Определить силу тока в катушке (21 мая 2010)
Катушка длиной l = 50 см с поперечным сечением S = 40 см 2 состоит из одного ряда плотно прилегающих друг к другу витков провода диаметром d = 0,60 мм. Напряжение на зажимах катушки U = 12 В. Определить силу тока I в катушке, если за время t = 0,40 мс в проводе выделяется количество теплоты, равное энергии магнитного поля катушки. Поле внутри катушки считать однородным.
(«Электричество. Магнетизм. Колебания». Домашние задания по курсу общей физики за второй семестр. Учебное пособие под общей редакцией профессора Б. А. Федорова.)
- магнитное поле
- электродинамика
- количество теплоты
- задачи с подсказками
- версия для печати
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
Комментарии
Опубликовано 21 мая, 2010 — 20:28 пользователем Успех
Энергия магнитоного поля катушки:
где L — индуктивность катушки, I — сила тока.
где Q — выделенное количество теплоты (закон Джоуля-Ленца), R — сопротивление проводника.
По условию, Q = W
⇒ I 2 Rt = LI 2 /2,
сокращаем на I 2 ,
получаем Rt = L/2,
где μo = 1,26 × 10 −6 H/A 2 ,
N — число витков в катушке; S — площадь поперечного сечения проводника; l — длина проводника.
где d — диаметр провода.
⇒ в формулу L = μoN 2 S / l вместо N подставим l/d.
Выходит L = μolS/d 2 .
Вернёмся к формуле Rt = L/2,
Сила тока равна:
Формула готова! Осталось подставить вместо букв числа.
I = 2 × 12 × 0,6 × 10 −3 × 0,4 × 10 −3 / (1,26 × 10 −6 × 5 × 10 -2 × 40 × 10 −4 ) = 14 А.
Ответ: I = 14 A.
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
Опубликовано 22 мая, 2010 — 10:34 пользователем Dzaurov
не пойму N = l/d, т.е. длину катушки делим на диаметр проводника и получаем количество витков?
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
Определить силу тока в катушке?
Катушка, содержащая 75 м константанового провода диаметром 0,1 мм, подключена к источнику электрической энергии напряжением 12 В.
ро = 4,7 * 10^ –7 Ом*м
какая сила тока в катушке?
Лучший ответ
По формуле сопротивления
R=p*L / S. ( p(po)-удельное сопротивление, L-длина провода, S-площадь поперечного сечения) .
По закону Ома для участка цепи:
I= U / R. ( I -сила тока, U-напряжение) Подставим:
I=U*S / p*L. ( площадь сечения S=П*d^2 / 4 ( площадь круга) d- диаметр ( перевести в систему СИ) .
I=U*П*d^2 / p*L*4. Подставить числа и посчитать.
Остальные ответы
Сначала вычисляем по проводимости -сопротивление. затем по закону Ома. I=U\R.
Источник: Куда уж проще.
SylarПрофи (756) 12 лет назад
Катушка индуктивности в цепи переменного тока
Рассмотрим цепь, содержащую в себе катушку индуктивности , и предположим, что активное сопротивление цепи, включая провод катушки, настолько мало, что им можно пренебречь. В этом случае подключение катушки к источнику постоянного тока вызвало бы его короткое замыкание, при котором, как известно, сила тока в цепи оказалась бы очень большой.
Иначе обстоит дело, когда катушка присоединена к источнику переменного тока. Короткого замыкания в этом случае не происходит. Это говорит о том. что катушка индуктивности оказывает сопротивление проходящему по ней переменному току .
Каков характер этого сопротивления и чем оно обусловливается?
Чтобы ответить ил этот вопрос, вспомним явление самоиндукции. Всякое изменение тока в катушке вызывает появление в ней ЭДС самоиндукции, препятствующей изменению тока. Величина ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки и скорости изменения тока в ней. Но так как переменный ток непрерывно изменяется, то непрерывно возникающая в катушке ЭДС самоиндукции создает сопротивление переменному току.
Для уяснения процессов, происходящих в цепи переменного тока с катушкой индуктивности, обратимся к графику. На рисунке 1 построены кривые линии, характеризующие соответственно тик в цепи, напряжение на катушке и возникающую в ней ЭДС самоиндукции. Убедимся в правильности произведенных па рисунке построений.
Цепь переменного тока с катушкой индуктивности
С момента t = 0, т. е. с начального момента наблюдения за током, он начал быстро возрастать, но по мере приближения к своему максимальному значению скорость нарастания тока уменьшалась. В момент, когда ток достиг максимальной величины, скорость его изменения на мгновение стала равной нулю, т. е. прекратилось изменение тока. Затем ток начал сначала медленно, а потом быстро убывать и по истечении второй четверти периода уменьшился до нуля. Скорость же изменения тока за эту четверть периода, возрастая от пуля, достигла наибольшей величины тогда, когда ток станет равным нулю.
Рисунок 2. Характер изменений тока во времени в зависимости от величины тока
Из построений на рисунке 2 видно, что при переходе кривой тока через ось времени увеличение тока за небольшой отрезок времени t больше, чем за этот же отрезок времени, когда кривая тока достигает своей вершины.
Следовательно, скорость изменения тока уменьшается по мере увеличения тока и увеличивается по мере его уменьшения, независимо от направления тока в цепи.
Очевидно, и ЭДС самоиндукции в катушке должна быть наибольшей тогда, когда скорость изменения тока наибольшая, и уменьшаться до нуля, когда прекращается его изменение. Действительно, на графике кривая ЭДС самоиндукции e L за первую четверть периода, начиная от максимального значения, упала до нуля (см. рис. 1).
На протяжении следующей четверти периода ток от максимального значения уменьшался до нуля, однако скорость его изменения постепенно возрастала и была наибольшей в момент, когда ток стал равным нулю. Соответственно и ЭДС самоиндукции за время этой четверти периода, появившись вновь в катушке, постепенно возрастала и оказалась максимальной к моменту, когда ток стал равным нулю.
Однако направление свое ЭДС самоиндукции изменила на обратное, так как возрастание тока в первой четверти периода сменилось во второй четверти его убыванием.

Цепь с индуктивностью
Продолжив дальше построение кривой ЭДС самоиндукции, мы убеждаемся в том, что за период изменения тока в катушке и ЭДС самоиндукции совершит в ней полный период своего изменения. Направление ее определяется законом Ленца: при возрастании тока ЭДС самоиндукции будет направлена против тока (первая и третья четверти периода), а при убывании тока, наоборот, совпадать с ним по направлению (вторая и четвертая четверти периода).
Таким образом, ЭДС самоиндукции, вызываемая самим переменным током, препятствует его возрастанию и , наоборот, поддерживает его при убывании .

Обратимся теперь к графику напряжения на катушке (см. рис. 1). На этом графике синусоида напряжения на зажимах катушки изображена равной и противоположной синусоиде ЭДС самоиндукции. Следовательно, напряжение на зажимах катушки в любой момент времени равно и противоположно ЭДС самоиндукции, возникающей в ней. Напряжение это создается генератором переменного тока и идет на то, чтобы погасить действие в цепи ЭДС самоиндукции.
Таким образом, в катушке индуктивности, включенной в цепь переменного тока, создается сопротивление прохождению тока. Но так как такое сопротивление вызывается в конечном счете индуктивностью катушки , то и называется оно индуктивным сопротивлением.
Индуктивное сопротивление обозначается через X L и измеряется, как и активное сопротивление, в омах.
Индуктивное сопротивление цепи тем больше, чем больше частота источника тока, питающего цепь, и чем больше индуктивность цепи. Следовательно, индуктивное сопротивление цепи прямо пропорционально частоте тока и индуктивности цепи; определяется оно по формуле X L = ω L , где ω — круговая частота, определяемая произведением 2π f . — индуктивность цепи в гн.
Закон Ома для цепи переменного тока, содержащей индуктивное сопротивление, звучит так: величина тока прямо пропорциональна напряжению и обратно пропорциональна индуктивному сопротивлению це п и , т. е. I = U / X L , где I и U — действующие значения тока и напряжения, а X L — индуктивное сопротивление цепи.
Рассматривая графики изменения тока в катушке. ЭДС самоиндукции и напряжения на ее зажимах, мы обратили внимание на то, что изменение этих в еличин не совпадает по времени. Иначе говоря, синусоиды тока, напряжения и ЭДС самоиндукции оказались для рассматриваемой нами цепи сдвинутыми по времени одна относительно другой. В технике переменных токов такое явление принято называть сдвигом фаз .
Если же две переменные величины изменяются по одному и тому же закону (в нашем случае по синусоидальному) с одинаковыми периодами, одновременно достигают своего максимального значения как в прямом, так и в обратном направлении, а также одновременно уменьшаются до нуля, то такие переменные величины имеют одинаковые фазы или, как говорят, совпадают по фазе.
В качестве примера на рисунке 3 приведены совпадающие по фазе кривые изменения тока и напряжения. Такое совпадение фаз мы всегда наблюдаем в цепи переменного тока, состоящей только из активного сопротивления.
В том случае, когда цепь содержит индуктивное сопротивление, фазы тока и напряжения, как это видно из рис. 1 не совпадают, т. е. имеется сдвиг фаз между этими переменными величинами. Кривая тока в этом случае как бы отстает от кривой напряжения на четверть периода.
Следовательно, при включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между током и напряжением, причем ток отстает по фазе от напряжения на четверть периода . Это значит, что максимум тока наступает через четверть периода после того, как наступил максимум напряжения.
ЭДС же самоиндукции находится в противофазе с напряжением на катушке, отставая, в свою очередь, от тока на четверть периода. При этом период изменения тока, напряжения, а также и ЭДС самоиндукции не меняется и остается равным периоду изменения напряжения генератора, питающего цепь. Сохраняется также и синусоидальный характер изменения этих величин.
Рисунок 3. Совпадение по фазе тока и напряжения в цепи с активным сопротивлением
Выясним теперь, каково отличие нагрузки генератора переменного тока активным сопротивлением от нагрузки его индуктивным сопротивлением.
Когда цепь переменного тока содержит в себе лишь одно активное сопротивление, то энергия источника тока поглощается в активном сопротивлении, нагревая проводник.

Когда же цепь не содержит активного сопротивления (мы условно считаем его равным нулю), а состоит лишь из индуктивного сопротивления катушки, энергия источника тока расходуется не на нагрев проводов, а только на создание ЭДС самоиндукции, т. е. она превращается в энергию магнитного поля. Однако переменный ток непрерывно изменяется как по величине, так и по направлению, а следовательно, и магнитное поле катушки непрерывно изменяется в такт с изменением тока. В первую четверть периода, когда ток возрастает, цепь получает энергию от источника тока и запасает ее в магнитном поле катушки. Но как только ток, достигнув своего максимума, начинает убывать, он поддерживается за счет энергии, запасенной в магнитном поле катушки посредством ЭДС самоиндукции.
Таким образом, источник тока, отдав в течение первой четверти периода часть своей энергии в цепь, в течение второй четверти получает ее обратно от катушки, выполняющей при этом роль своеобразного источника тока. Иначе говоря, цепь переменного тока, содержащая только индуктивное сопротивление, не потребляет энергии : в данном случае происходит колебание энергии между источником и цепью. Активное же сопротивление, наоборот, поглощает в себе всю энергию, сообщенную ему источником тока.
Говорят, что катушка индуктивности, в противоположность омическому сопротивлению, не активна по отношению к источнику переменного тока, т. е. реактивна . Поэтому индуктивное сопротивление катушки называют также реактивным сопротивлением .

Кривая нарастания тока при замыкании цепи, содержащей индуктивность — переходные процессы в электрических цепях.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Как определить силу тока в резисторе при разных типах соединения

Один из способов определения силы тока в резисторе – это ее прямое измерение мультиметром. Измерения следует проводить в разрыве цепи после резистора следующим образом:
– выставить на тестере максимально допустимый диапазон,
– присоединить щупы прибора к месту разрыва цепи.
Применив закон Ома, искомую величину можно также определить расчетным путем:
где I – сила тока, U – напряжение, R – сопротивление (единицы измерения ампер (А), вольт (В), ом (Ом) соответственно).
В приборостроении и электротехнике применяются различные типы соединения и подключения резисторов, что обеспечивает разнообразие электротехнических свойств электрических схем.
Типы соединений резисторов
Соединение элементов в одну цепь осуществляется следующими способами:
- последовательно;
- параллельно;
- смешанно.
Общие схемы типов соединений представлены на рисунке 1.

Рисунок 1. Типы соединений резисторов
Параллельным соединением принято считать соединение, при котором элементы цепи соединены так, что их начала могут соединиться в одной точке, а концы – в другой (см.рис.2)
Рисунок 2. Параллельное соединение резисторов
Потоку заряженных частиц при прохождении участка АВ предоставлено несколько вариантов пути, поэтому на каждом участке с резистором будет протекать ток, величиной, обратно пропорциональной сопротивлению резистора.
При увеличении нагрузки параллельного соединения, в случае подключения большого числа резисторов способом параллельного соединения в электрическую цепь, общее сопротивление цепи значительно уменьшится, за счет увеличения числа путей, предоставленных потоку заряженных частиц. Увеличение количества возможных вариантов движения влечет за собой уменьшение противодействия движению тока.
Как найти сопротивление параллельно соединенных резисторов?
Общее сопротивление резисторов в случае параллельного соединения определено по закону Ома в следующем соотношении:
и рассчитывается по формуле:
Для примера произведем расчет общего сопротивления для цепи из двух резисторов, обладающих сопротивлением R1= R2=7Ом (см. рис.3а)
Сопротивление на участке АВ (1– 2) в 2 раза меньше R каждого из резисторов.
При параллельном подсоединении к рассматриваемой цепи еще одного резистора, также обладающего аналогичным сопротивлением R3=7Ом (см. рис.3б) общее сопротивление цепи рассчитывается с учетом предыдущих вычислений, где R12= 3,5Ом
Rобщ= 3,5*7/ (3,5+7) = 2,33 Ом

R123< R3
Рисунок 3. Увеличение цепи параллельного соединения резисторов
Из расчетов следует, что общее сопротивление (см. рис.3в) всегда будет меньше сопротивления любого параллельно включенного резистора. Такое условие обеспечивается равенством токов на входе и выходе узлов или групп параллельных резисторов и постоянством напряжения в сети.
Что такое последовательное соединение резисторов?
При последовательном соединении резисторы подсоединяются друг за другом, при этом конец предыдущего резистора соединен с началом последующего резистора (рисунок 4).
Рисунок 3. Последовательное соединение резисторов.
Потоку заряженных частиц при прохождении участка АВ предоставлен один путь, поэтому, чем больше резисторов подсоединено, тем большее сопротивление движущимся заряженным частицам они оказывают, то есть общее сопротивление участка цепи Rобщ возрастает.
Формула для расчета общего сопротивления при последовательном соединении имеет вид:
Как рассчитать напряжения на последовательно соединенных резисторах?
Последовательное соединение резисторов увеличивает общее сопротивление. Ток во всех частях схемы будет одинаковым, при этом будет определяться падение напряжения на каждом резисторе.
Общее напряжение питания на резисторах, соединенных последовательно, равно сумме разностей потенциалов на каждом резисторе:
Применив закон Ома, можно вычислить напряжение на каждом резисторе:
Напряжение на участке АВ рассчитывается по формуле:
Резисторы, соединенные последовательно, применяются в электротехнике в качестве делителя напряжения.
Рисунок 5. Схема простейшего делителя напряжения
Регулируя сопротивление обоих резисторов можно выделить требуемую часть входящего напряжения. При необходимости деления напряжения на несколько частей к источнику напряжения подключается несколько последовательно соединенных резисторов.
Смешанное соединение резисторов
В электротехнике наиболее распространено использование различных комбинаций параллельного и последовательного подключения. Силу тока при смешанном соединении резисторов определяют путем разделения цепи на последовательно соединенные части. Однако для определения общего сопротивления в случае параллельного сопротивления различных частей следует применять соответствующую формулу.
Алгоритм расчета смешанного подключения аналогичен правилу расчета базовой схемы последовательного и параллельного подключения резисторов. В этом нет ничего нового: нужно правильно разложить предложенное решение на пригодные для расчета части. Участки с элементами подключаются поочередно или параллельно. Гибридное резистивное соединение представляет собой комбинацию последовательного и параллельного. Эту комбинацию иногда называют последовательно-параллельным соединением.
На рисунке 6 представлена схема смешанного соединения резисторов.
Рисунок 6. Смешанное соединение резисторов.
На рисунке показано, что резисторы R2 и R3 соединены параллельно, а R1, R23 и R4 последовательно.
Чтобы рассчитать сопротивление этого соединения, вся схема делится на простейшие части, начиная с параллельного или последовательного сопротивления. Тогда следующий алгоритм выглядит следующим образом:
1. Определите эквивалентное сопротивление части резистора, подключенной параллельно.
2. Если эти части содержат резисторы, включенные последовательно, сначала рассчитайте их сопротивление.
3. Вычислив эквивалентное сопротивление резистора, перерисовываем схему. Обычно схема получается из последовательного эквивалентного сопротивления.
4. Рассчитайте сопротивление цепи.
Другие способы подключения хорошо видны на примере, показанном на рисунке. Без специальных расчетов очевидно, что параллельное соединение резисторов создает несколько путей для тока. Следовательно, в одиночном контуре его сила будет меньше по сравнению с контрольными точками на входе и выходе. При этом напряжение на отметке остается неизменным.
Пример участка цепи для расчета сопротивления смешанного соединения показан на рисунке 5.
Рисунок 7. Общее сопротивление участка цепи со смешанным соединением резисторов.

- Компания
- История АО «НПО» ЭРКОН»
- Экология
- Документы
- СМИ о нас
- Вакансии
- Отзывы
- Перспективные разработки
- Прецизионные резисторы
- ВЧ и СВЧ резисторы
- ВЧ и СВЧ аттенюаторы и поглотители
- Высокоомные высоковольтные резисторы
- Мощные резисторы
- Наборы резисторов, делители
- Низкоомные фольговые резисторы
- Резисторы общего применения
- Специальные изделия
- Чип-индуктивности
- Перемычки
- Аттестация испытательного оборудования
- Испытательная лаборатория
АО «НПО «ЭРКОН»
© 2011 — 2024. Все права защищены
+7 (831) 202 25 52
факс: +7 (831) 202-24-34 доб.340
603104, Россия, Нижний Новгород,
ул. Нартова, д. 6, помещение П3, 2 этаж, оф. 204Внешний вид реальных изделий может отличаться от изображений на сайте
Любая информация, представленная на данном сайте, не является публичной офертой.- История АО «НПО» ЭРКОН»
- Экология
- Документы
- СМИ о нас
- Вакансии
- Отзывы
- Перспективные разработки
- Прецизионные резисторы
- ВЧ и СВЧ резисторы
- ВЧ и СВЧ аттенюаторы и поглотители
- Высокоомные высоковольтные резисторы
- Мощные резисторы
- Наборы резисторов, делители
- Низкоомные фольговые резисторы
- Резисторы общего применения
- Специальные изделия
- Чип-индуктивности
- Перемычки
- Аттестация испытательного оборудования
- Испытательная лаборатория
Этот сайт использует файлы cookie для хранения данных. Продолжая использование сайта, вы даёте согласие на работу с данными файлами.