Как работать осциллографом для начинающих
Перейти к содержимому

Как работать осциллографом для начинающих

  • автор:

Принцип работы осциллографа

ec26f244d2dc648fb25ca3ea584fb421.jpg

Осциллограф — это прибор для измерения характеристик электрических сигналов во времени. Его используют радиолюбители, мастера сервисов по ремонту электроники Принцип работы осциллографа заключается в ступенчатом анализе поступающего сигнала. Ниже мы более подробно рассмотрим особенности функционирования прибора.

Принцип работы осциллографа

Прежде чем изучить принцип действия осциллографа, следует ознакомиться с конструкцией устройства. Мы рассмотрим общие конструктивные особенности цифровых агрегатов, они в настоящий момент более распространены.

Независимо от типа, важными частями конструкции осциллографа являются:

  • усилитель и делитель напряжения;
  • преобразователь (АЦП);
  • контроллер;
  • запоминающее устройство;
  • оперативное запоминающее устройство (ОЗУ);
  • экран;
  • органы управления (кнопки, ).

Принцип работы осциллографа основан на преобразовании электрического сигнала в аналоговый или цифровой. В последнем случае алгоритм будет следующим:

  1. Входное напряжение проходит через усилитель с делителем, преобразуется с помощью АЦП в дискретную последовательность кодов.
  2. Мгновенные значения напряжения отображаются в кодах, а затем записываются в ОЗУ. Во время записи все предыдущие отсчёты сдвигаются на одну ячейку. Процедура продолжается до тех пор, пока не будет выполнено заданное пользователем условие.
  3. После того, как условие выполнено, содержимое ячеек ОЗУ переписывается в запоминающее устройство.
  4. На экране начинает появляться рисунок сигнала. Появление изображения связано с тем, что каждой ячейке запоминающего устройства соответствует точка на экране, отличающаяся по цвету от фона.

Представленное описание принципов действия осциллографа является упрощенным.

Основные параметры

rtb2000.jpg

При рассмотрении принципа действия осциллографа обязательно нужно упомянуть о его характеристиках. Параметры оборудования крайне важны для изучения сигналов. Основные характеристики измерительного прибора:

  • Полоса пропускания. Это рабочий диапазон частот, в котором спад АЧХ не превышает 3 дБ относительно опорной частоты. На опорной частоте спад АЧХ отсутствует.
  • Неравномерность характеристики (АЧХ).
  • Нелинейность амплитудной характеристики усилителей.
  • Параметры выходов. Обязательно указывается сопротивление с входной ёмкостью.
  • Форма сигнала, синусоида, пилообразные импульсы, прямоугольные импульсы, единичные выбросы
  • Длительность импульса или ширина. Обозначается в мс или мкс.

Характеристики неисправного обследуемого оборудования всегда отличаются от тех, что указаны в заводском паспорте. Именно эта особенность электрических сигналов позволяет быстро диагностировать неполадку, используя осциллограф.

Области применения и методика измерения

Осциллографы используются во многих областях промышленности. Их применяют для диагностики блоков питания, преобразователей, при ремонте мобильных телефонов, на телевидении для настройки поступающего сигнала, при разработке электроаппаратуры Рассматривая принципы работы осциллографа, важно изучить методики измерения. Всего их 4:

  1. Измерение напряжения. Процедура осуществляется в режиме линейной развертки. Генератор подключается к измеряемому устройству. Обычно одна из точек подключения выступает в качестве «земли», но это правило не является обязательным. Значения напряжения измеряются от пика до пика. Как только напряжение получено, другие параметры можно определить с помощью простейших расчетов.
  2. Измерение времени и частоты. Для этой процедуры применяется горизонтальная шкала устройства. Прибор замеряет длительность и период импульсов, а частота — обратная периоду величина.
  3. Измерение продолжительности импульса и длительности нарастания фронта. Искаженные импульсы — одна из распространенных причин неправильной работы электрических схем. Для запуска этого алгоритма измерения необходимо точно настроить прибор. Особенно важно правильно использовать режимы удержания запуска и функцией растяжки по горизонтали (для просмотра мелких деталей коротких импульсов).
  4. Измерение сдвига по фазе. Прибор анализирует разницу синхронизации между двумя одинаковыми сигналами. Один сигнал подается на систему вертикального отклонения устройства, а второй — на систему горизонтального отклонения устройства.

Не стоит забывать и о прочих измерительных технологиях, применяемых в современных типах оборудования. С их помощью можно настроить прибор для захвата быстротекущих процессов на производстве, тестирования электронных компонентов

Типы осциллографов

После того, как мы выяснили для чего нужен осциллограф, настало время разобраться в его классификациях. Измерительное оборудование подразделяют непосредственно по алгоритмам работы. Основных типов осциллографов 7:

  1. Аналоговые. Именно с этих устройств и началось анализа сигналов. Аналоговый осциллограф — это прибор для быстрого измерения электрических сигналов средней частоты. Главным плюсом оборудования этого типа является низкая стоимость, поэтому у многих начинающих радиолюбителей есть аналоговая измерительная техника. В университетах и в современных лабораториях их практически не используют. Основные узлы устройства:
    a. делитель входного сигнала;
    b. схема синхронизации и отклонения горизонтальной плоскости;
    c. лучевая трубка;
    d. блок питания.
  2. rtc1002_1 (1).jpgЦифровые запоминающие. Это оборудование выделяется не только возможностью сохранения данных. Цифровые устройства способны производить глубокий анализ поступающей информации, поэтому их стоимость во много раз больше, чем аналоговой техники. После настройки, они смогут записывать поступающие информацию в цифровом формате. Сигнальные данные более устойчиво отображаются на мониторе. К итоговому результату пользователь может применить масштабирование или другие функции. Примеры запоминающих осциллографов: Tektronix, R&S RTC1002+, TBS2074 Tektronix. Основные компоненты прибора:
    a. делитель входного сигнала;
    b. усилитель нормализации;
    c. преобразователь;
    d. устройства вывода и ввода информации;
    e. запоминающее устройство.
  3. Цифровые люминофорные. Эта техника отличается высокой стоимостью. За точность измерений в этом приборе отвечает цифровой люминофор. Данные, поступающие в прибор, обрабатываются параллельно, поэтому сигнал отображается в особом виде. При записи устройство создает очень много снимков. Благодаря этой особенности, операторы смогут быстро обнаружить редкие сигнальные явления. Примеры люминофорных осциллографов: R&S RTM3004+, Tektronix DPO75002SX, Tektronix DPO73304DX.
  4. Цифровые стробоскопические. Работа техники этого типа строится на эффекте последовательного сигнального стробирования. Устройство последовательно выбирает множество точек за несколько заданных временных периодов, а после воссоздает исходную форму волны. Стробоскопические приборы применяются в лабораториях для изучения высокочастотных повторяющихся сигналов с частотой дискретизации превышающей частоту дискретизации измерительного оборудования. Такая техника очень дорогая. Ее рабочая частота выше 50 Гц. Примером стробоскопического осциллографа является DSA8300 Tektronix. Его рабочая частота около 80 ГГц.
  5. 5ea5d46745ec72afa09a14b9cf368006.jpgПортативные. В настоящее время наблюдается тенденция к уменьшению схем измерительного оборудования, поэтому появились компактные модели устройств для исследования сигналов. Они отличаются минимальной погрешностью измерений, хорошей автономностью и малыми габаритами, потому часто становятся спутниками мобильных электронщиков. Примеры портативной техники для проведения измерений: R&S RTH1002, R&S RTC1002+, R&S .
  6. Комбинированные или смешанных сигналов. Отличительной особенностью приборов является наличие анализатора спектра. С его помощью можно проводить более сложное исследование электрических схем, путем оценки сигнальных гармоник. Примеры комбинированного оборудования: MSO2014B Tektronix, Tektronix MSO72504DX, R&S RTC1002+, RTC-B223.

Заключение

Принцип работы осциллографа заключается в анализе электрического сигнала путем ступенчатого преобразования. При выборе осциллографов важным критерием является тип предстоящих работ. Измерительное оборудование необходимо подбирать к виду сигналов, с которыми вы собираетесь работать.

Что такое цифровой осциллограф и как им пользоваться

Цифровой запоминающий осциллограф – прибор для измерения электрических сигналов. Благодаря определению формы и параметров колебаний удается мониторить корректность работы электронной части техники. Кроме измерения прибор записывает показания. Полученные данные можно анализировать в любое время

Применение цифровых осциллографов мультиметров

Приборы используются в мастерских по ремонту электронного оборудования. Они применяются для проектирования цифровых схем, которыми оснащаются все современные устройства. Используются в:

Электронике. С помощью появляющегося на экране изображения анализируется сигнал работающего элемента. Благодаря этому удается определить рабочую частоту, правильно выбрать детали, настроить корректную работу.

Ремонте бытовой техники. Применение этого прибора – один из способов выявить неисправность. Замеры сигнала в разных частях электронной начинки позволяют точно определить вышедший из строя электронный компонент.

Ремонте цифрового авто-оборудования. Операции по диагностике автомобилей производятся цифровыми планшетными осциллографами. Эти приборы компактны, что обеспечивает проверку даже в труднодоступных местах электронных компонентов систем:

  • зажигание;
  • впрыск горючего;
  • диодный мост генератора;
  • датчик подачи воздуха;
  • положение коленчатого, распределительного валов и т.д.

Практических и научно-исследовательских целях. Для этого подходит обычный мультиметр. Однако осциллограф дает более полную картину, возможность увидеть даже незначительные изменения.

Настройке электронного оборудования. Например, если необходима регулировка телевизионного сигнала, используют устройство для получения осциллографического изображения.

Как работает цифровой осциллограф

Когда прибор запущен, происходит подача сигнала на вход канала вертикального направления. Он обладает высоким входным сопротивлением. Аналогично работает вольтметр, который позволяет измерять напряжение на печатной плате, электропроводке, коннекторах, электронных компонентах. Отличие осциллографа от вольтметра заключается в демонстрации временных колебаний напряжения в виде графика.

После поступления сигнала на вход, его усиливают до определенных значений. На экране он отображается в виде вертикальной оси. Цель усиления – обеспечение работы отклоняющей системы лучевой трубки. Также это требуется для функционирования преобразователя сигнала из «аналога» в «цифру». Путем усиления сигнала удается менять (повышать или понижать) масштаб колебаний на экране.

Типы цифровых осциллографов

Цифровые аппараты популярнее, чем аналоговые. Это объясняется более высокой точностью измерений в цифровых осциллографах. Конструкция последних включает аналого-цифровой преобразователь. Его наличие позволяет превращать «аналог» в «цифру». У электронного прибора есть память для сохранения захваченной выборки

Люминофорные (DPO)

Работают по принципу имитации изменения процессов. Выводят изменения модулированных сигналов на экран, подобно аналоговым моделям. Все получаемые ими сигналы анализируются и записываются в память.

Стробоскопические

Принцип работы – метод последовательного стробирования сигнала. За счет повторяющегося сигнала происходит выборка мгновенного значения в новой точке. Плюсы аппаратов – большая полоса пропускания. С их помощью проводятся процедуры по исследованию коротких периодических сигналов.

Цифровые USB осциллографы

У них масса плюсов:

  • легкое подключение к ПК;
  • сохранение информации на жесткий диск, работа с ней в текстовом виде;
  • быстрая конвертация данных в цифровой текстовый формат;
  • удобство использования по причине компактности;
  • наличие в одном приборе нескольких: осциллографа, анализатора, генератора сигналов, генератора последовательностей.

Но у устройств отмечены недостатки. Среди них погрешности. Кроме того, хуже характеристики, чем у стационарного оборудования. У многих USB-приборов нет гальванической развязки. Если не соблюдать меры предосторожности, можно вывести из строя ПК.

Цифровые портативные осциллографы

Представлены модифицированными компактными приборами небольшого размера и веса. Потребляют минимум энергии. Используются для проведения научных исследований в сфере промышленности. Подходят для поиска неисправностей машин, а также электрооборудования.

Цифровые запоминающие

Оснащены носителем, способным хранить большие объемы данных. В приборах реализована система считывания информации на высоких скоростях. Они могут воспроизводить имеющиеся события в сигнале в замедленном темпе.

Схема цифрового осциллографа

У прибора есть лучевая трубка, которая обладает чувствительностью к электрическим импульсам. Уровень чувствительности зависит от частоты импульсов – чем выше, тем чувствительнее становится трубка. В ней содержится от 1 до 16 каналов ( зависит от модели). Каждый канал способен принимать электрические импульсы. Чем больше каналов, тем больше графиков одновременно может выводиться на экран.

Особенность прибора цифрового типа — наличие экрана и преобразователя, способного конвертировать аналоговый сигнал в цифровой. Преобразователь имеет память для сохранения данных о колебаниях в виде графиков. Часть информации подвергается анализу автоматически, а затем в обработанном виде отображается на экране.

Развертка – траектория движения луча. Он выполняет функцию улавливателя колебаний, которые выводятся на экран. Развертка может принимать эллиптическую или круговую форму. Регулируется в горизонтальной оси.

Получает энергию устройство от блока питания, подключаемого к бытовой сети 220 Вольт. Есть модели на аккумуляторах – функционируют в автономном режиме.

Измерения в цифровых осциллографах

Любой аппарат рассчитан на измерение электрического напряжения, из которого затем формируется амплитудный график электрических колебаний. Отображение последних производится на экране. Сам экран изготовлен в двухмерной системе координат. На нем есть две оси – вертикальная (для напряжения) и горизонтальная (для времени). Имеется также третий компонент – яркость (интенсивность сигнала).

Если на устройство не поступают входные импульсы, на экране видна лишь горизонтальная линия. Ее еще называют «нулевой». Это свидетельствует об отсутствии напряжения. При подаче на 1 или 2 канала цифрового осциллографа (каналов может быть больше) напряжения, на экране появятся графики (их число зависит от количества каналов).

Форма графиков электрических колебаний:

  • синусоида;
  • затухающую синусоида;
  • прямоугольник;
  • меандр;
  • треугольник;
  • «пила»;
  • импульс;
  • перепад;
  • комплексный сигнал.

Чтобы обеспечить стабильность графика колебаний, внутрь прибора поместили блок синхронизации. Для получения цикличного отображения колебаний следует выставить значения синхронизации. Это значение будет считаться «стартовым» — отправной точкой графика.

Каналы цифрового осциллографа — для чего нужны

Как уже отмечалось, каналы – это измерители. Если их несколько, то можно одновременно анализировать несколько поступающих сигналов. Прием сигналов производится входными аналоговыми каналами, которые затем все оцифровывают. Внутри прибора находится анализатор. Его функция – исследование коррелированных цифровых и аналоговых каналов. Работает с множеством контрольных точек. Метод упрощает операции по декодированию многоразрядных параллельных шин.

Многоканальный прибор не всегда качественно диагностирует. Рассмотрим, для решения каких задач подходит один или несколько каналов:

  • Цифровой осциллограф на 4 канала или на 6 хорошо справляется с измерениями и сравнениями временных характеристик сигналов, которые поступают от аналоговых устройств.
  • С помощью 8 или 16 каналов удастся произвести отладку цифровой системы, работающей по принципу параллельного экспорта данных.
  • Высокочастотные измерения проводятся с помощью комбинированных устройств, у которых есть дополнительные каналы и РЧ вход.
  • Работа с гальванической развязкой оптимальна с помощью изолированных каналов.
  • 20 каналов – решение для синхронизации регистрации, просмотра сигналов по времени.

Как пользоваться цифровым осциллографом

Если устройство новое и им еще ни разу не пользовались, необходимо его откалибровать. Для этого используют генератор прямоугольных импульсов, который находится на корпусе. Операция выполняется путем подключения щупа к калибровочному выходу. После этого на экране появляется линия в виде зигзагов, напоминающая зубья пилы. В таком состоянии рекомендуется проверка работы всех функций.

На экране осциллографа видны небольшие клетки – это деления. Величина квадратов зависит от типа прибора. Есть устройства с делениями, равными 5 единиц. Некоторые оснащаются ручками. С их помощью меняется масштаб графика. Это обеспечивает удобство использования, позволяет проводить измерения точнее.

Перед началом применения необходимо подсоединить осциллограф к бытовой электрической сети 220 Вольт. Подключение щупа производится на один из свободных каналов (если их более 1) или генератор импульсов (в случае его наличия). После этого на дисплее появятся изображения сигналов.

Если на экране сигнал обрывистого характера, значит следует проверить надежность подключения щупа. Для стабильности соединения в приборах предусмотрены миниатюрные ванты. В некотором оборудовании также предусмотрена функция автоматического позиционирования, которая решает проблему обрывистого сигнала.

Как измерять ток

Перед измерением тока цифровым каналом осциллографа необходимо определить вид тока, который будет наблюдаться. Аппараты рассчитаны на работу в двух режимах:

  • Direct Current («DC») – для наблюдения за постоянным;
  • Alternating Current («АС») – для наблюдения за переменным.

Для измерения постоянного тока необходимо активировать режим «DC». Затем нужно подключить щупы к линиям питания, учитывая полярность. Черный зажим подсоединяется к минусу, а красный – к плюсу. После этого экран прибора покажет прямую линию. Значение тока — это значение вертикальной оси. Сила тока вычисляется по закону Ома. Для этого потребуется разделить напряжение на сопротивление.

Переменный ток отобразится на экране в виде синусоиды. Измерение его значения возможно лишь в определенный отрезок времени. Сила вычисляется по тому же закону Ома.

Как измерить напряжение

При процедуре измерения напряжения не обойтись без вертикальной оси координат. Необходимо анализировать высоту осциллограммы. Перед этой операцией предстоит выполнить настройку дисплея, чтобы обеспечить удобство измерения. После этого перевести прибор в режим DC. Затем подсоединить щупы к контактам цепи. На дисплее отобразится прямая линия. Ее значение – есть напряжение.

Как измерить частоту

Для начала разберем, что такое период и как он связан с частотой электрического сигнала. Под одним периодом подразумевается наименьший промежуток времени, после прохождения которого происходит повтор амплитуды.

Чтобы облегчить наблюдение за периодом, можно воспользоваться горизонтальной осью. Она отвечает за координаты времени. Достаточно увидеть, спустя какое время линейному графику свойственно повторяться. За начало периода нужно брать точки, в которых происходит соприкосновение с размещенной горизонтально осью. Концом периода будет повторение этой же координаты. Для удобства измерения периода сигнала лучше уменьшить скорость развертки. Тогда погрешность измерения сводится к минимуму.

Частотой называют значение, которое обратно пропорционально анализируемому периоду. Если проще, то для измерения значения необходимо 1 секунду поделить на число периодов, проходящих за это время. Таким образом получается частота, измеряемая в Герцах.

Как измерить сдвиг фаз

Взаимное расположение 2-х колебательных процессов во времени называют сдвигом фазы. Измерение параметра проводится в долях периода сигнала. Делается это с целью получения общего значения одинаковых сдвигов фаз.

Перед процедурой нужно выяснить, у какого сигнала есть отставание от другого. После этого выяснить значение знака параметра. В случае движения тока впереди, сдвиг угла получится с отрицательным параметром. Если напряжение уйдет назад, знак значения станет положительным.

Для выполнения операции предстоит:

  • умножить 360-и градусов на количество клеток, которые располагаются между началами периодов;
  • полученную цифру поделить на количество делений, которое занимает один период сигнала;
  • выполнить подбор отрицательного или положительного знака.

Проводить процедуры на аналоговом осциллографе некомфортно. Связано это с отображением на дисплее графиков одинакового цвета. Масштаб самих графиков тоже одинаковый. Цифровое устройство для таких операций – выход. Если взять осциллограф с двумя цифровыми каналами (для чего нужен такой прибор мы уже рассмотрели), то сделать это станет проще благодаря размещению амплитуд на отдельные каналы.

Различия между цифровым и аналоговым осциллографом

Цифровой прибор отличается от аналогового тем, что способен отображать на дисплее сигналы разной яркости. Аналоговым свойственно выполнение развертки сигнала. Они могут работать с физическими величинами, которым свойственно изменяться (напряжением и др.).

Цифровые работают по принципу выборки характеристик сигналов. Понимают дискретные двоичные числа, представляющие значение напряжения. В основе концепции системы запуска – мониторинг событий, происходящих в исследуемых процессах.

В основе аналоговой системы запуска – функционирование на усилителях. Усилители — источники линейных и нелинейных погрешностей. Это может быть задержка и колебания амплитуды. Их проявление отображается на дисплее. Вид — сдвиги положения запуска.

В основе цифровой системы запуска – функционирование без искажений. Может напрямую работать с отчетами АЦП, а также отображать на экране получаемый сигнал практически без изменений (полностью идентичный).

Особенности цифровых устройств:

  • работа с полосой пропускания от 70 ГГц и больше;
  • функционирование в режиме эквивалентного и реального времени;
  • регистрация поступающих сигналов за счет модулей;
  • пониженный уровень шума;
  • повторяющийся характер работы (так обеспечиваются идеальные условия для мониторинга за параметрами сигналов).

Цифровое оборудование выдает информацию на экран в виде текста. Эти данные – точнее, чем графики, которые выводит на дисплей аналоговое оборудование. Обработка сигналов выполняется по методу Фурье. Вся поступающая информация сохраняется в памяти и может быть распечатана в любое время.

Обзор цифровых осциллографов

Tektronix TBS2000B

Цифровой осциллограф Tektronix TBS2000B

Цифровой запоминающий осциллограф TBS2000B позволяет решать основные задачи – отражать и измерять параметры сигналов. Оснащен увеличенным дисплеем, диагональ которого составляет 9 дюймов. Сам экран поделен на 15 делений по горизонтали. Длина записи в величине 5 миллионов точек – это способ захвата больших временных окон, более тщательный анализ.

Благодаря курсорам с ручным управлением и 32 автоматическим измерениям производительность повышается. Имеет порт 100-BaseT Ethernet и модуль Wi-Fi для соединения с сетью. Так можно добиться высокой скорости обмена данными. Цена аппарата невысока. Подходит для решения задач разной сложности.

TBS2000B отличается удобством и простой применения. За счет новой конструкции входов с высокой частотой дискретизации (2 Гвыб/с) увеличивается точность измерений. При измерениях прибор обеспечивает снижение уровня шумов, увеличение эффективной разрядности.

Наличие 32 автоматических измерений свидетельствует о быстроте, а также высокой точности измерений распространенных параметров. Анализ сигналов может проводиться с помощью экранных надписей новых курсоров, которые привязаны к сигналу.

Keysight U1600

Ручной цифровой осциллограф Keysight U1600

При помощи осциллографа производятся операции по измерению формы и параметров сигналов. Модель рассчитана на работу в неблагоприятных условиях (на промышленных производствах). Это устройство — полноценный осциллограф. Подходит для применения в качестве цифрового-среднеквадратического мультиметра. Максимально отображаемое значение – 6000. Благодаря мультиметру возможны замеры постоянного и переменного напряжения, сопротивления по 2-проводной схеме, силы тока, температуры.

Kesight U1600 – прибор ручного типа. Имеет цветной жидкокристаллический дисплей на 4,5 дюймов. Способен отображать осциллограммы по двум каналам.

Серия U1600 представлена несколькими моделями:

  • U1602A/U1602B – с полосой пропускания 20 МГц;
  • U1604A/U1604B – с полосой пропускания 40 МГц.

Оборудование позволяет делать выборку данных в реальном времени. Работает на частоте до 200 Мвыб/с. В моделях U1604A и U1604B есть функция математической обработка 2-х каналов и БПФ. Благодаря этому удается быстро анализировать сигналы в области частоты и времени.

У каждого прибора есть цифровой истинно-среднеквадратический мультиметр. Выдает значения до 6000. У него также есть функция автоматического выбора диапазона. За счет этого выполняется гибкое и точное измерение напряжения, а также прочих параметров. Наличие функции регистрации данных позволяет анализировать значения в любое время.

Как подобрать цифровой осциллограф

На радиорынке представлены различные приборы. Среди них не последнее место занимают модели из Китая. При разработке и создании китайцы придерживаются одного правила – устройства должны быть универсальными. Речь идет об осциллографах, у которых имеется генератор сигналов.

Важно понимать, что покупка китайского оборудования связана с рисками. К примеру, частая проблема – шумность. Особенно это касается 1-го канала. Шумы бывают разных спектров — от инфранизких до мегагерцовых. Иногда в цепи питания не ставится развязка.

Другой недостаток осциллографа низкого качества – неприемлемая работа генератора, которому свойственно выдавать «свалку» частот. Это создает трудности при обнаружении основной частоты.

Чтобы выбрать хороший прибор, необходимо обращать внимание на достоверность снимаемых данных. От этого зависит успех поставленных задач. При выборе оборудования нужно руководствоваться:

  • стоимостью;
  • производителем;
  • функциональностью;
  • рабочими характеристиками.

Полоса пропускания цифрового осциллографа

От системной полосы пропускания зависит способность прибора измерять сигнал аналогового типа в определенном диапазоне. От величины последнего зависит точность измерений.

На что обратить внимание:

  1. У устройств начального уровня, максимальная полоса пропускания составляет не более 100 МГц. Они способны показывать амплитуду синусоидальных сигналов частотой до 20 МГц.
  2. Чтобы захватить цифровой сигнал, прибору необходимо захватывать основную, третью и пятую гармоники. В противном случае осциллограмма лишится важных деталей. Важно помнить правило пятикратного превышения. Достижение погрешности в пределах ±2 % можно добиться, если полоса пропускания с учетом пробника не менее чем в 5 раз превысит максимальную полосу сигнала.
  3. Только так получится добиться точности в измерениях амплитуды.
  4. Если планируется работать с высокоскоростными цифровыми сигналами, а также видеосигналами, лучше приобрести осциллограф, у которого полоса пропускания будет выше 500 МГц.

Питание

Прибор работает от аккумулятора, что очень удобно. Такие модели позволяют проводить операции вдали от источников питания. Мастер может совершать выезды на места, где происходит проверка оборудования. Если выезды редкие, лучше брать оборудование, которое работает от бытовой сети. Его преимущества – стабильность работы, а также надежность.

Частота дискретизации

От этого параметра зависят измерения однократных и переходных процессов. Большая величина частоты дискретизации дает более точное изображение на экран.

Цифровой осциллограф для начинающих. Ч1

Если же тебе их читать лень, то скажу, что главная задача этого прибора в том, чтобы отобразить на экране изменение электрического сигнала с течением времени. Для этого на экране осциллографа размечена координатная система. Обычная декартова система, на которой имеются ось X и ось Y. По оси X отмечается время, а по оси Y — напряжение.

Всякие управляющие ручки и кнопочки, которые расположены вокруг экрана прибора предназначены для того, чтобы можно было настраивать отображение сигнала: масштаб по Х, масштаб по Y, триггеры и курсоры. Таким образом можно как бы отдалить или приблизить сигнал, чтобы рассмотреть его по лучше.

Хочу также заметить, что современный осциллограф отличается от своих предшественников тем, что представляет собой компьютер, который собирает, преобразует, анализирует и манипулирует измеренными значениями сигнала, поданного на вход. Это современный вычислительный комплекс.

Осциллограф очень полезен при:

  • Измерении частоты и амплитуды сигнала, что может сильно помочь при отладке создаваемой тобой схемы.
  • Определении уровня шума в цепи
  • Визуальном контроле формы сигнала
  • Определение сдвига фаз между двумя сигналами
  • . и другие способы применения. Например, анализ работы датчиков автомобиля.

Осциллографы применяются при создании, наладке, ремонте различных электронных приборов:от сотовых телефонов, до эл. цепей автомобильных двигателей. От гражданских до военных. Они нужны везде.

В дополнение к описанным выше возможностям, многие современные приборы имеют дополнительные функции, с помощью которых можно быстро узнать частоту сигнала, его амплитуду и многие другие характеристики. Некоторые приборы уже предоставляют возможность провести с сигналами в реальном времени различные математические преобразования или, например, быстрое преобразование фурье. В целом, осциллограф позволяет наблюдать на экране временные и физические характеристики сигнала. Вот как выглядит такое меню функций у Siglent SDS 1202X-E (38 параметров!):

На мой взгляд, это очень удобно и полезно. Поэтому следует все таки обращать свое внимание на современный инструментарий. Благодаря хорошим измерительным приборам можно сильно сократить время поиска неисправности. Особенно это касается осциллографа, который является единственными «глазами», которые позволяют заглянуть внутрь происходящего в электронной цепи и оценить временные и физические характеристики сигналов в этой цепи.

→ Временные характеристики:

Частота и период, скважность и коэфф. заполнения (Duty cycle), время спада и нарастания сигнала.

→ Физические характеристики:

Амплитуда, максимум и минимум сигнала, средне квадратичное, среднее значение напряжения и т.д.

Принцип работы цифрового осциллографа

Цифровые осциллографы, в отличие от аналоговых, не повторяют получаемый сигнал сразу на экран, а предварительно его преобразовывают в «цифровую» форму. Для этого входной сигнал замеряется определённое число раз в секунду, затем прибор после некоторых преобразований этих данных реконструирует сигнал и отображает его на экране. Оцифровка выполняется помощью блока аналогово-цифрового преобразования.

Ключевые характеристики цифрового осциллографа

Еще 5-6 лет назад большинство радиолюбителей (а некоторые и по сей день) пользовались приборами, которые остались ещё от СССР. В свое время это были замечательные приборы со своими плюсами и минусами. Но СССР уже нет более четверти века, а технологии продолжали развиваться, совершенствоваться и дешеветь. Теперь у нас есть возможность пользоваться современными цифровыми приборами с превосходными характеристиками.

Для того, чтобы научиться пользоваться современным цифровым осциллографом требуется освоить небольшой, но специфичный набор понятий и принципов, на основе которых строится его работа. Это по силам каждому. Приступим.

→ Полоса пропускания

Осциллографы (Oscilloscope, O-Scope) не могут измерять абсолютно любые сигналы. Все приборы имеют ограничения, которые определяют сигналы какой минимальной и максимальной частоты или амплитуды с помощью этого прибора могут быть измерены. А полоса пропускания — это как раз та характеристика прибора, которая говорит тебе какой диапазон частот может быть измерен этим прибором. Говоря про полосу пропускания осциллографов обычно имеют ввиду верхнюю границу, так как нижняя граница — это сигнал постоянного тока и его умеют рисовать абсолютно все приборы.

К слову, на самом деле при реальных измерениях диапазон ещё уже, чем заявляет полоса пропускания. В современных цифровых приборах сигнал проходит оцифровку и обработку, прежде чем попадёт на экран прибора. Существует определенная теоретическая база из-за которой производители советуют выбирать прибор таким образом, чтобы его полоса пропускания была в 3 раза больше, чем измеряемый синусоидальный сигнал в 4 или в 5 раз больше, если сигнал цифровой (т.е. всякие разные формы и виды прямоугольных сигналов).

Нижняя и верхняя границы полосы пропускания — это частоты среза сигнала. Сигнал начиная с частоты среза начинает ослабляеться в два (или на 3Дб = log102) и больше раз с ростом частоты.

→ Количество каналов

Многие современные осциллографы могут анализировать сразу несколько сигналов, отображая их на экране одновременно. Обычно прибор содержит от двух до четырех каналов. Тут важно знать как устроен конкретный осциллограф. Дело в том, что часто каналы разделяют между собой какие-нибудь общие ресурсы, что в итоге сказывается на общей производительности прибора при использовании сразу нескольких каналов.

→ Частота дискретизации (Sampling rate)

Эта характеристика касается только цифровых осциллографов. Она определяет сколько раз в ед. времени осциллограф считывает измеряемый сигнал. Для приборов, имеющих более одного канала, частота дискретизации может уменьшиться, если одновременно используется несколько каналов. Это зависит от конструкции конкретного прибора, но в большинстве случаев это работает так. В цифровых осциллографах частота дискретизации неразрывно связана с полосой пропускания. Например, у моего Siglent SDS 1202X-E этот параметр равен 1х10 9 . Чем выше этот параметр, тем лучше, так как осциллограф получает больше информации о сигнале.

Вообще, этот пункт довольно важен. Для того, чтобы понять почему это так следует хотя бы слегка разобраться в процессе аналогово-цифрового преобразования. А значит пришло время достать из пыльного угла теории теорему Котельникова (теорема отсчетов), которую, на мой взгляд, довольно несправедливо иногда называют теоремой Шенона-Котельникова. Котельников доказал её в 1933г, когда Шенону было всего 17, а Найквист так и не доказал этой теоремы. Ладно, сосредоточимся на главном.

Важное значение этой теоремы заключается в том, что если проводить замеры сигнала (например, синусоиды) с частотой хотя бы 2 раза выше частоты этой синусоиды, тогда по этим измерениям можно будет восстановить исходный сигнал с минимальной потерей информации. Т.е. если замерять сигнал через интервал Δt, то мы сможем его гарантированно восстановить.

Таким образом частота дискретизации цифрового осциллографа является одним из факторов, определяющих максимальную частоту сигналов, которые мы сможем без потерь увидеть на экране.

А что если интервал больше необходимого? Тогда получится что-то подобное:

Т.е. после восстановления окажется, что восстановлденный сигнал меньшую частоту, чем измеряемый сигнал. Мы также можем потерять некоторые детали сигнала. Например, краткие всплески. Таким образом получается, что для измерения сигнала 100Мгц требуется прибор с частотой дискретизации хотя бы 200Мгц. Но хватит ли такой частоты выборки на самом деле?

Пока что я рассматривал ситуацию идеального сигнала, который не содержит в себе частотных компонент, превышающих по частоте основную. частоту сигнала. Как например какой-нибудь прямоугольный сигнал, который содержит всебе множество компонент (гармоник) с частотами значительно выше основной частоты сигнала (но меньшей амплитуды). В таком случае т. Котельникова говорит нам, что на практике частота дискретизации должна быть в 4-5 раз выше, чем верхняя граница полосы пропускания осциллографа. А значит для прибора с полосой до 200 Мгц частота дискретизации должна быть больше 800Мгц.

У меня Siglent SDS1202X-E с полосой пропускания 200Мгц и частотой выборки 1000Мгц (1Ггц или 1GSa/s) в режиме 1го канала. Так что, если надо посмотреть сигнал близкий к 200Мгц, то прибор в принципе справится. При условии, что будет использован только один канал. Если же задействовать для измерений сразу два канала, тогда полоса пропускания «сократится» до 100Мгц. Т.е. примерно до этой частоты сохранится соотношение между частотой выборки и частотой сигнала, которое позволит достаточно точно воспроизвести оцифрованный сигнал.

→ Эквивалентная частота дискретизации

Иногда не хватает реальной частоты дискретизации. Например, когда измеряется сигнал с частотой близкой к пределу полосы пропускания, а реальная частота дискретизации уже не соответствует условиям т. Котельникова. Тогда вступает в бой эквивалентная дискретизация. По факту, это чисто технический трюк, когда итоговая картинка конструируется на основе нескольких последовательных измерений. Но при этом каждое последующее измерение сигнала слегка смещено от предыдущего, чтобы получить больше точек для восстановления исходного сигнала.

Таким образом, если ты измеряешь сигнал 200МГц на осциллографе с полосой до 200МГц и частотой дискретизации 1 миллиард выборок в сек (1GSa/s), то тогда на один период сигнала ты получишь всего 5 измерений. В принципе, из т. Котельникова следует, что этого должно хватить, но для лучшей детализации лучше включить эквивалентную дискретизацию и тогда ты получишь вместо 1GSa/s уже 2 GSa/s (хоть и чисто алгоритмическим путем)

Более подробно о эквивалетной дискретизации и джиттере синхронизации вот в этой неплохой статье

→ Глубина памяти

Цифровые осциллограф по праву называются запоминающими (DSO = Digital Storage Oscilloscope), так как запоминают измеренный сигнал. Точнее они сохраняют во временной памяти измеренные значения сигнала в отдельные моменты времени. На что влияет данный параметр? Чем больше глубина памяти, тем выше частота дискретизации по мере снижения скорости развертки – время/дел. Дело в том, что ниже скорость развертки, тем больше измеренных значений осциллографу приходится сохранять у себя в памяти для последующей обработки и отображении на экране. Так что в целом, чем больше глубина памяти, тем лучше.

Однако, и здесь есть особый случай. При измерении на медленных значениях развертки может страдать скорость обновления осциллограм на экране, а также прибор может «подтормаживать», медленно реагируя на управление. Поэтому следует внимательно смотреть руководства и отзывы на желаемую модель прибора перед тем, как его купить.
Довольна подробная статья по этой теме от Agilent Technologies

→ Cкорость обновления сигналов на экране

Чем выше у прибора скорость обновления сигналов на экране, тем меньше у него величина мертвого времени, т.е. времени, которое требуется на обработку захваченных данных перед тем, как они будут выведены на экран. Понятно, что чем оно меньше, тем быстрее будут обновляться осциллограммы на экране цифрового осциллографа. Тем выше вероятность, что осциллограф захватит и вовремя покажет на экране какую-нибудь аномалию в сигнале. Конечно, в нашей радиолюбительской жизни это может и не играет особой роли, но тем не менее параметр довольно важный.

→ Максимальное входное напряжение

Любая деталь или цепь имеет предельно-допустимое напряжение. Осциллограф не исключение. Если подать на его вход (не приняв доп. мер) напряжение, которое превышает максимально допустимое, то есть высокий шанс того, что прибор юудет поврежден.

Для моего прибора максимальное напряжение в режиме щупа 1:1 равняется 40 вольт, а в режиме 1:10 около 400. Но, я бы не стал лезть щупом в цепь с напряженим 400В без доп. защиты и себя и прибора. Электричество шуток не любит и премию Дарвина может выписать в милисекунду =)

В этой вводной статье я хотел показать, что ничего страшного в цифровых осциллографах нет, но для того чтобы эффективно их использовать в своей домашней лаборатории следует понимать как они устроены, идеи, на основе которых они созданы, а также понимать какие характеристики прибора являются существенными. На что следует смотреть при покупке осциллографа. В следующей части я продолжу рассказ о цифровых осциллографах.

/blog/tsifrovoj-ostsillograf-dlya-nachinayuschih/ Еще 5-6 лет назад большинство радиолюбителей (а некоторые и по сей день) пользовались приборами, которые остались ещё от СССР. В свое время это были замечательные приборы со своими плюсами и минусами. Но СССР уже нет более четверти века, а технологии продолжали развиваться, совершенствоваться и дешеветь. Теперь у нас есть возможность пользоваться современными цифровыми приборами с превосходными характеристиками. 2017-10-13 2017-11-23 цифровой осциллограф, частота дискретизации

Большой радиолюбитель и конструктор программ

Благодаря достижениям электроники у нас есть компьютеры, планшеты, смартфоны и другая популярная техника. Я создал этот сайт для популяризации радиолюбительства. Подписывайтесь на блог, рассылку и группу в ВК: vk.com/mp16a!

  • Основы электроники
    • Компоненты
    • Ликбез
    • Пошаговое изучение
    • Аналоговая схемотехника
    • Цифровая схемотехника
    • Книги для начинающих
    • Книги для продвинутых
    • Другие
    • Уроки для начинающих
    • Паяльные прилады
    • Измерительные приборы
    • Закрома Родины
    • Рисовалки печатных плат
    • Симуляторы схем
    • Устройство и принципы работы
    • Программаторы
    • Алгоритмы для МК
    • Распиновки
    • Arduino и прочие
    • Простые схемы
    • Любительские истории
    • Радиолюбительские технологии
    • Схемы усилителей
    • Схемы источников питания
    • Схемы на МК

    Как пользоваться осциллографом

    Как пользоваться осциллографом

    В статье «Электронный осциллограф — устройство, принцип работы» вкратце было рассказано об этом универсальном приборе. Приведенных сведений достаточно для того, чтобы сделать процесс измерений осознанным, но в случае ремонта столь сложного прибора понадобятся более глубокие знания, ведь схемотехника электронных осциллографов весьма разнообразна и достаточно сложна.

    Чаще всего в распоряжении начинающего радиолюбителя оказывается однолучевой осциллограф, но освоив приемы пользования таким прибором, не составит труда перейти на двухлучевой или цифровой осциллограф.

    На рисунке 1 показан достаточно простой и надежный осциллограф С1-101, имеющий настолько малое количество ручек, что запутаться в них абсолютно невозможно. Обратите внимание, что это не какой-нибудь осциллограф для школьных уроков физики, именно таким пользовались на производстве всего лишь лет двадцать назад.

    Питание осциллографа не только 220В. Возможно питание от источника постоянного тока 12В, например автомобильного аккумулятора, что позволяет пользоваться прибором в полевых условиях.

    Осциллограф С1-101

    Рисунок 1. Осциллограф С1-101

    Вспомогательные регулировки

    На верхней панели осциллографа расположены ручки регулирования яркости и фокусировки луча. Их назначение понятно без объяснений. На передней панели находятся все остальные органы управления.

    Два регулятора, обозначенные стрелками, позволяют регулировать положение луча по вертикали и горизонтали. Это позволяет более точно совмещать изображение сигнала на экране с координатной сеткой для улучшения отсчета делений.

    Нулевой уровень напряжения находится на центральной линии вертикальной шкалы, что позволяет наблюдать двухполярный сигнал без постоянной составляющей.

    Для исследования однополярного сигнала, например цифровых схем, луч лучше переместить на нижнее деление шкалы: получится одна вертикальная шкала из шести делений.

    На передней панели находятся также тумблер включения питания и индикатор включения.

    Усиление сигнала

    Переключателем «V/дел» устанавливается чувствительность канала вертикального отклонения. Усиление канала Y калиброванное, изменяется с шагом 1, 2, 5, плавной регулировки чувствительности нет.

    Вращением этого переключателя следует добиться, чтобы размах исследуемого импульса был не менее 1 деления вертикальной шкалы. Только тогда можно добиться устойчивой синхронизации сигнала. Вообще следует стремиться, получить размах сигнала по возможности больше, до тех пор, пока он не вышел за пределы координатной сетки. В таком случае точность измерений возрастает.

    В общем случае рекомендация по выбору усиления может быть такой: выкрутить переключатель против часовой стрелки до положения 5V/дел, после чего вращать ручку по часовой стрелке до тех пор, пока размах сигнала на экране не станет таким, как было рекомендовано в предыдущем абзаце. Это как в случае с мультиметром: если величина измеряемого напряжения неизвестна начинать измерения с самого высоковольтного диапазона.

    Самое последнее по часовой стрелке положение переключателя чувствительности по вертикали обозначено черным треугольником с надписью «5ДЕЛ». В этом положении на экране возникают прямоугольные импульсы размахом 5 делений, частота импульсов 1 КГц. Назначение этих импульсов – проверка и калибровка осциллографа. В связи с этими импульсами вспоминается несколько комичный случай, который можно рассказать в качестве анекдота.

    Пришел как-то к нам в мастерскую один товарищ и попросил воспользоваться осциллографом для налаживания какой-то самопальной конструкции. После нескольких дней творческих мучений слышим от него такой возглас: «Эх ты, и питание выключил, а импульсы-то какие хорошие!». Оказалось, что по незнанию он просто включил калибровочные импульсы, которые никакими ручками на передней панели не управляются.

    Открытый и закрытый вход

    Непосредственно под переключателем чувствительности находится трехпозиционный переключатель режимов работы, которые часто называют «открытый вход» и «закрытый». В крайнем левом положении этого переключателя возможно измерение постоянного и переменного напряжений с постоянной составляющей.

    В правом положении вход усилителя вертикального отклонения включается через конденсатор, который не пропускает постоянную составляющую, зато можно увидеть переменную, даже если постоянная составляющая находится далеко от 0В.

    В качестве примера использования закрытого входа можно привести такую распространенную практическую задачу, как измерение пульсаций источника питания: выходное напряжение источника 24В, а пульсации не должны превышать 0,25В.

    Если предположить, что напряжение 24В при чувствительности канала вертикального отклонения 5В/дел. займет почти пять делений шкалы (ноль придется устанавливать на самую нижнюю линию вертикальной шкалы), то луч взлетит под самый верх, и пульсации в десятые доли вольта будут практически незаметны.

    Чтобы точно измерить эти пульсации достаточно перевести осциллограф в режим закрытого входа, поместить луч в центр вертикальной шкалы и выбрать чувствительность 0,05 или 0,1В/дел. В таком режиме замер пульсаций будет достаточно точным. Следует заметить, что постоянная составляющая может быть достаточно большой: закрытый вход рассчитан на работу с постоянным напряжением до 300В.

    В среднем положении переключателя измерительный щуп просто ОТКЛЮЧАЕТСЯ от входа усилителя Y, что дает возможность выставить положение луча, не отключая щуп от источника сигнала.

    В некоторых ситуациях это свойство достаточно полезно. Самое интересное, что это положение отмечено на панели осциллографа значком общего провода, земли. Создается впечатление, что измерительный щуп соединяется с общим проводом. И что будет тогда?

    В некоторых моделях осциллографов переключатель режима входа не имеет третьего положения, это просто кнопка или тумблер, переключающий режимы открытый/закрытый вход. Важно, что в любом случае такой переключатель есть.

    Чтобы предварительно оценить работоспособность осциллографа достаточно коснуться пальцем сигнального (иногда говорят горячего) конца измерительного щупа: на экране должна появиться сетевая наводка в виде размытого луча. Если частота развертки близка к частоте сети, появится размытая, рваная и лохматая синусоида. При касании пальцем «земляного» конца наводок на экране, естественно, не будет.

    Вот тут можно вспомнить один из способов проверки конденсаторов на обрыв: если взять в руку исправный конденсатор и коснуться им горячего конца, то на экране появится та же лохматая синусоида. Если конденсатор в обрыве, то никаких изменений на экране не произойдет.

    Управление разверткой

    Переключателем «Время/дел.» устанавливается длительность развертки. При наблюдении периодического сигнала вращением этого переключателя следует добиться, чтобы на экране показывался один или два периода сигнала.

    Управление разверткой

    Ручка синхронизации развертки осциллографа С1-101 обозначена всего одним словом «Уровень». У осциллографа С1-73 дополнительно к этой ручке имеется ручка «стабильность» (некоторая особенность схемы развертки), у некоторых осциллографов эта же ручка называется просто «СИНХР». О пользовании этой ручкой следует рассказать несколько подробней.

    Как добиться устойчивого изображения сигнала

    При подключении к исследуемой цепи на экране чаще всего может появиться картинка, показанная на рисунке 3.

    Картинка на экране осциллографа

    Для того, чтобы получить устойчивое изображение следует покрутить ручку «Синхронизация», которая на лицевой панели осциллографа С1-101 обозначена как «Уровень». На разных осциллографах почему-то встречаются разные обозначения органов управления, но по сути дела это одна и та же ручка.

    Синхронизация изображения

    Рисунок 4. Синхронизация изображения

    Чтобы из размытого изображения, показанного на рисунке 19 получить устойчивый сигнал достаточно покрутить ручку «СИНХР.» или в нашем случае «уровень». При вращении против часовой стрелки до знака «минус» на экране появится изображение сигнала, в данном случае синусоиды, показанное на рисунке 20а. Синхронизация начинается по падающему фронту сигнала.

    При вращении той же ручки до знака «плюс» та же самая синусоида будет иметь вид, как на рисунке 4б: развертка запускается по восходящему фронту. Первый период синусоиды начинается чуть выше нулевой линии, это сказывается время запуска развертки.

    Если осциллограф имеет линию задержки, то подобного пропадания не будет. Для синусоиды это, может быть, не особо заметно, а вот при исследовании прямоугольного импульса можно лишиться на изображении всего фронта импульса, что в ряде случаев достаточно важно. Особенно при работе с внешней разверткой.

    Работа с внешней разверткой

    Рядом с регулятором «УРОВЕНЬ» находится тумблер, обозначенный как «ВНЕШ/ВНУТР». В положении «ВНУТР» развертка запускается от исследуемого сигнала. Достаточно на вход Y подать исследуемый сигнал и покрутить ручку «УРОВЕНЬ» как на экране появится устойчивое изображение, как было показано на рисунке 4.

    Если упомянутый тумблер установить в положение «ВНЕШ», то получить устойчивое изображение не удастся никаким вращением ручки «УРОВЕНЬ». Для этого надо подать сигнал, по которому будет синхронизироваться изображение на вход внешней синхронизации. Этот вход расположен на белой пластмассовой панели, расположенной справа от входа Y.

    Там же расположены гнезда выхода пилообразного напряжения развертки (используется для управления различными ГКЧ), выход калибровочного напряжения (может использоваться в качестве генератора импульсов) и гнездо общего провода.

    В качестве примера, где может потребоваться работа с внешней разверткой может послужить схема задержки импульса, показанная на рисунке 5.

    Схема задержки импульса на таймере 555

    Рисунок 5. Схема задержки импульса на таймере 555

    При подаче на вход устройства положительного импульса выходной импульс появляется с задержкой, определяемой параметрами RC цепочки, время задержки определяется по формуле, показанной на рисунке. Но по формуле значение определяется весьма приблизительно.

    При наличии двухлучевого осциллографа определить время очень просто: достаточно оба сигнала подать на разные входы и измерить время задержки импульса. А если двухлучевого осциллографа в наличии нет? Вот тут-то и придет на помощь режим внешней развертки.

    Первое, что надо сделать это подать входной сигнал схемы (рис. 5) на вход внешней синхронизации и сюда же подключить вход Y. Затем вращением ручки «УРОВЕНЬ» добиться устойчивого изображения входного импульса, как показано на рисунке 5б. При этом должны соблюдаться два условия: тумблер «ВНЕШ/ВНУТР» установлен в положение «ВНЕШ», а исследуемый сигнал д.б. периодическим, а не однократным, как показано на рис.5.

    После этого надо запомнить положение на экране входного сигнала и подать на вход Y выходной сигнал. Остается только подсчитать требуемую задержку по делениям шкалы. Естественно, что это не единственная схема, где может потребоваться определение времени задержки между двумя импульсами, таких схем великое множество.

    В следующей статье будет рассказано про виды исследуемых сигналов и их параметры, а также про то, как проводить различные измерения с помощью осциллографа.

    • Электронный осциллограф — устройство, принцип работы
    • Как определить параметры неизвестного трансформатора
    • Трансформаторы для УМЗЧ

    Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Практическая электроника, Ремонт бытовой техники

    Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день

    Поделитесь этой статьей с друзьями:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *