23. Волны. Отличие продольных и поперечных волн.
Волна— изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространств.
По типу волны подразделяются на : поперечные, продольные, смешанного типа.
Поперечная волна— волна, распространяющаяся в направлении, перпендикулярном к плоскости, в которой происходят колебания частиц среды (в случае упругой волны) или в которой лежат векторы электрического и магнитного поля (для электромагнитной волны).Продольные волны ─ распространяющееся с конечной скоростью в пространстве переменное взаимодействие материи, которое обычно характеризуется двумя функциями ─ векторной, направленной вдоль потока энергии волны, и скалярной функцией.
Самая существенная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.
24. Силы инерции.
Силы инерции— силы, обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительноинерциальной системы отсчета (ИСО).
Они направлены в сторону, противоположную ускорению. Силы инерции возникают только в системе отсчета, движущейся с ускорением, т. е. это кажущиеся силы.
— сила инерции, действующая на тело относительно поступательно движущейся НСО.
— ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе;
— центробежная сила инерции, действующая на тело относительно вращающейся НСО.
— угловая скорость НСО относительно ИСО,
— расстояние от тела до центра вращения;
— кориолисова сила инерции, действующая на тело, движущееся со скоростью
относительно вращающейся НСО.
— угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта).
25. Основные положения мкт.
Молекулярно-кинетической теориейназывают учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.
В основе молекулярно-кинетической теории лежат три основных положения:
- Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
- Атомы и молекулы находятся в непрерывном хаотическом движении.
- Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.
26. Идеальный газ. Основное уравнение мкт идеального газа.
Идеальный газ— это физическая модель газа, взаимодействие между молекулами которого пренебрежительно мало. На основании использования основных положений молекулярно-кинетической теории было получено основное уравнение МКТ идеального газа, которое выглядит так: , где р — давление идеального газа, m0 — масса молекулы,
среднее значение концентрация молекул, квадрата скорости молекул. Обозначив среднее значение кинетической энергии поступательного движения молекул идеального газа
получим основное уравнение МКТ идеального газа в виде:
Продольные и поперечные волны
Волна — это среда передачи энергии. Этот перенос происходит из-за какого-то возмущения (или колебания), которое распространяется от источника к месту назначения без чистого переноса материи.
Определение продольных волн
Волны, в которых частицы среды колеблются в направлении, параллельном направлению, в котором распространяется движение. Продольная всегда механическая и возникает вследствие последовательных сжатий (состояний максимальной плотности и давления) и расширений (состояний минимальной плотности и давления) среды. Примерами продольных являются волны, создаваемые пружиной, когда один из ее концов колеблется в том же направлении, что и пружина (рис. 1), и звуковые.
Определение поперечных волн
Волны, в которых частицы среды колеблются в направлении, перпендикулярном направлению, в котором распространяется движение. (Рис. 2)
Волны, возникающие в пруду с водой, на веревке, или электромагнитные являются примерами поперечных. На рисунке показана связь между сжатиями и расширениями продольной по отношению к гребням и впадинам поперечной.
Некоторые движения, такие как океанские и сейсмические волны, представляют собой комбинацию продольных и поперечных. Например, когда морская распространяется по поверхности воды, молекулы воды движутся почти по кругу, очерчивая ряд гребней и впадин.
Когда волна проходит, молекулы воды на гребнях движутся в ее направлении, а молекулы на впадинах движутся в противоположном направлении. Следовательно, после прохождения определенного числа полных волн смещения молекул воды не происходит.
Скорость поперечной волны
Вы когда-нибудь замечали, что в процессе настройки гитары колышек вращают, чтобы увеличить или уменьшить натяжение струны. При увеличении напряжения любой генерируемый в нем импульс будет иметь более высокую скорость распространения.
Но, поскольку не все струны имеют одинаковую толщину, указанная скорость также будет зависеть от этого фактора, так как чем больше толщина струны, тем меньше скорость распространения. Следовательно, можно утверждать, что скорость распространения по струне равна:
- Прямо пропорциональна его напряжению.
- Обратно пропорциональна толщине струны.
Для определения факторов, от которых зависит скорость распространения по струне, предположим, что на струну действует натяжение \[F_\] и что в момент времени t 0 на ее конце действует сила в вертикальном направлении \[F_\] чтобы заставить его колебаться, как показано на рисунке ниже.
