Как определить индуктивную проводимость катушки
Перейти к содержимому

Как определить индуктивную проводимость катушки

  • автор:

Катушка индуктивности в цепи переменного тока

Рассмотрим цепь, содержащую в себе катушку индуктивности , и предположим, что активное сопротивление цепи, включая провод катушки, настолько мало, что им можно пренебречь. В этом случае подключение катушки к источнику постоянного тока вызвало бы его короткое замыкание, при котором, как известно, сила тока в цепи оказалась бы очень большой.

Иначе обстоит дело, когда катушка присоединена к источнику переменного тока. Короткого замыкания в этом случае не происходит. Это говорит о том. что катушка индуктивности оказывает сопротивление проходящему по ней переменному току .

Каков характер этого сопротивления и чем оно обусловливается?

Чтобы ответить ил этот вопрос, вспомним явление самоиндукции. Всякое изменение тока в катушке вызывает появление в ней ЭДС самоиндукции, препятствующей изменению тока. Величина ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки и скорости изменения тока в ней. Но так как переменный ток непрерывно изменяется, то непрерывно возникающая в катушке ЭДС самоиндукции создает сопротивление переменному току.

Для уяснения процессов, происходящих в цепи переменного тока с катушкой индуктивности, обратимся к графику. На рисунке 1 построены кривые линии, характеризующие соответственно тик в цепи, напряжение на катушке и возникающую в ней ЭДС самоиндукции. Убедимся в правильности произведенных па рисунке построений.

Цепь переменного тока с катушкой индуктивности

С момента t = 0, т. е. с начального момента наблюдения за током, он начал быстро возрастать, но по мере приближения к своему максимальному значению скорость нарастания тока уменьшалась. В момент, когда ток достиг максимальной величины, скорость его изменения на мгновение стала равной нулю, т. е. прекратилось изменение тока. Затем ток начал сначала медленно, а потом быстро убывать и по истечении второй четверти периода уменьшился до нуля. Скорость же изменения тока за эту четверть периода, возрастая от пуля, достигла наибольшей величины тогда, когда ток станет равным нулю.

Рисунок 2. Характер изменений тока во времени в зависимости от величины тока

Из построений на рисунке 2 видно, что при переходе кривой тока через ось времени увеличение тока за небольшой отрезок времени t больше, чем за этот же отрезок времени, когда кривая тока достигает своей вершины.

Следовательно, скорость изменения тока уменьшается по мере увеличения тока и увеличивается по мере его уменьшения, независимо от направления тока в цепи.

Очевидно, и ЭДС самоиндукции в катушке должна быть наибольшей тогда, когда скорость изменения тока наибольшая, и уменьшаться до нуля, когда прекращается его изменение. Действительно, на графике кривая ЭДС самоиндукции e L за первую четверть периода, начиная от максимального значения, упала до нуля (см. рис. 1).

На протяжении следующей четверти периода ток от максимального значения уменьшался до нуля, однако скорость его изменения постепенно возрастала и была наибольшей в момент, когда ток стал равным нулю. Соответственно и ЭДС самоиндукции за время этой четверти периода, появившись вновь в катушке, постепенно возрастала и оказалась максимальной к моменту, когда ток стал равным нулю.

Однако направление свое ЭДС самоиндукции изменила на обратное, так как возрастание тока в первой четверти периода сменилось во второй четверти его убыванием.

Цепь с индуктивностью

Цепь с индуктивностью

Продолжив дальше построение кривой ЭДС самоиндукции, мы убеждаемся в том, что за период изменения тока в катушке и ЭДС самоиндукции совершит в ней полный период своего изменения. Направление ее определяется законом Ленца: при возрастании тока ЭДС самоиндукции будет направлена против тока (первая и третья четверти периода), а при убывании тока, наоборот, совпадать с ним по направлению (вторая и четвертая четверти периода).

Таким образом, ЭДС самоиндукции, вызываемая самим переменным током, препятствует его возрастанию и , наоборот, поддерживает его при убывании .

Катушка индуктивности в цепи переменного тока

Обратимся теперь к графику напряжения на катушке (см. рис. 1). На этом графике синусоида напряжения на зажимах катушки изображена равной и противоположной синусоиде ЭДС самоиндукции. Следовательно, напряжение на зажимах катушки в любой момент времени равно и противоположно ЭДС самоиндукции, возникающей в ней. Напряжение это создается генератором переменного тока и идет на то, чтобы погасить действие в цепи ЭДС самоиндукции.

Таким образом, в катушке индуктивности, включенной в цепь переменного тока, создается сопротивление прохождению тока. Но так как такое сопротивление вызывается в конечном счете индуктивностью катушки , то и называется оно индуктивным сопротивлением.

Индуктивное сопротивление обозначается через X L и измеряется, как и активное сопротивление, в омах.

Индуктивное сопротивление цепи тем больше, чем больше частота источника тока, питающего цепь, и чем больше индуктивность цепи. Следовательно, индуктивное сопротивление цепи прямо пропорционально частоте тока и индуктивности цепи; определяется оно по формуле X L = ω L , где ω — круговая частота, определяемая произведением 2π f . — индуктивность цепи в гн.

Закон Ома для цепи переменного тока, содержащей индуктивное сопротивление, звучит так: величина тока прямо пропорциональна напряжению и обратно пропорциональна индуктивному сопротивлению це п и , т. е. I = U / X L , где I и U — действующие значения тока и напряжения, а X L — индуктивное сопротивление цепи.

Рассматривая графики изменения тока в катушке. ЭДС самоиндукции и напряжения на ее зажимах, мы обратили внимание на то, что изменение этих в еличин не совпадает по времени. Иначе говоря, синусоиды тока, напряжения и ЭДС самоиндукции оказались для рассматриваемой нами цепи сдвинутыми по времени одна относительно другой. В технике переменных токов такое явление принято называть сдвигом фаз .

Если же две переменные величины изменяются по одному и тому же закону (в нашем случае по синусоидальному) с одинаковыми периодами, одновременно достигают своего максимального значения как в прямом, так и в обратном направлении, а также одновременно уменьшаются до нуля, то такие переменные величины имеют одинаковые фазы или, как говорят, совпадают по фазе.

В качестве примера на рисунке 3 приведены совпадающие по фазе кривые изменения тока и напряжения. Такое совпадение фаз мы всегда наблюдаем в цепи переменного тока, состоящей только из активного сопротивления.

В том случае, когда цепь содержит индуктивное сопротивление, фазы тока и напряжения, как это видно из рис. 1 не совпадают, т. е. имеется сдвиг фаз между этими переменными величинами. Кривая тока в этом случае как бы отстает от кривой напряжения на четверть периода.

Следовательно, при включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между током и напряжением, причем ток отстает по фазе от напряжения на четверть периода . Это значит, что максимум тока наступает через четверть периода после того, как наступил максимум напряжения.

ЭДС же самоиндукции находится в противофазе с напряжением на катушке, отставая, в свою очередь, от тока на четверть периода. При этом период изменения тока, напряжения, а также и ЭДС самоиндукции не меняется и остается равным периоду изменения напряжения генератора, питающего цепь. Сохраняется также и синусоидальный характер изменения этих величин.

Рисунок 3. Совпадение по фазе тока и напряжения в цепи с активным сопротивлением

Выясним теперь, каково отличие нагрузки генератора переменного тока активным сопротивлением от нагрузки его индуктивным сопротивлением.

Когда цепь переменного тока содержит в себе лишь одно активное сопротивление, то энергия источника тока поглощается в активном сопротивлении, нагревая проводник.

Катушка индуктивности в цепи переменного тока

Когда же цепь не содержит активного сопротивления (мы условно считаем его равным нулю), а состоит лишь из индуктивного сопротивления катушки, энергия источника тока расходуется не на нагрев проводов, а только на создание ЭДС самоиндукции, т. е. она превращается в энергию магнитного поля. Однако переменный ток непрерывно изменяется как по величине, так и по направлению, а следовательно, и магнитное поле катушки непрерывно изменяется в такт с изменением тока. В первую четверть периода, когда ток возрастает, цепь получает энергию от источника тока и запасает ее в магнитном поле катушки. Но как только ток, достигнув своего максимума, начинает убывать, он поддерживается за счет энергии, запасенной в магнитном поле катушки посредством ЭДС самоиндукции.

Таким образом, источник тока, отдав в течение первой четверти периода часть своей энергии в цепь, в течение второй четверти получает ее обратно от катушки, выполняющей при этом роль своеобразного источника тока. Иначе говоря, цепь переменного тока, содержащая только индуктивное сопротивление, не потребляет энергии : в данном случае происходит колебание энергии между источником и цепью. Активное же сопротивление, наоборот, поглощает в себе всю энергию, сообщенную ему источником тока.

Говорят, что катушка индуктивности, в противоположность омическому сопротивлению, не активна по отношению к источнику переменного тока, т. е. реактивна . Поэтому индуктивное сопротивление катушки называют также реактивным сопротивлением .

Кривая нарастания тока при замыкании цепи, содержащей индуктивность

Кривая нарастания тока при замыкании цепи, содержащей индуктивность — переходные процессы в электрических цепях.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Реальная катушка в цепи переменного тока

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I 2

Снимок

Снимок1

а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:

Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых uR равно падению напряжения в активном сопротивлении, а другое uL уравновешивает эдс самоиндукции.

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим — uR совпадает по фазе с током, UL опережает ток на 90°.

u = R*Imsinωt + ωLImsin(ωt+π/2).

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

а действующие величины

Вектор общего напряжения

Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.

UR = Ucosφ

Векторная диаграмма реальной катушки

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Для катушки по схеме рис. 13.9 при Ua = UR

U = Usinφ (13.14)

Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается Up. Для катушки Up = UL

2

При токе i = Imsinωt уравнение напряжения можно записать на основании векторной диаграммы в виде

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = UR/I и индуктивное XL = UL/I, сопротивления, а гипотенузой величина Z = U/I.

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи.
Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.
Из треугольника сопротивлений следует

4

Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:

5

Из треугольников сопротивления и напряжения определяются

Мощность реальной катушки

график мощности в реальной катушки

Мгновенная мощность катушки

Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’, сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты.
При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном — наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).

Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).

Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.

Согласно выводам полученных в этих предыдущих (первая, вторая) статьях — в активном сопротивлении P = URI Q = 0; а в индуктивном Р = 0; Q = ULI.

Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная — реактивной мощности в индуктивном сопротивлении XL. Подставляя значения UR = Ucosφ и UL = Usinφ, определяемые из треугольника напряжений по формулам (13.18), получим:

P = UIcosφ (13.19)

Q = UIsinφ (13.20)

Кроме активной и реактивной мощностей пользуются понятием полной мощности S, которая определяется произведением действующих величин напряжения и тока цепи;

S = UI = I 2 Z (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

(13.22)

Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить

cosφ = P/S; sinφ = Q/S; tgφ = Q/P. (13.23)

Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).

Активная мощность Р меньше или равна полной мощности цепи.
Отношение активной мощности цепи к ее полной мощности P/S =
= cosφ называют коэффициентом мощности.

Назначение приемников электрической энергии — преобразование
ее в другие виды энергии. Поэтому колебания энергии в цепи не только
бесполезны, но и вредны, так как при этом в приемнике не совершается
полного преобразования электрической энергии в работу или тепло,
а в соединительных проводах она теряется.

Схема замещения реальной катушки с параллельным соединением элементов

7

Для реальной катушки можно составить и другую расчетную схему — с параллельным соединением двух ветвей: с активной G и индуктивной BL проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее.
Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.

Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством

Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: IG —ток в ветви с активной проводимостью, по фазе совпадает с напряжением; IL — ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.

8

Вектор тока I и его составляющие IG и IL образуют прямоугольный треугольник, поэтому

Составляющая тока в активном элементе

Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается Iа. Для катушки по схеме на рис. 13.12, б Ia = IG.

Составляющая тока в реактивном элементе

Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается . Для катушки Iр = IL .

Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = IG/U и индуктивная ВL = IL/U проводимости, а гипотенузой — величина Y = I/U, называемая полной проводимостью цепи.

9

Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получим

Индуктивная проводимость

Реальная катушка (обмотка) любого электротехнического устройства обладает определенным активным сопротивлением /• и индуктивностью L. Для удобства анализа таких цепей катушку обычно изображают в виде двух идеальных элементов — резистивного г и индуктивного L, соединенных последовательно ( 2.9,а). Используя выводы, вытекающие из анализа идеальных цепей, участок цепи с индуктивностью L будем рассматривать как участок, обладающий индуктивным сопротивлением XL. Уравнение напряжений, составленное по второму закону Кирхгофа для цепи с г и L, имеет вид

Как было показано в § 6.15, в схеме замещения 6.36, а х = х01 + xl » r01 4- ,>’! == г. На основании этого часто для упрощения анализа соотношений электромагнитных устройств, особенно когда в магнитопроводе имеется воздушный зазор, сопротивлением г = г(и + г, пренебрегают и считают, что обмотка с ферромагнитным магнитопроводом представляет собой элемент с чисто индуктивным сопротивлением х = х01 + + х1 к х01. Естественно, что конфигурации в. а. х. при раз-

В § 6.16 было показано, что обмотку с ферромагнитным магнитопроводом можно рассматривать как элемент с чисто индуктивным сопротивлением, значение которого существенно зависит от длины воздушного зазора.

В маломощных сетях, сечение проводов которых невелико, а протяженность значительная, для ограничения пускового тока применяют пуск с активным или индуктивным сопротивлением, включенным в цепь обмотки статора ( 10.21, а), или пуск с переключением обмотки со звезды на треугольник ( 10.21,в).

Величина х, = wi в выражении (2.31), единица которой Ом, называется индуктивным сопротивлением, а обратная величина ft. — 1/ыЛ, единица которой Ом’1 = См, — индуктивной проводимостью. Значения величин х, и Ь, являются параметрами индуктивных элементов цепей

Исследуя общий характер процесса, можно пренебречь при промышленной частоте 50 Гц индуктивным сопротивлением контуров вихревых токов в диске и считать их совпадающими по фазе с ЭДС:

Полезно пояснить физические условия, определяющие влияние cos 2 на вращающий момент. Для этого обратимся к идеальным условиям — предположим, что cos^2 = О, т- е- примем, что обмотка ротора обладает только индуктивным сопротивлением. В таких условиях токи в обмотке ротора будут иметь наибольшее значение в тех проводах, в которых в данный момент времени ЭДС, индуктированная вращающимся полем статора, равна нулю ( 14.21). Ток достигает максимального значения там, где индукция вращающегося магнитного поля отсутствует, а силы F, действующие на остальные провода ротора, будут взаимно уравновешиваться и вращающий момент на валу двигателя будет равен нулю ( 14.21).

В первый момент пуска двигателя (пока s = 1) частота токов в обмотке ротора равна частоте сети; в этих условиях полное сопротивление внутренней клетки обусловливается главным образом ее большим индуктивным сопротивлением рассеяния. Таким образом, при пуске двигателя ток в роторе вытесняется из внутренней беличьей клетки. В то же время полное сопротивление наружной клетки определяется преимущественно ее активным сопротивлением. Ток наружной клетки при пуске мало сдвинут по фазе по отношению к индуктированной в ней ЭДС; он создает большой пусковой момент, как это имеет место и у двигателя с фазным ротором при включении пускового реостата. Отношение токов наружной и внутренней клеток зависит от отношения полных сопротивлений этих клеток; обычно при пуске ток внутренней клетки значительно меньше тока наружной.

где х + х =х — индуктивное сопротивление фазной обмотки статора, называемое синхронным реактивным (индуктивным) сопротивлением. У синхронной машины с ненасыщенным магнитопроводом это -относительно постоянная величина.

Его обозначают XL и называют индуктивным сопротивлением катушки:

Действующее значение этой э. д. с. прямо пропорционально действующему значению тока в фазе статора, а их отношение называют индуктивным сопротивлением рассеяния обмотки статора и обозначают х^.

Цепь на 3.18, а имеет важное свойство, которое используется в различных устройствах. Если емкостная проводимость фазы А и индуктивная проводимость фазы В одинаковые и постоянные: 6/ = = b с = b = const, то ток в фазе С не зависит от значения активной проводимости g = var этой фазы. Действительно, из векторной диаграммы на 3.18,6 и формулы (3.28) следует, что

где Gi = l//?i — активная проводимость первой ветви; Й2 = =1/Х2 — реактивная (емкостная) проводимость второй ветви; Оз = #з/2з — активная проводимость третьей ветви; B^ = X^/Z\ — реактивная (индуктивная) проводимость третьей ветви.

7n = Jl>m = -jBj/; Z = 1/J = jcoL = ;Д где Х^ = coL — реактивное (индуктивное) сопротивление; В^ = l/X^ = l/(coL) — реактивная (индуктивная) проводимость

Это значение выбрано с целью получения простого выражения (4-32) для проводимости контура gK. Включив образец, вторично настраивают схему в резонанс и находят новые значения емкости С2 (кривая 2 на 4-11, а) и напряжения контура U». В момент резонанса индуктивная проводимость контура равна его емкостной проводимости, поэтому полная проводимость содержит только активную составляющую. Напряжение па контуре без образца при первом резонансе ( 4-10, а)

Цепь на 3.18, а имеет важное свойство, которое используется в различных устройствах. Если емкостная проводимость фазы А и индуктивная проводимость фазы R одинаковые и постоянные: Ь^ = = Ьг = b = const, то ток в фазе С не зависит от значения активной проводимости g = var этой фазы. Действительно, из векторной диаграммы на 3.18,5 и формулы (3.28) следует, что

Цепь на 3.18, а имеет важное свойство, которое используется в различных устройствах. Если емкостная проводимость фазы А и индуктивная проводимость фазы В одинаковые и постоянные: bf — = Ь „ = b — const, то ток в фазе С не зависит от значения активной проводимости g = var этой фазы. Действительно, из векторной диаграммы на 3.18,6 и формулы (3.28) следует, что

нанс токов (явление резонанса на участке электрической цепи, содержащей параллельно соединенные индуктивный и емкостный элементы) — особое состояние цепи переменного тока при параллельном соединении сопротивлений, при котором реактивная индуктивная проводимость оказывается равной реактивной емкостной проводимости этой цепи, т. е. при условии, что BL = Вс-

При параллельном соединении индуктивного и емкостного сопротивлений ( 3.4.2) в электрической цепи возможен резонанс токов (особое состояние электрической цепи, в простейшем случае при параллельном соединении индуктивности L и емкости С, при котором реактивная индуктивная проводимость равна реактивной емкостной проводимости, т. е. BL — Вс).

Индуктивная проводимость первой параллельной ветви участка 2—3 цепи: BL3 = XL3/Z23=5/125=Q,04 Си.

где g=\IR — IalU — полная проводимость первой ветви; bL=\/xL = lL/U — индуктивная проводимость второй ветви.

Комплексная проводимость состоит из вещественной части — активной проводимости и мнимой — реактивной. Индуктивная проводимость является мнимой отрицательной, а емкостная — мнимой положительной.

5.8. Параллельно соединенные индуктивность, емкость и активное сопротивление в цепи синусоидального тока

К схеме на рис. 5.12 подключено синусоидальное напряжение . Схема состоит из параллельно включенных индуктивности, емкости и активного сопротивления. Определим ток на входе схемы.

В соответствии с первым законом Кирхгофа: , (6.19) где— активная проводимость.

Рис.5.12

Подставим эти формулы в уравнение (5.19). Получим:

, (5.20)

где — индуктивная проводимость;— емкостная проводимость.

Из уравнения (5.20) видно, что ток в ветви с индуктивностью отстает по фазе от напряжения на 90 o , ток в ветви с активным сопротивлением совпадает по фазе с напряжением, ток в ветви с емкостью опережает по фазе напряжение на 90 o . Запишем уравнение (6.20) в комплексной форме.

, (5.21)

где — комплексная проводимость;— полная проводимость;— начальная фаза комплексной проводимости.

Построим векторные диаграммы, соответствующие комплексному уравнению (5.21).

Рис. 5.13 Рис. 5.14 Рис. 5.15

В схеме на рис. 5.12 может возникнуть режим резонанса токов. Резонанс токов возникает тогда, когда индуктивная и емкостная проводимости одинаковы. При этом индуктивный и емкостный токи, направленные в противоположные стороны, полностью компенсируют друг друга. Ток в неразветвленной части схемы совпадает по фазе с напряжением. Из условия возникновения резонанса тока получим формулу для резонансной частоты тока

.

