От чего зависит эдс вторичной обмотки трансформатора
Перейти к содержимому

От чего зависит эдс вторичной обмотки трансформатора

  • автор:

Вопрос 7 . Эдс обмоток трансформатора.

Принцип действия трансформатора основан на явлении электромагнитной индукции (взаимоиндукции). Взаимная индукция состоит в наведении ЭДС в индуктивной катушке при изменении тока другой катушке.

Под воздействием переменного тока в первичной обмотке в магнитопроводе создается переменный магнитный поток

который пронизывает первичную и вторичную обмотки и индуктирует в них ЭДС

где – амплитудные значения ЭДС.

Действующее значение ЭДС в обмотках равны

; .

Отношение ЭДС обмоток называется коэффициентом трансформации

.

Если , то вторичная ЭДС меньше первичной и трансформатор называ­ется понижающим, при– трансформатор повышающий.

Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.

Так как мы рассматриваем идеальный трансформатор, т.е. без рассеяния и потерь мощности, то ток х.х. является чисто намагничивающим – , т.е. он создаёт намагничивающую силу, которая создаёт поток, где– магнитное сопротивление сердечника, состоящее из сопротивления стали и сопротивления в стыках сердечника. Как амплитуда, так и форма кривой тока зависят от степени насыщения магнитной системы. Если поток изменяется синусоидально, то при ненасыщенной стали кривая тока холостого хода практически тоже синусоидальна. Но при насыщении стали кривая тока всё более отличается от синусоиды (рис. 2.7.) Кривую тока х.х. можно разложить на гармоники. Так как кривая симметрична относительно оси абсцисс, то ряд содержит гармонические только нечётного порядка. Первая гармоника токаi(01) совпадает по фазе с основным потоком. Из высших гармоник сильнее всего выражена третья гармоника тока i(03).

Рис 2.7 Кривая тока Х.Х

Действующее значение тока холостого хода:

. (2.22)

Здесь I1m, I3m, I5m – амплитуды первой, третьей и пятой гармоник тока холостого хода.

Так как ток холостого хода отстаёт от напряжения на 90  , то активная мощность, потребляемая идеальным трансформатором из сети, тоже равна нулю, т.е. идеальный трансформатор потребляет из сети чисто реактивную мощность и намагничивающий ток.

Векторная диаграмма идеального трансформатора представлена на рис. 2.8.

Рис. 2.8. Векторная диаграмма идеального трансформатора

Номинальное первичное и вторичное напряжения трансформатора

Номинальное первичное и вторичное напряжения трансформатора

Номинальным первичным напряжением трансформатора называется такое напряжение, которое, необходимо подвести к его первичной обмотке, чтобы на зажимах разомкнутой вторичной обмотки получить вторичное номинальное напряжение, указанное в паспорте трансформатора.

Номинальным вторичным напряжением называют напряжение, которое устанавливается на зажимах вторичной обмотки при холостом ходе трансформатора (к зажимам первичной обмотки подведено напряжение, а вторичная обмотка разомкнута) и при подведении к первичной обмотке номинального первичного напряжения.

Напряжение на вторичной обмотке при нагрузке изменяется, так как ток нагрузки создает падение напряжения на активном и индуктивном сопротивлениях обмотки. Это изменение вторичного напряжения зависит не только от величины тока и сопротивлений обмотки, но и от коэффициента мощности нагрузки (рис. 1). Если трансформатор нагружен чисто активной мощностью (рис. 1, а), то напряжение по сравнению с другими вариантами меняется в меньших пределах.

На векторной диаграмме Е2 — ЭДС. во вторичной обмотке трансформатора. Вектор вторичного напряжения будет равен геометрической разности:

где I2 — вектор тока во вторичной обмотке; X тр и R тр — соответственно индуктивное и активное сопротивления вторичной обмотки трансформатора.

При индуктивной нагрузке и при той же самой величине тока напряжение снижается в большей степени (рис. 1,б). Это связано с тем, что вектор I2 х X тр отстающий от тока на 90°, в этом случае более круто повернут навстречу вектору Е2 , чем в предыдущем. При емкостной нагрузке увеличение тока нагрузки вызывает повышение напряжения на обмотке трансформатора (рис. 2, в). В этом случае вектор I2 х X тр по длине равный аналогичному вектору в первых двух случаях и также отстающий от тока на 90°, благодаря емкостному характеру этого тока оказывается повернутым вдоль вектора Е2 , и увеличивает длину U2 по сравнению с Е2 .