Масса движущихся частиц струны — это масса на единицу длины (м/л) или линейная плотность (м). Тогда v:
\[\begin
Распространение и скорость продольных и поперечных волн
Как вы уже знаете, механические волны передаются при взаимодействии близко расположенных друг к другу частиц. Например, без воды и ее частиц корабли не могли бы использовать сонар, а без частиц воздуха мы не могли бы услышать концерт, а летучие мыши не могли бы летать или охотиться в темноте. С другой стороны, другие типы волн, например, создаваемые солнечным светом, НЕ нуждаются в материальной среде для своей передачи. Солнечный свет достигает Земли после пересечения пустого пространства между двумя звездами. По этой причине нельзя сказать, что волна есть возмущение материального тела, а передача возмущения.
При распространении возмущений через какую-либо среду (землю, воздух, воду и т. д.) они не распространяются мгновенно повсюду, а требуют некоторого времени для перехода из одной точки в другую. Так, например, звук грома воспринимается дольше, чем дальше мы находимся от места, где происходит гроза.
Определение 2
Скорость распространения – это расстояние, проходимое возмущением, передаваемым волной, за заданное время. Скорость распространения зависит от материальной среды, в которой она распространяется. Таким образом, звук распространяется быстрее в воде, чем в воздухе, и быстрее в твердых телах, чем в жидкостях.
Мы можем рассчитать скорость, с которой распространяются волны, возникающие на поверхности пруда. Для этого нам нужно знать расстояние d между очагом или источником возмущения и точкой на поверхности воды, а также время, за которое возмущение достигает этой точки.
Зная эти значения, применяется следующее уравнение:
\[v=\frac\]
v — скорость в метрах в секундах.
d — пройденное расстояние в метрах с.
t — время в секундах, за которое волна проходит это расстояние.
Нет времени решать самому?
В чём состоит различие между поперечными и продольными волнами?
Самая существенная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости) , а продольная – нет. В некоторых явлениях, таких, как отражение и прохождение звука через кристаллы, многое зависит от направления смещения частиц, так же как и в случае световых волн.
Источник: http://students.by/articles/23/1002314/1002314a2.htm
Остальные ответы
Похожие вопросы
Продольные и поперечные волны
Продольная волна — волна, в которой колебания происходят в направлении ее распространения. Примером продольной волны может служить звуковая волна.
Рисунок 1. Продольная волна
Механические продольные волны также называют компрессионными волнами или волнами сжатия, так как они производят сжатие при движении через среду. Поперечные механические волны также называют «Т-волны» или «волны сдвига».
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Продольные волны включают в себя акустические волны (скорость частиц, распространяющихся в упругой среде) и сейсмические Р-волны (созданные в результате землетрясений и взрывов). В продольных волнах, смещение среды параллельно направлению распространения волны.
Звуковые волны
В случае продольных гармонических звуковых волн, частота и длина волны может быть описана формулой:
$y_0-$ амплитуда колебаний;\textit<>
$\omega -$ угловая частота волны;
$c-$ скорость волны.
Обычная частота $\left(\right)$волны задается
Скорость звука распространения зависит от типа, температуры и состава среды, через которую он распространяется.
В упругой среде, гармоническая продольная волна проходит в положительном направлении вдоль оси.
Поперечные волны
Определение 2
Поперечная волна — волна, в которой направление молекул колебаний среды перпендикулярно к направлению распространения. Примером поперечных волн служит электромагнитная волна.
«Продольные и поперечные волны»
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети
Рисунок 2. Продольная и поперечная волны
Рябь в пруду и волны на струне легко представить в виде поперечных волн.
Рисунок 3. Световые волны являются примером поперечной волны
Поперечные волны являются волнами, которые колеблются перпендикулярно к направлению распространения. Есть два независимых направления, в которых могут возникать волновые движения.
Определение 3
Двумерные поперечные волны демонстрируют явление, называемое поляризацией.
Электромагнитные волны ведут себя таким же образом, хотя это немного сложнее увидеть. Электромагнитные волны также являются двухмерными поперечными волнами.
Докажите, что уравнение плоской незатухающей волны $\left(\omega t-\frac<2\pi ><\lambda >\right)x+_0$ для волны, которая представлена на рисунке, можно записать в виде $\left(\frac<2\pi ><\lambda >\right)x$. Убедитесь в этом, подставив значения координаты$\ \ x$, которые раны $\frac<\lambda>$; $\frac<\lambda>$; $\frac<\lambda>$.
Уравнение $y\left(x\right)$ для плоской незатухающей волны не зависит от $t$, значит, момент времени $t$ можно выбрать произвольным. Выберем момент времени $t$ таким, что
Подставим это значение в уравнение: