий. Обычно она составляет около двух секунд или чуть больше (до четырех).
После завершения выставленного заранее времени автоматика подает напряжение на соленоид включения: линия вводится в работу. В этой ситуации включение может быть выполнено:
1. успешно, когда неисправность самоликвидировалась (аист прошел сквозь зону проводов);
2. неуспешно, если на провода, например, попал воздушный змей и шнур его крепления не успел выгореть до конца.
С успешным включением все понятно. Кратковременный перерыв в электроснабжении не принесет большого вреда потребителям, а в большинстве случаев они его просто не заметят.
При неуспешном АПВ ситуация с потребителями осложняется: неисправность осталась и защиты линии повторно сняли напряжение с нее — потребители вновь обесточены. Таким образом, первый крат работы АПВ оказался неудачным.
Чтобы повысить достоверность информации через некоторое время, например, 15÷20 секунд предпринимается вторая попытка автоматики произвести включение линии под нагрузку.
Практика использования двухкратного АПВ на высоковольтных линиях электропередач показала его эффективность в 15 случаях срабатываний из ста. Учитывая, что до 50% процентов аварийных отключений ликвидируются первым кратом АПВ и до 15% — вторым, то общая надежность включения линии под нагрузку применением двухкратного цикла значительно повышается, достигая рубежа 60÷65%.
Если после второй попытки АПВ авария не устранена и защиты снова отключили выключатель, то неисправность носит устойчивый характер, требует визуальной оценки эксплуатационным персоналом, ремонта. Включать такую линию под нагрузку нельзя до устранения повреждений выездной бригадой. А для нахождения этого места и выполнения ремонтных работ необходимо определенное время.
Подача напряжения на отремонтированный участок осуществляется в ручном режиме после выполнения многочисленных проверок, исключающих повторное возникновение неисправности.
Рассмотренные для воздушной линии принципы работы устройств АПВ, полностью подходят для средств управления шинами, секциями, трансформаторами, электродвигателями и другим низковольтным или высоковольтным энергетическим оборудованием.
Требования к работе АПВ
Для создания надежности работы системы необходимо выбрать оптимальные условия настройки автоматики исходя из следующих факторов:
- обеспечения перерыва для предотвращения ионизации среды, исключающего повторное зажигание дуги при поспешном включении;
- возможностями технической конструкции автоматического выключателя быстро выполнять переключения под нагрузкой аварийного режима;
- ограничения перерыва бестоковой паузы в работе оборудования и другими особенностями технологического процесса.
Автоматика должно работать после любого отключения защитами либо самопроизвольного, ошибочного срабатывания выключателя. Когда же включение выполняют вручную или по средствам телеуправления, то АПВ не должно сработать, ибо при ошибках персонала, например, оставленном, не снятом переносном или стационарном заземлении, защиты отключат неисправность, а повторно подавать на него напряжение нельзя.
Поэтому конструктивно АПВ после продолжительного отключения не готово к работе и восстанавливает свои характеристики через несколько секунд от момента включения выключателя.
Продолжительность повторных включений
Запас энергии устройств АПВ должен обеспечить автоматическое выполнение циклов выключателем:
1. Откл — Вкл — Откл для однократной работы;
2. Откл — Вкл — Откл — Вкл — Откл для двухкратных алгоритмов.
По окончании выполнения цикла автоматика должна быть лишена возможности работать.
Настройка временно́й уставки срабатывания
Продолжительность выдержки времени между отключением выключателя от защит и подачей автоматикой напряжения должна иметь возможность настройки эксплуатационным персоналом с учетом конкретных местных условий.
После успешного срабатывания автоматикой происходит потеря запаса ее энергии. Она должен восстанавливаться с небольшой заданной выдержкой времени для приведения в готовность устройств к новому выполнению операций включения.
Надежность команды, выдаваемой автоматикой
Величина выходного сигнала и его продолжительность от автоматики должны быть достаточными для надежного управления выключателем.
Возможности блокировки срабатываний
В электрических сетях создаются условия, когда определенные защиты должны исключать работу автоматики АПВ после их срабатывания на отключение. Например, при снижении частоты в сети из-за подключения большого количества потребителей часть их необходимо отключать. Последовательность таких операций предусмотрена проектом частотной разгрузки, где уже назначены менее ответственные присоединения для снятия с них питания. Работа их АПВ в этом случае должна блокироваться командой запрета, поступающей от соответствующей защиты.
Типы устройств АПВ
В зависимости от назначения АПВ создаются для работы по одному или двум циклам. Практические исследования показали, что если устанавливать трехкратные АПВ, то их эффективность не превышает 3%, а это очень мало. Поэтому такие системы автоматики вообще не применяются.
Способы воздействия на привод выключателя
У старых пружинных и грузовых приводов использовались механические конструкции АПВ, передающие усилие предварительно взведенной пружины или поднятого груза непосредственно на отключающее устройство без выдержки времени.
Такие механизмы не требовали дополнительного источника питания, но имели маленькую бестоковую паузу и сложное устройство, не отличавшееся высокой надежностью. Сейчас они не используются и полностью заменены электрическими системами.
Число управляемых фаз выключателя
Защита и цепи автоматики могут воздействовать одновременно на все три фазы цепи или выбирать ту, на которой произошла авария.
Трехфазные АПВ (ТАПВ) немного проще по устройству и принципу работы, а однофазные (ОАПВ) построены по более сложной схеме, имеют большое количество измерительных и логических элементов. Например, при релейном исполнении на стандартных панелях ТАПВ помещается в корпус, меньший чем ширина половины панели.
Для размещения элементов логики, работающих по алгоритмам ОАПВ, требуется место на площади, занимаемой отдельной панелью.
С внедрением статических реле и микропроцессорных устройств габариты автоматики стали значительно уменьшаться.
Способы контроля цепей пуска АПВ
При подаче питания выключателем по команде от АПВ после срабатывания защит происходит разделение схемы на два участка. В этот момент может возникнуть рассогласование гармоник напряжений по времени (сдвиг по углу, фазе), которое создает сложные переходные процессы и вызывает срабатывание защит.
По степени важности оборудования автоматика может выполняться для работы:
1. без проверок состояния синхронизма;
2. с проверками синхронизма.
Первые конструкции могут использоваться:
- в системах энергетики с гарантированным электроснабжением, когда проверки синхронизма и качества напряжения не требуются. Для этого случая создаются простые схемы ТАПВ;
- на оборудовании, допускающем несинхронное включение — несинхронные АПВ (НАПВ);
- у выключателей, снабженных быстродействующими защитами и приводами, способными срабатывать за время, исключающее разделение энергосистемы на несинхронные участки — быстродействующее АПВ (БАПВ).
Проверки синхронизма выполняются при:
- контроле наличия напряжения, например, на линии — КННЛ;
- контроле отсутствия напряжения — КОНЛ;
- ожидании синхронизма — КОС;
- улавливании синхронизма — КУС.
Сочетаемость АПВ с действием устройств РЗА
Для работы АПВ могут выполняться алгоритмы:
- ускорения защит;
- установки очередности срабатываний выключателей на различных взаимосвязанных присоединениях;
- взаимодействия с автоматикой частотной разгрузки;
- применения токовой неселективной отсечки в комплексе с АПВ, позволяющей уменьшать токи коротких замыканий;
- сочетания с работой автоматики включения резерва и некоторые другие случаи.
Вид оперативного тока
Лучшей надежностью обладают устройства автоматики, работающие за счет энергии аккумуляторных батарей, собранных в систему питания оперативных цепей. Но, для них требуется сложное техническое оборудование и постоянное обслуживание специалистами.
Поэтому получили развитие другие системы, основанные на питании от цепей переменного тока, взятого с трансформаторов собственных нужд (ТСН), тока (ТТ) или напряжения (ТН). Они чаще всего используются на небольших удаленных подстанциях, обслуживаемых выездными бригадами электриков.
Принцип работы простейшего однократного АПВ линии
Логика, используемая для однократного цикла устройств автоматики повторного включения, может быть пояснена на схеме старого, но еще работающего по электромагнитному принципу реле АПВ (РПВ-58).
На схему подается напряжение постоянного оперативного тока +ШУ и –ШУ. Реле АПВ управляется цепями:
- контроля синхронизма;
- положения контакта выключателя в отключенном состоянии (РПО);
- разрешения подготовки;
- запрета АПВ.
В составе комплекта АПВ включены реле:
- времени РВ;
- промежуточное РП с двумя обмотками:
- тока I;
- напряжения U.
Конденсатор С после подачи напряжения на ШУ заряжается через элементы логических цепочек разрешения подготовки. А при формировании цепей запрета АПВ заряд блокируется подбором резисторов R1 и R2.
На обмотку реле времени РВ подается напряжение ШУ после отключения выключателя через цепи контроля синхронизма, и оно отрабатывает заданную выдержку времени своим контактом.
После замыкания нормально открытого контакта РВ конденсатор разряжается на обмотку напряжения промежуточного реле РП, которое срабатывает и своим замкнутым контактом РП через собственную токовую обмотку удержания выдает +ШУ на соленоид включения силового выключателя.
Таким образом, реле АПВ выдает импульс тока от предварительно заряженного конденсатора С на включение выключателя после его отключения через сигнальный блинкер РУ и накладку Н замыканием контакта РП.
Назначение накладки Н — вывод из работы АПВ оперативным персоналом при выполнении переключений.
Реле АПВ на статических элементах
Использование полупроводниковых технологий внесло изменения в габариты и конструкцию электромагнитных реле, создаваемых для устройств автоматического повторного включения. Они стали более компактными, удобными в настройках и выставлении уставок.
А принцип работы релейной схемы, заложенный в логике электромагнитными реле, остался прежним.
Особенности обслуживания устройств АПВ
При эксплуатации введенные в работу устройства защит и автоматики находятся только в ведении оперативного персонала, который контролирует правильность работы оборудования. Доступ к ним других специалистов ограничен организационными мероприятиями.
Все срабатывания АПВ фиксируются автоматикой, регистрирующими приборами и записями диспетчера в оперативном журнале. Релейный персонал анализирует правильность каждого срабатывания устройств РЗА и делает об этом записи в технической документации.
Для проведения периодических обслуживаний устройства АПВ совместно с другими системами выводятся из работы и передаются для выполнения профилактических мероприятий персоналу службы МСРЗАИ, который по окончании проверок составляет протокол, делает заключение об исправности и участвует во вводе устройств РЗА в работу.
Смотрите также: Как работают устройства автоматики включения резерва (АВР) в электрических сетях
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Назначение [ править ]
Автоматическое восстановление транзита мощности или питания потребителей после отключения элемента сети устройством релейной защиты, путём повторного включения этого элемента под напряжение.
Согласно ПУЭ [1] , п.3.3.2 должно предусматриваться автоматическое повторное включение:
- воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учётом конкретных условий;
- шин электростанций и подстанций;
- трансформаторов;
- ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей
Требования к устройству АПВ [ править ]
Согласно ПУЭ [1] , п.3.3.3 :
- Установленная кратность действия (обычно — однократное);
- Отсутствие срабатывания при отключении персоналом;
- Автоматический возврат устройства АПВ в исходное состояние после успешной работы этого устройства;
- Отсутствие возможности многократного включения на КЗ при любой неисправности в схеме устройства;
- Отсутствие готовности к работе при отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;
Параметры срабатывания [ править ]
Основными параметрами являются:
- Время срабатывания. Определяется условиями успешности срабатывания устройства АПВ.
- Время готовности (возврата в исходное состояния). Устройство АПВ не должно быть готовым выдать команду на включение выключателя в случае устойчивого КЗ на элементе. Обычно принимается с большим запасом равное 20 с.
Пуск устройства АПВ может осуществляться:
- либо по несоответствию положения ключа управления и выключателя;
- либо от устройств релейной защиты.
Режимы АПВ [ править ]
Для выполнения нужной последовательности автоматического включения выключателей линий с двухсторонним питанием, а также чтобы не было второго АПВ с другого конца при неуспешном АПВ, существует несколько дополнительных режимов:
- Без контролей или «Слепое». В данном случае устройство АПВ ничего дополнительно не контролирует и по прошествии времени срабатывания формирует команду на включение выключателя;
- С контролем наличия (U>70%) или отсутствия напряжения (U <30%) на/между частями сети (с разных сторон от включаемого выключателя).
- С контролем синхронизма между частями сети. Применяется, когда существует возможность замыканием выключателем несинхронно работающих частей энергосистемы.
- С улавливанием синхронизма между частями сети.
Время срабатывания начинает отсчитываться с момента выполнения условий. При пропадании — таймер сбрасывается. Например, чтобы сначала включить линию со стороны ПС А, а замкнуть транзит на ПС Б, на выключателе со стороны ПС А ставиться режим АПВ «ОлНш», а со стороны ПС Б — «НлНшС».
Напряжение в устройство АПВ может подаваться с шинных ТН, с линейных ТН, с ШОН.
Наиболее часто применяемые режимы:
- Наличие на линии и отсутствие на шинах (НлОш);
- Отсутствие на линии и наличие на шинах (ОлНш);
- Наличие на линии и наличие на шинах (НлНш);
- Наличие на линии и наличие на шинах с контролем синхронизма (НлНшС);
Выбор параметров [ править ]
ВЛ с односторонним питанием [ править ]
$ \Large t_ \ge t_ + t_ + t_ $ , где
$ \Large t_ $ — время срабатывания АПВ;
$ \Large t_ $ — время деонизации среды в месте к.з. после его отключения (0,1-0,4 с);
$ \Large t_ $ — время включения выключателя (0,060-0,800 с);
$ \Large t_ $ — время запаса (0,5-0,7 с).
При запуске АПВ от релейной защиты время срабатывания АПВ увеличивается на время отключения выключателя.
ВЛ с двухсторонним питанием [ править ]
В данном случае необходимо ждать отключения ВЛ с двух сторон.
$ \Large t_ $ — время срабатывания АПВ «своего» выключателя (в месте установки АПВ);
$ \Large t_ $ — время срабатывания защит с противоположной стороны (резервные защиты: 0,4-3,0 c);
$ \Large t_ $ — время отключения выключателя с противоположной стороны (0,020-0,070 с);
$ \Large t_ $ — время деонизации среды в месте к.з. после его отключения (0,1-0,4 с);
$ \Large t_ $ — время запаса (0,5-0,7 с);
$ \Large t_ $ — время срабатывания защит своей стороны (основные защиты: 0,020-0,100 с);
$ \Large t_ $ — время отключения выключателя своей стороны (0,020-0,070 с);
$ \Large t_ $ — время включения выключателя своей стороны (0,060-0,800 с).
При использовании контролей напряжения для выключателя, включаемого первым, время срабатывания АПВ считается по формуле (1), а для выключателя, включаемого вторым с контролем наличия напряжения, используется следующая формула:
$ \Large t_ $ — время срабатывания АПВ;
$ \Large t_ $ — время срабатывания защит с противоположной стороны при включении от АПВ(резервные защиты: 0,1-3,0 c);
$ \Large t_ $ — время отключения выключателя с противоположной стороны (0,020-0,070 с);
$ \Large t_ $ — время запаса (0,5-0,7 с).
Выводы [ править ]
Обычно время АПВ принимается в диапазоне 1,0 — 5,0 с
АПВ шин и автоматическая сборка схемы [ править ]
После работы ДЗШ может применяться АПВ шин: от устройства АПВ включается одно из питающих присоединений и подаёт напряжение на отключенную секцию.
Далее возможны два сценария:
- Если АПВ шин неуспешное, то ДЗШ срабатывает ещё раз, формируя сигнал отключения и запреты АПВ для всех присоединений;
- В случае успешного АПВ секция шин ставится под напряжение. Остальные присоединения включаются действием оперативного персонала, либо возможно применение автоматической сборки схемы (АСС).
Уставки ДЗШ должны быть выбраны так, чтобы обеспечить чувствительность при КЗ на шинах при питании от этого источника (или должно вводиться очувствление ДЗШ).
АСС может быть выполнена следующим образом:
- В виде отдельной панели. Пуск производится после работы ДЗШ и после появления напряжения на отключаемой СШ. Панель включает обратно выключатели каждые 1-2 с;
- С использованием АПВ присоединений. В данном случае, АПВ присоединений, в соответствии с их заданным режимом и уставками включают обратно выключатели. При использовании такого решения, необходимо время срабатывания АПВ присоединений отстраивать от одновременного включения (дополнительно к их основным условиям выбора).
- С использованием двух независимых функций (таймеров и режимов) АПВ. В отличии от использования одной функции АПВ присоединения, позволяет выбирать отдельное время для АСС и для АПВ присоединения.
Согласно п.5.2.16 Правил по переключениям [2] , при операциях шинными разъединителями с ручным приводом необходимо на время операций выводить АПВ шин. Для этих целей предусматривается возможность оперативного вывода АПВ шин после действия ДЗШ (по факту работы ДЗШ сразу формируется запрет АПВ присоединений).
Эффективность [ править ]
На ВЛ успешность АПВ составляет 65-70% [3] . Данное обстоятельство объясняется тем, что большинство КЗ на ВЛ оказываются неустойчивыми и самоустраняются при отсутствии напряжения.
Источники [ править ]
- ↑ 1,01,1 Правила устройства электроустановок. Издание 7
- ↑ СТО ОАО «СО ЕЭС» 59012820.29.020.005-2011 ПРАВИЛА ПЕРЕКЛЮЧЕНИЙ В ЭЛЕКТРОУСТАНОВКАХ
- ↑ Кривенков В.В., Новелла В.Н. Релейная защита и автоматика систем электроснабжения.—М.:Энергоиздат, 1981.— 328 с.
- Недописанные статьи
- Сетевая автоматика