Изменение вторичного напряжения трансформатора U2 в зависимости от коэффициента мощности нагрузки (угла 966;)

Рис. 1. Изменение вторичного напряжения трансформатора U2 в зависимости от коэффициента мощности нагрузки (угла φ): а — при активной нагрузке; б — при индуктивной нагрузке; в — при емкостной нагрузке; Е2 — ЭДС. во вторичной обмотке трансформатора; I2 — ток во вторичной обмотке (ток нагрузки); I0 — намагничивающий ток трансформатора; Ф — магнитный поток в сердечнике трансформатора; Rтр Xтр. — активное и индуктивное сопротивления вторичной обмотки.

В процессе эксплуатации необходимо регулировать величину напряжения на обмотке трансформатора. Это достигается изменением числа витков обмотки высокого напряжения. Меняя число витков этой обмотки, включенных в цепь высокого напряжения, можно менять коэффициент трансформации в пределах от ±5 до ±7,5% номинального значения.

Схема отводов от обмоток с простым переключением представлена на рисунке 2. В соответствии с этими отводами в паспорте указано минимальное высокое напряжение, номинальное и максимальное. Если, например, номинальное вторичное напряжение трансформатора равно 10000 В, то напряжение максимальное 1,05 U н = 10500 В, а напряжение минимальное 0,95 U н = 9500 В.

Для номинального напряжения 6000 В имеем соответственно 6300 и 5700 В. Число витков обмотки высшего напряжения изменяют переключателем, контакты которого находится внутри трансформатора, а рукоятка выведена на его крышку.

Обычно для трансформаторов, которые устанавливаются вблизи понизительной подстанции 35/10 кВ или повышающей 0,4/10 кВ, коэффициент трансформации принимают равным 1 ,05х K н , то есть ставят переключатель отводов в положение +5%. Если потребительская подстанция удалена от районной, в линии электропередачи возникает значительная потеря напряжения, поэтому переключатель ставят в положение -5%. Трансформатор в средней точке линии электропередачи устанавливают на номинальный коэффициент трансформации (рис.3).

Схема отводов от части витков для измерения коэффициента трансформации на ±5%

Рис. 2. Схема отводов от части витков для измерения коэффициента трансформации на ±5%

Установка переключателя витков трансформатора в зависимости от удаления потребительской трансформаторной подстанции от питающей районной подстанции

Рис. 3. Установка переключателя витков трансформатора в зависимости от удаления потребительской трансформаторной подстанции от питающей районной подстанции.

В настоящее время промышленность освоила выпуск силовых трансформаторов поной шкалы мощностей 25, 40, 63, 100, 160, 250, 400 кВА и т. д. Для регулирования напряжения новые трансформаторы снабжены устройствами ПБВ пли РПН. ПБВ означает: переключение обмоток без возбуждения, то есть при выключенном трансформаторе.

Отпайки от обмоток позволяют посредством их переключения менять напряжение в пределах от -5 до +5% через каждые 2,5%. РПН означает: регулирование напряжения под нагрузкой (автоматическое). Оно позволяет регулировать напряжение в пределах от—7,5 до+7,5% шестью ступенями, или через каждые 2,5%. Такими устройствами могут обеспечиваться трансформаторы от 63 кВА и выше. Обозначение трансформатора с таким устройством — ТМН, ТСМАН.

Трехфазные трансформаторы ТМ и ТМН для трансформации энергии с 20 и 35 кВ на 0,4 кВ имеют мощности 100, 160, 250, 400 и 630 кВА.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ

ТРАНСФОРМАТОР ЭЛЕКТРИЧЕСКИЙ, не имеющее подвижных частей электромагнитное устройство, служащее для передачи посредством магнитного поля электрической энергии из одной цепи переменного тока в другую без изменения частоты. Трансформатор может повышать его напряжение (повышающий трансформатор), понижать (например, измерительный трансформатор) или передавать энергию при том же напряжении, при каком он ее получил (разделительный трансформатор). Трансформаторы обладают высоким КПД: от 97% при небольших мощностях до свыше 99% при больших. Они имеют достаточно прочную конструкцию и относительно низкую стоимость на единицу передаваемой мощности.