В режиме резонанса тока полная проводимость цепи — минимальна, а полное сопротивление— максимально. Ток в неразветвленной части схемыв резонансном режиме имеет минимальное значение. В идеализированном случае R = 0,

и .

Ток в неразветвленной части цепи I = 0. Такая схема называется фильтр — пробкой.

5.9. Резонансный режим в цепи, состоящей из параллельно включенных реальной индуктивной катушки и конденсатора

Комплексная проводимость индуктивной ветви

где — активная проводимость индуктивной катушки;— полное сопротивление индуктивной катушки;— индуктивная проводимость катушки;— емкостная проводимость второй ветви.

В режиме резонансов токов справедливо уравнение:

или

Из этого уравнения получим формулу для резонанса частоты

(5.22)

На рисунке 5.16 изображена векторная диаграмма цепи в резонансном режиме.

Вектор тока I2 опережает вектор напряжения на 90 o . Вектор тока I1 отстает от вектора напряжения на угол φ,

где .

Разложим вектор тока I1 на две взаимно перпендикулярные составляющих, одна из них, совпадающая с вектором напряжения, называется активной составляющей тока Iа1, другая — реактивной составляющей тока Iр1. Рис. 5.16

В режиме резонанса тока реактивная составляющая тока Iр1 и емкостный ток I2 , направленные в противоположные стороны, полностью компенсируют друг друга, активная составляющая тока Iа1 совпадает по фазе с напряжением (рис. 5.17). Ток I в неразветвленной части схемы совпадает по фазе с напряжением. Рис. 5.17

5.10. Мощность в цепи синусоидального тока

Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток. Пусть мгновенные напряжение и ток определяются по формулам:

(5.23)

Среднее значение мгновенной мощности за период

Из треугольника сопротивлений , а.

Получим еще одну формулу:

.

Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P. Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию. Возьмем реактивный элемент (индуктивность или емкость). Активная мощность в этом элементе , так как напряжение и ток в индуктивности или емкости различаются по фазе на 90 o . В реактивных элементах отсутствуют необратимые потери электрической энергии, не происходит нагрева элементов. Происходит обратимый процесс в виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q. Преобразуем выражение (5.23):

где — мгновенная мощность в активном сопротивлении;

— мгновенная мощность в реактивном элементе (в индуктивности или в емкости). Максимальное или амплитудное значение мощности p2 называется реактивной мощностью

,

где x — реактивное сопротивление (индуктивное или емкостное). Реактивная мощность, измеряемая в вольтамперах реактивных, расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания. Амплитудное значение суммарной мощности p = p1 + p2 называется полной мощностью. Полная мощность, измеряемая в вольтамперах, равна произведению действующих значений напряжения и тока:

,

где z — полное сопротивление цепи. Полная мощность характеризует предельные возможности источника энергии. В электрической цепи можно использовать часть полной мощности

,

где — коэффициент мощности или «косинус «фи».

Коэффициент мощности является одной из важнейших характеристик электротехнических устройств. Принимают специальные меры к увеличению коэффициента мощности. Возьмем треугольник сопротивлений и умножим его стороны на квадрат тока в цепи. Получим подобный треугольник мощностей (рис. 6.18).

Из треугольника мощностей получим ряд формул:

, ,

Рис.5.18 ,. При анализе электрических цепей символическим методом используют выражение комплексной мощности, равное произведению комплексного напряжения на сопряженный комплекс тока. Для цепи, имеющей индуктивный характер (R-L цепи)

,

где — комплекс напряжения;— комплекс тока;— сопряженный комплекс тока;— сдвиг по фазе между напряжением и током., ток как в R-L цепи, напряжение опережает по фазе ток.

Вещественной частью полной комплексной мощности является активная мощность. Мнимой частью комплексной мощности — реактивная мощность. Для цепи, имеющей емкостной характер (R-С цепи), . Ток опережает по фазе напряжение.

.

Активная мощность всегда положительна. Реактивная мощность в цепи, имеющей индуктивный характер, — положительна, а в цепи с емкостным характером — отрицательна.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *