Преобразовать фарад в микрофарад (Ф в мкФ):
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ’68 фарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘фарад’ или ‘Ф’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’89 Ф в мкФ‘ или ’71 Ф сколько мкФ‘ или ’17 фарад -> микрофарад‘ или ’80 Ф = мкФ‘ или ’20 фарад в мкФ‘ или ’95 Ф в микрофарад‘ или ’37 фарад сколько микрофарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(22 * 93) Ф’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. Например, такое сочетание может выглядеть следующим образом: ’68 фарад + 204 микрофарад’ или ’84mm x 69cm x 4dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 3,160 493 798 4 × 10 21 . В этой форме представление числа разделяется на экспоненту, здесь 21, и фактическое число, здесь 3,160 493 798 4. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 3,160 493 798 4E+21. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 3 160 493 798 400 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Сколько микрофарад в одном фараде по вертикали
Микрофарад (англ. microfarad ) мкФ — это производная единица измерения электрической емкости в СИ, дольная по отношению к фараду .
Микрофарад (англ. microfarad) мкФ — это производная единица измерения электрической емкости в СИ, дольная по отношению к фараду. Применяется очень часто. Перевод единицы микрофарад: 1 микрофарад = 1 * 10 -6 фарада.
Таблица перевода единицы измерения МкФ, калькулятор онлайн, конвертер
Все Все Другие единицы Другие единицы Производные единицы системы (СИ) Производные единицы системы (СИ) Международная система (СИ) Международная система (СИ)
МкФ в Абфарад | 1 * 10 -15 |
МкФ в Аттофарад | 10 * 10 11 |
МкФ в Гектофарад | 1 * 10 -8 |
МкФ в Гигафарад | 1 * 10 -15 |
МкФ в Декафарад | 1 * 10 -7 |
МкФ в Децифарад | 1 * 10 -5 |
МкФ в Единица емкости СГСМ | 1 * 10 -15 |
МкФ в Единица емкости СГСЭ | 898 755.179 |
МкФ в Килофарад | 1 * 10 -9 |
МкФ в Кулон на вольт | 1 * 10 -6 |
МкФ в Мегафарад | 1 * 10 -12 |
МкФ в Миллифарад | 0.001 |
МкФ в Нанофарад | 1 000 |
МкФ в Пикофарад | 1 000 000 |
МкФ в ПФ | 1 * 10 -21 |
МкФ в Сантифарад | 0.0001 |
МкФ в Статфарад | 898 755.179 |
МкФ в Терафарад | 1 * 10 -18 |
МкФ в Фарад | 1 * 10 -6 |
МкФ в Фемтофарад | 10 * 10 8 |
МкФ в Эксафарад | 1 * 10 -24 |
Наверх страницы МкФ |
Электрическая емкость
1 Во сколько раз изменится емкость проводящего шара радиуса R, если он сначала помещен в керосин (диэлектрическая проницаемость e1=2), а затем в глицерин (диэлектрическая проницаемость e2 = 56,2)?
626. Емкости проводящего шара в керосине и в глицерине
2 Плоский конденсатор имеет емкость С=5 пФ. Какой заряд находится на каждой из его пластин, если разность потенциалов между ними V=1000 В?
Заряд на пластине, заряженной положительно, q=CV= 5нКл.
3 Поверхностная плотность заряда на пластинах плоского вакуумного конденсатора s = 0,3 мкКл/м2. Площадь пластины 5= 100 см2, емкость конденсатора С= 10 пФ. Какую скорость приобретает электрон, пройдя расстояние между пластинами конденсатора?
4 Плоский воздушный конденсатор состоит из трех пластин, соединенных, как показано на рис. 77. Площадь каждой пластины s=100 см2, расстояние между ними d=0,5 см. Найти емкость конденсатора. Как изменится емкость конденсатора при погружении его в глицерин (диэлектрическая проницаемость e = 56,2)?
Конденсатор из трех пластин можно рассматривать как два плоских воздушных конденсатора с емкостью e0S/d каждый, соединенных параллельно (рис. 77). Поэтому общая емкость (без диэлектрика)
При погружении конденсатора в глицерин его емкость
5 Конденсатор состоит из n латунных листов, проложенных стеклянными прокладками толщины d=2 мм. Площади латунного листа и стеклянной прокладки равны S=200 см2, диэлектрическая проницаемость стекла e = 7. Найти емкость конденсатора, если n = 21 и выводы конденсатора присоединены к крайним листам.
6 Маленький шарик, имеющий заряд q=10нКл, подвешен на нити в пространстве плоского воздушного конденсатора, круглые пластины которого расположены горизонтально. Радиус пластины конденсатора R=10см. Когда пластинам конденсатора сообщили заряд Q = 1 мкКл, сила натяжения нити увеличилась вдвое. Найти массу шарика.
7 Между вертикальными пластинами плоского воздушного конденсатора подвешен на нити маленький шарик, несущий заряд q=10 нКл. Масса шарика m = 6 г, площадь пластины конденсатора S = 0,1 м2. Какой заряд Q надо сообщить пластинам конденсатора, чтобы нить отклонилась от вертикали на угол a = 45°?
Напряженность электрического поля внутри плоского конденсатора связана с зарядом Q на его пластинах соотношением
На шарик внутри конденсатора действуют сила тяжести mg, сила натяжения нити Т и сила F=qE со стороны электрического поля (рис. 335). При равновесии шарика в пространстве конденсатора (см. задачу 591) qF=mg tgj, или
8 Какой заряд пройдет по проводам, соединяющим пластины плоского воздушного конденсатора и источник тока с напряжением V=6,3 В, при погружении конденсатора в керосин (диэлектрическая проницаемость e = 2)? Площадь пластины конденсатора S=180 см2, расстояние между пластинами d=2 мм.
Если q1 и q2 — заряды на пластинах до и после погружения конденсатора в керосин, то
9 Плоский воздушный конденсатор зарядили до разности потенциалов Vo = 200 В. Затем конденсатор отключили от источника тока. Какой станет разность потенциалов между пластинами, если расстояние между ними увеличить от dо = 0,2 мм до d=0,7 мм, а пространство между пластинами заполнить слюдой (диэлектрическая проницаемость e = 7)?
Заряд на пластинах не изменяется, поэтому
10 Пластины плоского воздушного конденсатора присоединены к источнику тока с напряжением V=600 В. Площадь квадратной пластины конденсатора So = 100 см2, расстояние между пластинами d=0,1 см. Какой ток будет проходить по проводам при параллельном перемещении одной пластины вдоль другой со скоростью v = 6 см/с (рис. 78)?
При перемещении пластины емкость конденсатора в данный момент времени определяется той частью площади пластин, по которой они перекрывают друг друга. В моменты времени t1 и t2 площади
где l=10 см-длина стороны пластины. В эти моменты времени конденсатор имеет емкости
а заряды на его пластинах
11 Найти заряд, который нужно сообщить двум параллельно соединенным конденсаторам с емкостями C1 = 2 мкФ и С2=1 мкФ, чтобы зарядить их до разности потенциалов V=20кВ.
Общий заряд параллельно соединенных конденсаторов
12 Два одинаковых плоских конденсатора соединены параллельно и заряжены до разности потенциалов Vо = 6 В. Найти разность потенциалов V между пластинами конденсаторов, если после отключения конденсаторов от источника тока у одного конденсатора уменьшили расстояние между пластинами вдвое.
Решение:
13 Два конденсатора с емкостями С1 = 1 мкФ и С2 = 2мкФ зарядили до разностей потенциалов V1=20B и V2 = 50 В. Найти разность потенциалов V после соединения — конденсаторов одноименными полосами.
Решение:
14 Конденсатор емкости C1 = 20 мкФ, заряженный до разности потенциалов V1 = 100B, соединили параллельно с заряженным до разности потенциалов V1=40 В конденсатором, емкость которого С2 неизвестна (соединили одноименно заряженные обкладки конденсаторов). Найти емкость С2 второго конденсатора, если разность потенциалов между обкладками конденсаторов после соединения оказалась равной V=80 В.
Решение:
15 Конденсатор емкости С1=4мкФ, заряженный до разности потенциалов V1 = 10B, соединен параллельно с заряженным до разности потенциалов V2 = 20 В конденсатором емкости С2 = 6 мкФ (соединили разноименно заряженные обкладки конденсаторов). Какой заряд окажется на пластинах первого конденсатора после соединения?
Заряды конденсаторов до их соединения q1 = C1V1 и q2 = C2V2. После соединения разноименно заряженных обкладок конденсаторов общий заряд q = |q2-q1| = (C1 + C2)V и заряд первого конденсатора где V-разность потенциалов между обкладками конденсаторов после соединения; отсюда
16 Конденсатор, заряженный до разности потен¬циалов V1 = 20 В, соединили параллельно с заряженным до разности потенциалов V2 = 4 В конденсатором емкости С2 = 33 мкФ (соединили разноименно заряженные обкладки конденсаторов). Найти емкость С1 первого конденсатора, если разность потенциалов между обкладками конденсаторов после их соединения V=2 В.
После соединения разноименных обкладок общий заряд q = CV равен разности зарядов q1 = C1V1 и q2 = C2V2 отдельных
конденсаторов, где С=С1 + С2 — общая емкость после соединения. Таким образом,
17 Конденсатор емкости С1 = 1 мкФ, заряженный до разности потенциалов V1 = 100B, соединили с конденсатором емкости С2 = 2 мкФ, разность потенциалов V2 на обкладках которого неизвестна (соединили разноименно заряженные обкладки конденсаторов). Найти разность потенциалов V2, если разность потенциалов между обкладками конденсаторов после соединения оказалась равной V=200 В.
До соединения заряды первого и второго конденсаторов
После соединения разноименных обкладок общий заряд
Двойной знак мы здесь поставили потому, что заранее не известно, какой из зарядов, q2 или q1 больше; отсюда
Решение со знаком минус соответствует случаю, когда знаки зарядов на пластинах первого конденсатора после соединения пластин не меняются, а со знаком плюс-случаю, когда эти знаки становятся обратными. Так как в нашем случае , а величина |V2| должна быть всегда положительной, то существует лишь одно решение-со знаком плюс. В результате |V2| = 350 В.
18 Два проводящих шара с радиусами R1 и R2 расположены так, что расстояние между ними во много раз больше радиуса большего шара. На шар радиуса R1 помещен заряд q. Каковы будут заряды на шарах после соединения их проводником, если второй шар не был заряжен? Емкостью проводника, соединяющего шары, пренебречь.
19 Два проводящих шара с радиусами R1 = 8см и R2 = 20 см, находящихся на большом расстоянии друг от друга, имели электрические заряды q1=40 нКл и q2=— 20 нКл. Как перераспределятся заряды, если шары соединить проводником? Емкостью проводника, соединяющего шары, пренебречь.
Соединение шаров проводником эквивалентно параллельному соединению конденсаторов. После соединения
20 Два проводящих шара с радиусами R1 = 10см и R2 = 5см, заряженных до потенциалов j1=20B и j2 = 10В, соединяются проводником. Найти поверхностные плотности зарядов на шарах s1 и s2 после их соединения. Расстояние между шарами велико по сравнению с их радиусами. Емкостью проводника, соединяющего шары, пренебречь.
Заряды на шарах до и после соединения Общий потенциал шаров после соединения определим из условия сохранения заряда
Заряды на первом и втором шарах после соединения
Поверхностные плотности зарядов на шарах
21 Плоский воздушный конденсатор, заряженный до разности потенциалов Vо = 800 В, соединили параллельно с таким же по размерам незаряженным конденсатором, заполненным диэлектриком. Какова диэлектрическая проницаемость e диэлектрика, если после соединения разность потенциалов между пластинами конденсаторов оказалась равной V=100В?
22 Найти емкость С трех плоских воздушных конденсаторов, соединенных параллельно. Размеры конденсаторов одинаковы: площадь пластины S=314 см2, расстояние между пластинами d=1 мм. Как изменится емкость трех конденсаторов, если пространство между пластинами одного конденсатора заполнить слюдой (диэлектрическая проницаемость e1 = 7), а другого — парафином (диэлектрическая проницаемость e2 = 2)?
Емкость трех конденсаторов без диэлектрика При заполнении двух конденсаторов диэлектриками емкость трех конденсаторов
23 В заряженном плоском конденсаторе, отсоединенном от источника тока, напряженность электрического поля равна Ео. Половину пространства между пластинами конденсатора заполнили диэлектриком с диэлектрической проницаемостью e (толщина диэлектрика равна расстоянию между пластинами). Найти напряженность электрического поля Е в пространстве между пластинами, свободном от диэлектрика.
Если d-расстояние между пластинами и С0-емкость конденсатора без диэлектрика, то разность потенциалов между пластинами конденсатора (без диэлектрика) и заряд на пластинах Конденсатор, половина которого заполнена диэлектриком, можно рассматривать как два соединенных параллельно конденсатора (рис. 341), причем один не содержит диэлектрика и имеет емкость а в другом все пространство между пластинами заполнено диэлектриком, и поэтому его емкость Полная емкость конденсатора, половина которого заполнена диэлектриком, При отключенном источнике тока заряд на пластинах сохраняется, поэтому разность потенциалов между пластинами V=q/C, и напряженность электрического поля в пространстве между пластинами, свободном от диэлектрика,
24 Два последовательно соединенных конденсатора с емкостями C1 = 1 мкФ и С2 = 3 мкФ подключены к источнику тока с напряжением V =220 В. Найти напряжение на каждом конденсаторе.
Если V1 и V2 — напряжения на первом и втором конденсаторах, то V= V1 + V2, а заряды на них одинаковы и равны
При последовательном соединении конденсаторов на конденсаторе меньшей емкости напряжение больше, чем на конденсаторе большей емкости.
25 Два последовательно соединенных конденсатора с емкостями C1 = 1 мкФ и С2 = 2 мкФ подключены к источнику тока с напряжением V =900 В. Возможна ли работа такой схемы, если напряжение пробоя конденсаторов Vnp = 500 В?
Напряжения на первом и втором конденсаторах (см. задачу 24). Работать при указанном в условии задачи напряжении пробоя конденсаторов нельзя, ибо произойдет пробой первого, а затем и второго конденсаторов.
26 Два последовательно соединенных конденсатора подключены к источнику тока с напряжением V= 200 В (рис. 79). Один конденсатор имеет постоянную емкость C1 = 0,5 мкФ, а другой — переменную емкость С2 (от Cmin = 0,05 мкФ до Сmах = 0,5 мкФ). В каких пределах изменяется напряжение на переменном конденсаторе при изменении его емкости от минимальной до максимальной?
При изменении емкости переменного конденсатора С2 от Cmin до Сmax, напряжение на нем V изменяется в пределах (см. задачу 24)
27 При последовательном соединении трех различных конденсаторов емкость цепи Со = 1 мкФ, а при параллельном соединении емкость цепи С=11мкФ. Найти емкости конденсаторов С2 и С3, если емкость конденсатора С1 = 2 мкФ.
28 При последовательном соединении трех различных конденсаторов емкость цепи Со = 0,75 мкФ, а при параллельном соединении емкость цепи С = 7 мкФ. Найти емкости конденсаторов С2 и С3 и напряжения на них V2 и V3 (при последовательном соединении), если емкость конденсатора C1 = 3 мкФ, а напряжение на нем V1=20B.
При последовательном соединении конденсаторов имеем
Из этих уравнений находим
Согласно теореме Виета С2 и С3 должны быть корнями квадратного уравнения
Решая его, найдем
Заряды на всех конденсаторах при последовательном соединении равны между собой:
29 Три последовательно соединенных конденсатора с емкостями С1 = 100пФ, С2 = 200 пФ, С3 = 500 пФ подключены к источнику тока, который сообщил им заряд q=10нКл. Найти напряжения на конденсаторах V1, V2 и V3, напряжение источника тока V и емкость всех конденсаторов Со.
При последовательном соединении конденсаторов заряд каждого конденсатора равен q, поэтому
Напряжение источника тока равно полному напряжению на всех конденсаторах:
Так как при последовательном соединении
то
30 Три последовательно соединенных конденсатора с емкостями С1=0,1мкФ, С2 = 0,25 мкФ и С3 = 0,5 мкФ подключены к источнику тока с напряжением V =32 В. Найти напряжения V1, V2 и V3 на конденсаторах.
31 Два одинаковых воздушных конденсатора емкости С=100пФ соединены последовательно и подключены к источнику тока с напряжением V= 10 В. Как изменится заряд на конденсаторах, если один из них погрузить в диэлектрик с диэлектрической проницаемостью e= 2?
При последовательном соединении конденсаторов заряды на конденсаторах равны. До погружения одного из них в диэлектрик заряд на каждом конденсаторе
после погружения одного из них в диэлектрик заряды конденсаторов будут
Изменение заряда на конденсаторах
32 Два плоских воздушных конденсатора с одинаковыми емкостями соединены последовательно и подключены к источнику тока. Пространство между пластинами одного из конденсаторов заполняют диэлектриком с диэлектрической проницаемостью e = 9. Во сколько раз изменится напряженность электрического поля Е в этом конденсаторе?
Первоначальная напряженность электрического поля в каждом конденсаторе
где d-расстояние между пластинами конденсатора. После заполнения одного конденсатора диэлектриком напряженность электрического поля в нем
33 Решить предыдущую задачу для случая, когда конденсаторы после зарядки отключаются от источника тока.
После отключения конденсатора от источника тока и заполнения его диэлектриком заряд на нем не изменяется:
Напряженность электрического поля в конденсаторе, заполненном диэлектриком,
34 Два плоских воздушных конденсатора с одинаковыми емкостями С=10пФ соединены последовательно. Насколько изменится емкость конденсаторов, если пространство между пластинами одного из них заполнить диэлектриком с диэлектрической проницаемостью e = 2?
Изменение емкости соединенных конденсаторов
35 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d введена параллельно обкладкам проводящая пластинка, размеры которой равны размерам обкладок, а ее толщина намного меньше d. Найти емкость конденсатора с проводящей пластинкой, если пластинка расположена на расстоянии l от одной из обкладок конденсатора.
После введения пластинки образовалось два последовательно включенных конденсатора с емкостями
(рис. 342). Их общую емкость определим из соотношения
где С-первоначальная емкость конденсатора. Таким образом, после введения пластинки при любом ее положении С0 = С.
36 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d введена параллельно обкладкам проводящая пластинка, размеры которой равны размерам обкладок, а толщина dп = d/3
Введение проводящей пластинки между обкладками конденсатора приводит к образованию двух последовательно включенных конденсаторов с расстояниями между обкладками d1 и d2 и емкостями
(рис.343). Их общую емкость находим из соотношения
При -первоначальная емкость конденсатора.
37 Плоский воздушный конденсатор заряжен до разности потенциалов Vo = 50 В и отключен от источника тока. После этого в конденсатор параллельно обкладкам вносится проводящая пластинка толщины dп= 1 мм. Расстояние между обкладками d=5 мм, площади обкладок и пластинки одинаковы. Найти разность потенциалов V между обкладками конденсатора с проводящей пластинкой.
Емкости конденсатора до и после внесения проводящей пластинки толщины dn (см. задачу 36)
Заряд конденсатора, отключенного от источника тока, не изменяется:
отсюда разность потенциалов между обкладками конденсатора после внесения проводящей пластинки
38 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d вводится параллельно обкладкам диэлектрическая пластинка толщины d1
Если в конденсатор ввести тонкую проводящую пластинку, параллельную его обкладкам, то на ее поверхности появятся равные заряды противоположного знака. При этом электрическое поле в конденсаторе не изменится и емкость конденсатора останется прежней (ср. с задачей 35). Емкость конденсатора с диэлектрической пластинкой можно найти, предположив, что на поверхностях этой пластинки нанесены тонкие проводящие слои. В этом случае образуются три последовательно соединенных конденсатора с емкостями
где d2 и d3 — расстояния между поверхностями диэлектрической пластинки и обкладками, причем d2 + d3 = d-d1 (рис. 344). Общая емкость конденсатора С определяется из формулы
39 Пространство между обкладками плоского конденсатора заполнено тремя диэлектрическими пластинками равной толщины d=2 мм из стекла (e1=7), слюды (e2 = 6) и парафина (e3 = 2). Площади обкладок и пластинок одинаковы и равны S=200 см2. Найти емкость С такого конденсатора.
40 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d внесена параллельно обкладкам диэлектрическая пластинка с диэлектрической проницаемостью e = 2, которая расположена так, как показано на рис. 80. Во сколько раз изменится емкость конденсатора при внесении в него пластинки?
Представим конденсатор с диэлектрической пластинкой в виде двух параллельно включенных конденсаторов, первый из которых не содержит диэлектрика и имеет емкость
— первоначальная емкость конденсатора, а во втором площадь обкладки равна площади диэлектрической пластинки S/2 (рис. 345, а). Затем второй конденсатор представим в виде двух последовательно соединенных конденсаторов, один из которых не содержит диэлектрика и имеет емкость С2 = С0, а другой полностью заполнен диэлектриком и имеет емкость (рис. 345, б). Емкость этих двух конденсаторов
Емкость всех трех конденсаторов
Здесь мы считаем, что размеры обкладок намного больше расстояния между ними, и поэтому пренебрегаем краевыми эффектами, т. е. отличием электрического поля на краях обкладок и диэлектрической пластинки от однородного. В противном случае емкость первоначального конденсатора не равна емкости трех конденсаторов, изображенных на рис. 345, б.
41 Найти общую емкость конденсаторов, включенных по схеме, изображенной на рис. 81. Емкости конденсаторов С1 = 3 мкФ, С2 = 5 мкФ, С3 = 6 мкФ и С4 = 5 мкФ.
42 Найти общую емкость конденсаторов, включенных по схеме, изображенной на рис. 82. Емкость каждого конденсатора равна С0.
Схема включения, представленная на рис. 82, эквивалентна схеме, изображенной на рис. 346, а. Ввиду равенства емкостей всех конденсаторов разность потенциалов между точками а и b равна нулю, конденсатор С4 всегда не заряжен, и схема упрощается (рис. 346, б). Общая емкость конденсаторов
43 Найти разность потенциалов между точками а и b в схеме, изображенной на рис. 83. Емкости конденсаторов С1=0,5мкФ и С2=1мкФ, напряжения источников тока V1=2 В и V2 = 3 В.
44 Бумажный конденсатор емкости C1 = 5 мкФ и воздушный конденсатор емкости С2 = 30 пФ соединены последовательно и подключены к источнику тока с напряжением V=200 В. Затем воздушный конденсатор заливается керосином (диэлектрическая проницаемость e = 2). Какой заряд q протечет при этом по цепи?
45 Два одинаковых плоских воздушных конденсатора соединены последовательно и подключены к источнику тока. Во сколько раз изменится напряженность электрического поля в одном из них, если другой заполнить диэлектриком с диэлектрической проницаемостью e = 4?
Вначале разность потенциалов между обкладками каждого конденсатора была V1 = V/2, где V-напряжение источника тока. После заполнения одного из них диэлектриком
где q-заряд на каждой обкладке, a
-разности потенциалов между обкладками до и после заполнения конденсатора диэлектриком. Так как напряженность электрического поля в конденсаторе пропорциональна разности потенциалов между его обкладками, то отношение напряженностей до и после заполнения
46 На точечный заряд, находящийся внутри плоского конденсатора, имеющего заряд q, действует сила F. На какую величину DF изменится эта сила, если конденсатор в течение времени t заряжать током I?
47 Конденсаторы, соединенные по схеме, изображенной на рис. 84, подключают в точках а и b к источнику тока с напряжением V =80 В, а затем отключают от него. Найти заряд, который протечет черезvточку а, если замкнуть ключ К. Емкости конденсаторовvС1 = С2 = С3 = С0 и С4 = ЗС0, где С0=100мкФ.
После подключения к источнику тока заряд каждого конденсатора в последовательной цепи amb равен q’ = С’V, где С’ = С1С3/(С1+С3)-емкость цепи amb, а заряд каждого конденсатора в. последовательной цепи anb равен q» = C»V, где С» = С2С4/(С2+С4)-емкость цепи anb. Разность потенциалов между точками а и т равна V’= q’/C1 = C3V/(C1+C3); разность потенциалов между точками а я n равна V»=q»/C2=C4V/(C2+C4). После отключения от источника тока схему можно рассматривать как две параллельные цепи из последовательно включенных конденсаторов (man из C1 и С2 и mbn из С3 и С4), заряженных до разности потенциалов
При замыкании ключа К разность потенциалов между точками m и n становится равной нулю. Цепь man разряжается, и через точку а протекает заряд q = CV, где C=C1C2/(C1+C2)-емкость этой цепи. Таким образом,
48 Четыре конденсатора соединены по схеме, изображенной на рис. 85. Полюсы источника тока можно присоединить либо к точкам а и b, либо к точкам m и n. Емкости конденсаторов С1 = 2 мкФ и С2 = 5 мкФ. Найти емкости конденсаторов Сх и Су, при которых заряды на обкладках всех конденсаторов по модулю будут равны между собой независимо от того, каким способом будет присоединен источник тока.
49 Два одинаковых плоских воздушных конденсатора вставлены друг в друга так, что расстояние между любыми двумя соседними пластинами d=5 мм. Каждый конденсатор соединен с источником тока, напряжение которого V=100В, одна из пластин каждого конденсатора заземлена (рис. 86). Какова напряженность электрического поля Е между пластинами а и b?
Относительно земли пластина а имеет потенциал а пластина b-потенциал Разность потенциалов между ними и напряженность электрического поля
50 Найти поверхностную плотность заряда на пластинах плоского конденсатора, если электрон, не имевший начальной скорости, пройдя путь от одной пластины к другой, приобретает скорость м/с. Расстояние между пластинами d=3 см.
51 Конденсатору емкости С = 2 мкФ сообщен заряд q=1 мКл. Обкладки конденсатора соединили проводником. Найти количество теплоты Q, выделившееся в проводнике при разрядке конденсатора, и разность потенциалов между обкладками конденсатора до разрядки.
По закону сохранения энергии количество теплоты, выделившееся при разрядке конденсатора, равно электрической энергии.
запасенной в конденсаторе:
Разность потенциалов между обкладками конденсатора до разрядки V=q/C=500 В.
52 При разрядке батареи, состоящей из n = 20 параллельно включенных конденсаторов с одинаковыми емкостями С = 4 мкФ, выделилось количество теплоты Q=10 Дж. До какой разности потенциалов были заряжены конденсаторы?
Энергия, запасенная в n конденсаторах,
отсюда разность потенциалов
53 Какое количество теплоты Q выделится при заземлении заряженного до потенциала j = 3000 В шара радиуса R = 5 см?
Вся электрическая энергия заряженного шара перейдет в теплоту:
54 Какой заряд q сообщен шару, если он заряжен до потенциала j=100 В, а запасенная им электрическая энергия W = 2,02 Дж?
Электрическая энергия, запасенная шаром,
55 Найти количество теплоты Q, выделившееся при соединении верхних незаземленных обкладок конденсаторов с емкостями С1 = 2 мкФ и С2 = 0,5 мкФ (рис. 87). Разности потенциалов между верхними обкладками конденсаторов и землей V1=100 В и V2=-50В.
До соединения конденсаторов их заряды
а их общая энергия
После соединения конденсаторов их полный заряд
где V-разность потенциалов между верхними обкладками и землей; отсюда
После соединения верхних обкладок конденсаторов их общая энергия
Выделившееся количество теплоты равно разности начальной и конечной энергий конденсаторов:
При V1 = V2 нет перехода зарядов, поэтому теплота не выделяется. Если потенциалы V1 и V2 имеют одинаковые знаки, то теплоты выделяется меньше, чем в случае разных знаков потенциалов.
56 Найти количество теплоты Q, выделившееся при соединении одноименно заряженных обкладок конденсаторов с емкостями С1 = 2мкФ и С2 = 0,5 мкФ. Разности потенциалов между обкладками конденсаторов V1 = 100 В и V2 = 50 В.
Выделившееся количество теплоты равно разности энергий конденсаторов до и после соединения (см. задачу 55):
Дополнительно по теме
2 Электрическое поле
- Напряженность электрического поля
- Потенциал. Работа электрических сил
- Электрическая емкость
3 Постоянный электрический ток
- Закон Ома для участка цепи. Сопротивление проводников
- Последовательное и параллельное соединения проводников. Добавочные сопротивления и шунты
- Закон Ома для полной (замкнутой) цепи
- Последовательное и параллельное соединения источников тока. Правила Кирхгофа
Сколько фарад в микрофараде?
Говорят емкость земли 2 Фарады. А микрофарада это умножить на 10 в — 6 степени. Ферштейн?
1 фарада это 1000000 микрофарад.
мили- 10 в минус 3
микро- 10 в минус 6
нано- 10 в минус 9
пико- 10 в минус 12
Источник: Я
РонМыслитель (8896) 15 лет назад
Согласен.
Вот, только, источник не ты)), а др. греки. )))
DМастер (1016) 9 лет назад
Рон Мыслитель, Написал-то от себя.. .by the way, можно и не тыкать
в -6 степени
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.