Также по теме:
ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из кремнистой стали (рис. 1). На магнитопроводе располагаются две обмотки – первичная P и вторичная S. Для простоты обмотки показаны на разных стержнях магнитопровода. На самом деле при таком расположении обмоток переменный магнитный поток, создаваемый первичной обмоткой в магнитопроводе, недостаточно эффективно используется для наведения ЭДС во вторичной обмотке. Кроме того, такой трансформатор плохо поддавался бы регулированию. На практике первичные и вторичные обмотки располагают близко друг к другу (рис. 2).

Также по теме:
БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ

На рис. 1 генератор переменного тока A подает ток I0 напряжения E1 на первичную обмотку P. В рассматриваемый момент ток в верхнем проводнике имеет положительное направление и возрастает, так что первичная обмотка создает в магнитопроводе магнитный поток F по часовой стрелке. Этот поток, пронизывающий обе обмотки, называется потоком взаимоиндукции; его изменение индуцирует электродвижущую силу (ЭДС) как в первичной, так и во вторичной обмотке. ЭДС, индуцированная в первичной обмотке, направлена против тока питания в ней и соответствует противо-ЭДС электродвигателя. ЭДС, индуцированная во вторичной обмотке, соответствует ЭДС электрогенератора и может быть подана на нагрузку.

Величина индуцированной в обмотке трансформатора ЭДС дается формулой E = 4,44 F m fN 10 — 8 В, где F m – максимальное мгновенное значение магнитного потока F в максвеллах, f – частота в герцах и N – число витков. Поскольку поток F m является общим для обеих обмоток, индуцированная в каждой из них ЭДС пропорциональна числу витков в соответствующей обмотке:

В обычном трансформаторе напряжения на зажимах отличаются от индуцированных ЭДС лишь на несколько процентов, так что для большинства практических целей указанные напряжения фактически пропорциональны соответствующим числам витков, V2 /V1 = N2 /N1.

Ток I0 в отсутствие нагрузки (ток холостого хода) создает магнитный поток F и вместе с приложенным напряжением является источником потерь в магнитопроводе на гистерезис и вихревые токи. В режиме холостого хода потери I0 2 R в меди первичной обмотки ничтожны. Ток холостого хода I0 составляет обычно от 1 до 2% номинального тока трансформатора, хотя в низкочастотных (25 Гц) трансформаторах он может достигать величины 5 или 6%.

Если на рис. 1 переключатель X вторичной цепи замкнут, в ней течет ток. Согласно правилу Ленца, направление тока во вторичной обмотке таково, что он противодействует потоку F . Когда этот поток уменьшается, противо-ЭДС E1 первичной обмотки тоже уменьшается и ток в ней становится больше, обеспечивая передачу мощности, которая снимается затем со вторичной обмотки. Противо-ЭДС E1 отличается от приложенного напряжения V1 всего на 1–2%. Напряжение V1 постоянно. Если E1 постоянна, то поток взаимоиндукции F также постоянен, и, следовательно, постоянна магнитодвижущая сила (число ампер-витков), действующая на магнитопровод. Таким образом, увеличение МДС вторичной обмотки при приложении нагрузки должно уравновешиваться противоположной величиной МДС первичной обмотки. Ток холостого хода мал по сравнению с токами нагрузки и обычно значительно отличается от них по фазе. Пренебрегая им, имеем

Таким образом, в трансформаторе токи практически обратно пропорциональны количеству витков в соответствующих обмотках.

Зависимость напряжения от нагрузки.

На рис. 2 показан поперечный разрез одного плеча трансформатора со связанными первичной и вторичной обмотками P и S, причем первичная охватывает вторичную. Практически всегда имеется некоторая часть потока F , создаваемого первичным током, которая замыкается на одной лишь первичной обмотке P; это первичный поток рассеяния. Аналогично существует вторичный поток рассеяния. Оба эти потока создают реактивное сопротивление рассеяния в соответствующих цепях, что в сочетании с активным сопротивлением уменьшает напряжение на зажимах вторичной обмотки с включенной нагрузкой. На рис. 3 величина V1 представляет напряжение на зажимах первичной обмотки, а I1 – ток в ней, запаздывающий по отношению к V1 на q градусов. Напряжение I1R01 (находящееся в фазе с I1) и напряжение I1X01 (сдвинутое по отношению к I1 на 90 ° и опережающее его) суммируются векторно с V1, давая E1. В результате имеем

Опережающий ток берется со знаком минус. Если коэффициент мощности равен 1, то cos q = 1 и sin q = 0. При этом относительное изменение напряжения на первичной обмотке трансформатора при изменении нагрузки от оптимальной до режима холостого хода определяется отношением

Для вторичной обмотки имеем R02 = R01(N2 /N1) 2 и X02 = X01(N2 /N1) 2 . Записывая аналогично предыдущему уравнение для Е2, получим такое же соотношение. Потери на активном и реактивном сопротивлениях трансформатора составляют от одного до трех процентов от напряжения на зажимах (на рис. 3 они показаны в увеличенном масштабе).

КПД преобразования трансформаторов настолько близок к единице, что при прямых измерениях на входе и выходе точность оказывается недостаточной. Более точный метод определения КПД состоит в измерении потерь Pc в магнитопроводе путем измерения мощности одной из обмоток без нагрузки, когда эта обмотка работает при номинальном напряжении. Тогда КПД ( h ) можно получить из формулы

Автотрансформаторы.

Автотрансформатором называют трансформатор, в котором часть обмотки является общей как для первичной, так и для вторичной цепи. При низком коэффициенте трансформации автотрансформатор обеспечивает значительную экономию в стоимости и увеличение КПД по сравнению с обычным двухобмоточным трансформатором.

На рис. 4,а показан автотрансформатор с коэффициентом трансформации 2. Предполагается, что коэффициент мощности равен 1, а потери и ток холостого хода незначительны. Непрерывная обмотка ac на магнитопроводе трансформатора может быть распределена между несколькими катушками на противоположных плечах магнитопровода. Чтобы получить коэффициент трансформации 2, делается отвод b от средней точки обмотки ac, а нагрузка вторичной обмотки подсоединяется между точками b и c. Для преобразования мощности обмотка ab является первичной, а bc – вторичной. Допустим, что ток нагрузки I составляет 20 А при 50 В. Ток 10 А течет от a к b и отсюда к нагрузке dd ў . Мощность, создаваемая током 10 А при падении напряжения 50 В на участке ав, составляет 500 Вт; эта мощность наводит магнитное поле в магнитопроводе, которое проявляется в индуцированном токе I2 = 10 А при напряжении 50 В между c и b. Таким образом, из суммарной мощности 1000 Вт на нагрузке 500 Вт передаются от a к b по проводам без трансформации, а 500 Вт – в результате трансформации. В обычном двухобмоточном трансформаторе потребовалась бы не только обмотка ac, рассчитанная на 100 В и 10 А, но также вторичная обмотка, рассчитанная на 50 В и 20 А и содержащая то же количество меди. Более того, при одной обмотке нужно меньше железа для магнитопровода (сердечника). Следовательно, в автотрансформаторе с коэффициентом трансформации 2 или 1/2 требуется вдвое меньше, чем в двухобмоточном трансформаторе, материала, да и потери сокращаются примерно наполовину.

На рис. 4,б показан автотрансформатор с первичной обмоткой на 100 В и коэффициентом трансформации 4/3. Нагрузка вторичной обмотки составляет 20 А при 75 В, что соответствует мощности на выходе 1500 Вт. Следовательно, первичный ток должен иметь величину 15 А. Отвод b сделан в точке, соответствующей трем четвертям числа витков от c к a. Ток 15 А течет от a к b и отсюда к нагрузке dd ў . Этот ток при падении напряжения 25 В на ab дает 15 ґ 25 = 375 Вт магнитному полю, которое индуцирует ток между c и b 5 А при 75 В, так что подвергаются трансформации только 375 Вт, а остальные 1125 Вт мощности передаются от 100 В- к 75 В-цепи по проводам. Таким образом, чтобы осуществлять трансформацию всей заданной мощности, для указанного трансформатора достаточно всего одной четвертой от того значения мощности, которое должен иметь соответствующий двухобмоточный трансформатор.

Автотрансформаторы обычно используются для регулирования вторичного напряжения и трансформации с небольшими коэффициентами, такими, как 2 или 1/2. Они используются также для пускателей двигателей, уравнительных катушек и для многих других целей, требующих небольших коэффициентов трансформации.

Измерительные трансформаторы.

При высоких напряжениях трудно проводить измерения, поскольку высоковольтные приборы дороги и обычно громоздки; их точность подвержена воздействию статического электричества, к тому же они небезопасны. Когда ток превышает 60 А, нелегко обеспечить высокую точность амперметров из-за больших проводов и значительных ошибок, обусловленных паразитным полем концевых выводов. Кроме того, амперметры и катушки тока в высоковольтных цепях опасны для оператора. В измерительных трансформаторах тока и напряжения используются катушки напряжения на 100 В и катушки тока на 5 А. Вторичные обмотки должны быть заземлены. Если шкалы приборов не откалиброваны в коэффициентах трансформации, то показания надо умножать на соответствующий коэффициент трансформации.

Также по теме:
Литература:

Васютинский С.Б. Вопросы теории и расчета трансформаторов. Л., 1970
Фишлер Я.Л., Урманов Р.Н. Преобразовательные трансформаторы. М., 1974
Баршевский Г.Г., Денисов В.В. Магнитные усилители и трансформаторы. Л., 1981

Первичная и вторичная цепи силового трансформатора

Работа трансформатора основана на явлении взаимоиндукции. Электродвижущая сила взаимоиндукции возникает в одной из двух катушек (рисунок 1), например в катушке 2, когда в другой 1 протекает ток, создающий переменный магнитный поток Ф0. При изменении магнитного потока силовые линии магнитного поля, возникающие вокруг катушки 1, проникают в другую катушку и пересекают ее витки. В результате этого в катушке 2 создается электродвижущая сила (эдс), которая и является электродвижущей силой взаимоиндукции.

катушки, обтекаемые переменным током

1 — катушка (обмотка) первичной цепи; 2 — катушка вторичной цепи; 3 — реостат для изменения тока в первичной цепи
Рисунок 1 — Магнитная связь двух катушек, обтекаемых переменным током

Если концы катушки 2 соединяют с каким-нибудь приемником электрической энергии, то эдс взаимоиндукции создает в нем ток, т. е. передает ему некоторую энергию. Эту энергию катушка 2 получает с помощью магнитного поля, созданного током первой катушки, причем источник тока тотчас же пополняет эту энергию. Так, на основе электромагнитной связи происходит переход энергии источника из одной катушки в другую.

Ток, протекающий в первой катушке и создающий вокруг нее магнитное поле, называют возбуждающим или первичным и обозначают I1. Электрическую цепь, составленную из источника тока, соединительных проводов и катушки 1, называют первичной. Переменное магнитное поле пересекает не только витки ω2 катушки 2, но и витки ω1 катушки 1. Поэтому и в первичной катушке возникает эдс самоиндукции E1.

Электродвижущую силу взаимоиндукции, возникающую в катушке 2, называют вторичной и обозначают Е2; электрическую цепь, соединенную с этой катушкой, также называют вторичной. Ток, протекающий во вторичной цепи, называется вторичным и обозначается I2 (рисунок 2, а, б).

первичная и вторичная обмотки трансформатора

а — режим холостого хода; б — режим нагрузки; 1 — первичная обмотка; 2 — вторичная обмотка, 3 — рубильник; 4 — магнитопровод
Рисунок 2 — Первичная и вторичная обмотки на магнитопроводе

Магнитный поток, пересекая любой замкнутый контур (например, виток обмотки), создает в нем эдс и ток. По правилу Ленца этот ток (например, вторичный ток I2) направлен так, что своим магнитным действием препятствует причине, его вызвавшей.

Интенсивность магнитного поля, т. е. магнитная индукция, пропорциональна току, зависит от числа витков первичной обмотки и свойств среды (от магнитной проницаемости), в которой расположены витки. Для ферромагнитных веществ, например для стали, магнитная проницаемость во много раз больше магнитной проницаемости воздуха. Поэтому для усиления магнитного поля, созданного первичным током, группы последовательно соединенных витков, т. е. катушки обмотки, помещают на магнитопровод, изготовленный из пластин специальной электротехнической стали. Комплект пластин из электротехнической стали, собранный в такой геометрической форме, которая позволяет локализовать в ней основную часть магнитного поля, составляет магнитную систему, или магнитопровод трансформатора. Стержнем называют ту часть магнитопровода, на которой или вокруг которой располагаются катушки обмотки.

Благодаря высокой магнитной проницаемости стали магнитопровод усиливает магнитное поле тока, увеличивает магнитный поток Ф0 и эдс Е2 (рисунок 2, а). При холостом ходе, когда ток протекает по обмотке, присоединенной к источнику питания, а в другой обмотке тока нет (нагрузка не включена), мощность, потребляемая от сети, расходуется только на создание потока Ф0, т. е. на намагничивание магнитопровода и индуктирование напряжения на разомкнутых зажимах обмотки 2. Поток Ф0, который полностью сцеплен со всеми витками обмоток 1 и 2, называют главным или основным, а первичный ток I1 при холостом ходе — током холостого хода трансформатора. Ток холостого хода обозначают обычно I0.

Как известно, магнитный поток индуктирует эдс, создающую ток не только в обмотке, но и в стали магнитопровода. Ток, создаваемый эдс, протекает по замкнутому контуру (вихревое движение) в сердечнике в направлении, перпендикулярном магнитному потоку (рисунок 3, а).

вихревые токи в магнитопроводе

а — сплошном; б — шихтованном; 1 — магнитопровод; 2 — вихревые токи; 3 — слои (пластины) магнитопровода
Рисунок 3 — Вихревые токи в магнитопроводе

Магнитопровод всегда можно представить себе состоящим из большого числа цилиндрических слоев, образующих в сечении подобные замкнутые контуры. Совокупность токов, протекающих по всем этим контурам, образует вихревые токи магнитопровода; вследствие электрического сопротивления стали они вызывают в ней нагрев и потери мощности, поступающей от источника.

Если магнитопровод выполнить из сплошной стали, то сопротивление его будет невелико и вихревые токи могут достигнуть больших значений. Для уменьшения величины вихревых токов (полностью устранить их не удается) магнитопровод собирают из отдельных изолированных листов стали.

Действительно, для уменьшения вихревых токов следует уменьшить возникающую в магнитопроводе эдс и увеличить сопротивление. При этом, чем тоньше лист, тем меньше элементарная эдс, создающая ток, меньше сечение, т. е. больше сопротивление, меньше величина тока (рисунок 3, б). Как видно из рисунка, возникающие в контурах вихревые токи 2 замыкаются только в каждой отдельной пластине, а не по всему магнитопроводу.

Вследствие небольшой величины эдс, а также увеличения сопротивления контура, сечение которого стало значительно меньше, чем у сплошного магнитопровода, вихревые токи оказываются небольшими. Чтобы сделать их еще меньше, в сталь, применяемую для изготовления магнитопровода, добавляют кремний, который существенно повышает удельное сопротивление, не ухудшая в то же время ее магнитных свойств. Свойства стали зависят, кроме того, от способа ее изготовления. В частности, большую роль играет способ прокатки стали. Горячекатаная сталь имеет значительно большие удельные потери, чем холоднокатаная. Учитывая, что удельные потери от вихревых токов пропорциональны квадрату толщины листа стали, сейчас вместо толщины 0,5 мм все шире используют сталь толщиной 0,33—0,35 мм и даже 0,28 мм.

Однако вихревые токи — не единственная причина потерь в магнитопроводе. Другой причиной является перемагничинание стали вследствие непрерывного изменения величины и направления переменного тока. А так как изменение магнитного поля непосредственно связано с изменением направления и величины тока, то сталь магнитопровода непрерывно намагничивается и размагничивается.

Известно, что кривая намагничивания, т. е. зависимость магнитной индукции от величины и направления тока, образует так называемую петлю гистерезиса (рисунок 4). Непрерывное перемагничивание сопровождается нагреванием стали, т. е. потерями энергии. Площадь, охватываемая петлей гистерезиса, пропорциональна удельным потерям мощности, затрачиваемой на намагничивание. Эти потери называют потерями от гистерезиса или потерями на перемагничивание. Для их уменьшения применяют сталь с малым содержанием углерода и другими присадками, улучшающими ее свойства.

Петля гистерезиса

Рисунок 4 — Петля гистерезиса — зависимость индукции В от изменения тока намагничивания I

Рассмотренные нами потери, возникающие в магнитной системе трансформатора при номинальном напряжении на первичной обмотке и номинальной частоте, называют магнитными потерями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *