Как о химическом элементе это как
Перейти к содержимому

Как о химическом элементе это как

  • автор:

Как о химическом элементе это как

Основой изучения курса химии является атомно-молекулярная теория. Вещества состоят из молекул, а молекулы — из атомов. Атомы чрезвычайно малы и на кончике иглы помещаются миллиарды атомов. Тем не менее, наука достигла такого уровня, что различает атомы по размерам, массе и свойствам. В настоящее время различают 109 видов атомов, из которых состоят все вещества.

Химический элемент это определенный вид атомов.

Каждый химический элемент имеет три формы существования — свободные атомы, простые вещества и сложные вещества. Атомы могут существовать изолированно друг от друга в виде свободных атомов, а могут объединяться друг с другом в молекулы. Если соединяются одинаковые атомы, то образуются простые вещества, если же разные — то сложные вещества.

Например, водород, на Солнце существует поодиночке, т. е. в виде изолированных атомов из-за высокой температуры. А на Земле — в молекулярном виде, два атома водорода соединяются друг с другом, и образуется простое вещество — водород, который является самым легким газом. Но элемент водород способен соединяться не только друг с другом, но и с другими атомами. Если два атома водорода соединяются с одним атомом кислорода, то получается молекула воды. Например, кварц состоит из атомов кислорода и кремния, негашеная известь — из атомов кальция и кислорода.

Свободные (изолированные атомы) — водород (на Солнце), инертные газы (на Земле), при очень высоких температурах — атомы всех химических элементов.

Простые вещества — водород, кислород, медь, железо, сера, золото, серебро.

Сложные вещества — вода, сахар, углекислый газ, соль.

Химический элемент

Химический элемент — совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева [1] . Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева. [2]

Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные) [3]

История становления понятия

Слово «элемент» (лат. elementum ) использовалось еще в античности (Цицероном, Овидием, Горацием) как часть чего-то (элемент речи, элемент образования и т. п.). В древности было распространено изречение «Как слова состоят из букв, так и тела — из элементов». Отсюда — вероятное происхождение этого слова: по названию ряда согласных букв в латинском алфавите: l, m, n, t («el» — «em» — «en» — «tum»). [4]

Близкое к современному пониманию понятие химического элемента отражала новая система химической философии, изложенная Робертом Бойлем в книге «Химик-скептик» (1661). Бойль указал, что ни четыре стихии Аристотеля, ни три принципа алхимиков не могут быть признаны в качестве элементов. Элементы, согласно Бойлю — практически неразложимые тела (вещества), состоящие из сходных однородных (состоящих из первоматерии) корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Корпускулы могут различаться формой, размером, массой. Корпускулы, из которых образованы тела, остаются неизменными при превращениях последних [5] .

Символы химических элементов по Дж. Дальтону: 1 — водород; 2 — магний; 3 — кислород; 4 — сера; 5 — аммиак; 6 — диоксид углерода

В 1789 г. Антуан Лоран Лавуазье в «Элементарном курсе химии», приводит первый в истории новой химии список химических элементов (таблицу простых тел), разделённых на несколько типов. Он впервые отождествляет с химическими элементами ряд простых веществ (в их числе, кислород, азот, водород, сера, фосфор, уголь и все известые к тому времени металлы). В число элементов были включены свет, теплород и «солеобразующие землистые вещества» (трудноразлагаемые оксиды кальция, магния и др.). Данную концепцию элементов принято называть эмпирико-аналитической, поскольку Лавуазье избрал критерием определения элемента опыт и только опыт, категорически отвергая любые неэмпирические рассуждения об атомах и молекулах, само существование которых невозможно подтвердить экспериментально [6] .

Благодаря Джону Дальтону в начале XIX в. в химии возобладала атомно-молекулярная гипотеза, рассматривающая химический элемент как отдельный вид атомов и указывающая на природу простых и сложных веществ, как состоящих, соответственно, из атомов одного или различного видов. Дальтон же впервые указывает на атомный вес как важнейшее свойство элементов, определяющее его химическую природу. Благодаря усилиям Йенса Берцелиуса и его последователей были весьма точно определены атомные веса (атомные массы) известных элементов. Середина XIX в. ознаменовалась целым рядом открытий новых элементов. На международном съезде химиков в г. Карлсруэ в 1860 г. были приняты определения понятий молекулы и атома.

Ko времени открытия Периодического закона Д. И. Менделеевым (1869) было известно 63 элемента. Именно атомный вес был выделен им как свойство атомов, определяющее периодический характер изменения свойств химических элементов, а также образуемых ими простых и сложных веществ. Менделеев определял химические элементы как «материальные части простых или сложных тел, к-рые придают им известную совокупность физических и химических свойств». Oткрытие Mенделеева позволило предвидеть существование, a также свойства ряда неизвестных в то время элементов и послужило научной основой для их классификации.

Однако с открытием изотопов стало ясно, что различные совокупности атомов одного и того же элемента могут иметь различающиеся атомные массы; так, радиогенный гелий, выделенный из урановых минералов, в связи с преобладанием изотопа 4 He имеет атомную массу больше, чем гелий космических лучей.

Современное понимание химического элемента как совокупности атомов, характеризующихся одинаковым положительным зарядом ядра, равным номеру элемента в Периодической таблице, появилось благодаря фундаментальным работам Генри Мозли (1915) и Джеймса Чедвика (1920) [7] .

Известные химические элементы

Основная статья: Периодическая система элементов

На середину 2012 года известно 118 химических элементов (с порядковыми номерами с 1 по 118), из них 94 обнаружены в природе (некоторые — лишь в следовых количествах), остальные 24 получены искусственно в результате ядерных реакций. Предпринимались попытки синтеза следующих сверхтяжёлых трансурановых элементов, в т.ч. были заявления о синтезе элемента унбиквадий (124) и косвенных свидетельствах о элементах унбинилий (120) и унбигексий (126), которые пока не подтверждены. Также было объявлено об обнаружении элемента экатория-унбибия (122) в образцах природного тория [8] , однако это заявление в настоящее время оспаривается на основании последних попыток воспроизведения данных с использованием более точных методов. Кроме того, есть сообщения об открытии в метеоритном веществе следов столкновений с частицами с атомными числами от 105 до 130, что может являться косвенным доказательством существования стабильных сверхтяжёлых ядер [9] . Поиски сверхтяжёлых трансурановых элементов в природе, возможных согласно теории острова стабильности, пока не увенчались достоверным успехом, а синтезирование новых трансурановых элементов продолжается в российском, американских, немецком и японском центрах ядерных исследований силами международных коллективов учёных. Информация об ещё не открытых химических элементах доступна в статье Расширенная периодическая таблица элементов.

Право предложить название новому химическому элементу предоставляется первооткрывателям. Сообщение о новом открытии проверяется в течение нескольких лет независимыми лабораториями, и, в случае подтверждения, Международный союз теоретической и прикладной химии (ИЮПАК, IUPAC, en:International Union for Pure and Applied Chemistry) официально утверждает название нового элемента.

Не все из известных на сегодня 118 элементов имеют утвержденные ИЮПАК постоянные названия. Самым тяжёлым из официально признанных элементов, имеющих официальные постоянные названия, является 116-й, получивший в мае 2012 года имя ливерморий вместе со 114-м элементом флеровием.

Названия сверхтяжёлых элементов с номерами 113, 115, 117, 118, полученные в 2002—2010 годах в России и США, официально пока не утверждены. Они имеют временные систематические названия.

Символы химических элементов

Основная статья: Символы химических элементов

Символы химических элементов используются как сокращения для названия элементов. В качестве символа обычно берут начальную букву названия элемента и в случае необходимости добавляют следующую или одну из следующих. Обычно это начальные буквы латинских названий элементов: Cu — медь (cuprum), Ag — серебро (argentum), Fe — железо (ferrum), Au — золото (aurum), Hg — ртуть (hydrargirum). Такая система химических символов была предложена в 1811 г. шведским химиком Я. Берцелиусом.

Цифрами меньшего размера возле символа элемента обозначаются: слева вверху — атомная масса, слева внизу — порядковый номер, справа вверху — заряд иона, справа внизу — число атомов в молекуле [7] :

атомная масса заряд иона
Символ элемента
порядковый номер число атомов в молекуле
  • ~\mathsf<H_2>» width=»» height=»» /> — молекула водорода, состоящая из двух атомов водорода</li>
<li><img decoding=

    Распространённость химических элементов в земной коре (% масс.) – кларковые числа

    Из всех химических элементов в природе найдено 88; такие элементы, как технеций Tc (порядковый номер 43), прометий Pm (61), астат At (85) и франций Fr (87), а также все элементы, следующие за ураном U (порядковый номер 92), впервые получены искусственно. Некоторые из них в исчезающе малых количествах обнаружены в природе.

    Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99 % массы земной оболочки, так что на остальные элементы приходится менее 1 %. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.

    Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.

    Классификация химических элементов

    Согласно замыслу одного из участников Википедии, на этом месте должен располагаться специальный раздел.
    Вы можете помочь проекту, написав этот раздел.

    Химические элементы как составная часть химических веществ

    Основные статьи: Простые вещества, Химическое соединение

    Химические вещества могут состоять как из одного химического элемента (простое вещество), так и из разных (сложное вещество или химическое соединение).

    Химические элементы образуют около 500 простых веществ [10] . Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией. [10]

    В обычных условиях 11 элементов существуют в виде газообразных простых веществ (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, Rn), 2 — жидкости (Br и Hg), остальные элементы образуют твёрдые тела.

    См. также

    • Список химических элементов
    • Хронология открытия химических элементов
    • Периодическая система химических элементов
    • Нуклид
    • Изотоп

    Ссылки

    • Kедров Б. M. Эволюция понятия элемента в химии. M., 1956
    • Химия и Жизнь (Солтеровская химия). Ч.1. Понятия химии. М.: изд-во РХТУ им. Д. И. Менделеева, 1997
    • Азимов А. Краткая история химии. СПб, Амфора, 2002
    • Бедняков В. А. «О происхождении химических элементов» Э. Ч. А. Я., Том 33 (2002), Часть 4 стр.914-963.

    Примечания

    1. БСЭ
    2. Атомы и химические элементы
    3. Классы неорганических веществ
    4. Кругосвет — ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ
    5. Роберт Бойль и возникновение научной химии / Левченков С. И. Краткий очерк истории химии
    6. Химическая революция / Левченков С. И. Краткий очерк истории химии
    7. 12Основные понятия химии
    8. Marinov, A.; Rodushkin, I.; Kolb, D.; Pape, A.; Kashiv, Y.; Brandt, R.; Gentry, R. V.; Miller, H. W. (2008). «Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th». ArXiv.org. Проверено 2008-04-28.
    9. В космических лучах нашли сверхтяжелые элементы // Lenta.ru. — 2011.
    10. 12Простые и сложные вещества. Аллотропия. Названия сложных веществ
    Химический портал — мир химии, веществ и превращений на страницах Википедии.
    • Химические элементы
    • Основные положения и определения в химии

    Wikimedia Foundation . 2010 .

    Полезное

    Смотреть что такое «Химический элемент» в других словарях:

    • химический элемент — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN chemical element A substance made up of atoms with the same atomic number; common examples are hydrogen, gold, and iron. (Source: MGH)… … Справочник технического переводчика
    • ХИМИЧЕСКИЙ ЭЛЕМЕНТ — совокупность атомов, имеющих одинаковый заряд ядра и, следовательно, одинаковое число электронов в электронной оболочке. Многие из них имеют несколько (см.). Хим. элементы обозначают знаками химическими (см. (9)), а их закономерную взаимосвязь… … Большая политехническая энциклопедия
    • химический элемент — совокупность атомов с одинаковым зарядом ядра Z (одинаковым порядковым, или атомным, номером в периодической системе химических элементов). В таблицу химических элементов, издаваемую ИЮПАК, на 1998 внесено 109 элементов, имеющих названия (имеются … Энциклопедический словарь
    • химический элемент — ▲ атом ↑ с, определенный, заряд, атомное ядро элемент, химический элемент вид атомов, обладающих одинаковым зарядом ядра (железо #). атомный [порядковый] номер равен числу протонов в атомном ядре. атомный вес. ▼ водород, гидроген. кислород,… … Идеографический словарь русского языка
    • химический элемент — cheminis elementas statusas T sritis chemija apibrėžtis Atomų rūšis, turinti vienodą branduolio krūvį. atitikmenys: angl. chemical element; element rus. химический элемент; элемент ryšiai: sinonimas – elementas … Chemijos terminų aiškinamasis žodynas
    • химический элемент — cheminis elementas statusas T sritis Standartizacija ir metrologija apibrėžtis Atomų rūšis, turinti vienodą branduolio krūvį. atitikmenys: angl. chemical element vok. chemisches Element, n rus. химический элемент, m pranc. élément chimique, m … Penkiakalbis aiškinamasis metrologijos terminų žodynas
    • химический элемент — cheminis elementas statusas T sritis chemija apibrėžtis Elektrocheminio elemento tipas. atitikmenys: angl. chemical element rus. химический элемент … Chemijos terminų aiškinamasis žodynas
    • химический элемент — cheminis elementas statusas T sritis fizika atitikmenys: angl. chemical element vok. chemisches Element, n rus. химический элемент, m pranc. élément chimique, m … Fizikos terminų žodynas
    • химический элемент-индикатор — элемент индикатор Химический элемент, участвующий в процессах формирования полезного ископаемого, содержание и формы нахождения которого в природных средах используются при геохимических поисках. [ГОСТ 28492 90] Тематики поиск полезных ископаемых … Справочник технического переводчика
    • Химический элемент полоний — К материалу «В теле скончавшегося в Лондоне Литвиненко нашли следы полония 210» Полоний (лат. polonium) 84 ый элемент периодической таблицы Менделеева был открыт Пьером и Марией Кюри и получил своё имя 13 июля 1898 года в честь… … Энциклопедия ньюсмейкеров
    • Обратная связь: Техподдержка, Реклама на сайте
    • �� Путешествия

    Экспорт словарей на сайты, сделанные на PHP,
    WordPress, MODx.

    • Пометить текст и поделитьсяИскать в этом же словареИскать синонимы
    • Искать во всех словарях
    • Искать в переводах
    • Искать в ИнтернетеИскать в этой же категории

    как отличить химический элемент от простого вещества?

    если кислород мало растворим в воде- значит, о нём говорится как о простом веществе, или как о химическом элементе?
    да и вообще, как отличить химический элемент от простого вещества? это просто пример в учебнике написан, а ничего не понятно..

    Лучший ответ

    В английском языке есть артикли: неопределенный «a» или «an» и определенный «the». Когда мы говорим «Собака — друг человека», то артикль неопределенный, так как речь идет о любой собаке, о собаке как виде. Когда мы говорим «Собака набросилась на него», то артикль определенный, так как речь идет о конкретной собаке, именно об этой, а не другой.
    Также и в химии. Когда требуется «применить» неопределенный артикль, то речь идет об элементе, а когда определенный — то о простом веществе. Например, когда мы говорим «хлор относится к галогенам», то это элемент, так как речь идет о хлоре вообще. Когда мы говорим «Из поврежденного аппарата повалил хлор», то речь идет о простом веществе, так как можно сказать, что речь идет о конкретной порции хлора. Ну вот, как-то так.
    P.S. Когда мы говорим, что кислород мало растворим в воде, речь идет о простом веществе.

    Остальные ответы
    Химический элемент — это и есть простое вещество, проще уже некуда! Элемент ведь, а не соединение.
    Вещество это молекула, а элемент — тип атомов.

    Отличить очень просто! Химический элемент-это допустим как пример: «молекулы воды состоят из 2-х атомов водорода и 1-го атома кислорода. «т. е. химический элемент это когда что-то из чего-то состоит или что-либо содержит, как к примеру выше, а вещество-это например: «кислород мало растворим в воде. «т. е в этом примере говорится только о кислороде и больше не о каких других химических элементах, ну или например ещё про вещества допустим: «водородом заполняют воздушные шары»это тоже является веществом, но только здесь говорится о том куда применяют водород.

    Химический элемент

    Хими́ческий элеме́нт — совокупность атомов с одинаковым зарядом атомных ядер. Атомное ядро состоит из протонов, число которых равно атомному номеру элемента, и нейтронов, число которых может быть различным. Каждый химический элемент имеет своё латинское название и химический символ, состоящий из одной или пары латинских букв и приводятся в таблице Периодической системы элементов Менделеева. Формой существования химических элементов в свободном виде являются простые вещества. Химические элементы образуют около 500 простых веществ. Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией. Например, углерод в виде простого вещества известен в форме угля, графита и алмаза (и это далеко не все формы существования углерода).

    По состоянию на 2016 год известно 118 химических элементов. 94 из них встречаются в природе (некоторые лишь в микроколичествах), а остальные 24 искусственно синтезированы. Химические вещества могут состоять как из одного химического элемента (простое вещество), так и из разных (химическое соединение).

    В определениях и коротких цитатах [ править ]

    Мы усматриваем, таким образом, причину, почему химическое соединение идет само собой и почему при этом развивается теплота. Соединяясь, химические элементы только повинуются своему взаимному стремлению. [1]

    . когда-то, давно, различные элементы, азот, кислород, медь, свинец, золото и т. д. образовались из соединения элементарных атомов водорода и гелия. [2]

    В своей лаборатории я поставил себе на решение вопрос ― являются ли химические элементы организмов <. >такими же, какие мы видим в окружающей природе, или нет. [3]

    За ночь великий комбинатор вдохнул в себя весь кислород, содержащийся в комнате, и оставшиеся в ней химические элементы можно было назвать азотом только из вежливости. Пахло скисшим вином, адскими котлетами и еще чем-то непередаваемо гадким. [4]

    . солнце остывает, потом взрывается, обращается в разреженную массу, которая снова дает блестящее солнце с планетами. <. >При этом материя перемешивается, а химические элементы переходят друг в друга. [5]

    Реакцию ядерного слияния можно назвать алхимической, потому что в средние века алхимики пытались превратить одни химические элементы в другие. Больше всего им, правда, хотелось научиться делать золото. Сейчас, однако, ясно, что ядерная алхимия способна давать нечто поважнее золота — например, энергию. [6]

    Мы философствуем, боремся за передовые идеи, лепечем о пользе общественного труда, строим теории, а в конечном итоге разлагаемся на химические элементы, как растения и животные, которые не строят никаких теорий. [7]

    На берегах различных морей и крупных озер скопились огромные залежи черных песков. <. >В прибрежных месторождениях нашли почти все химические элементы. [8]

    . чтобы расположить химические элементы на самом первом листочке в соответствии с периодическим законом и построить свою первую периодическую таблицу, Менделеев оставил в ней пустые места и принял новые значения атомных весов для многих элементов. По существу уже это было предсказанием. [9]

    В 1661 году Роберт Бойль написал книгу под названием «Химик-скептик», где он объяснил суть элемента. Если всё мироздание действительно состоит из элементов, то каждый элемент должен являться простейшей, неделимой субстанцией, и тогда элемент нельзя создать из ещё более мелких субстанций. [10]

    Что касается четвертой стихии, то химики пришли к выводу, что огонь — это вообще одна из форм энергии, значит, он не принадлежит к элементам. [10]

    Взять, к примеру, известь. В XVIII веке известь считалась элементом, так как ни одна химическая реакция не могла разложить её на составляющие. Однако у химиков возникло предположение, что известь состоит из какого-то металла и кислорода. [10]

    Для более легкого обозначения химических элементов шведский химик Йёнс Якоб Берцелиус (1779–1848) ввел в 1814 году для каждого элемента свой химический символ. [10]

    В середине XIX века существовали два определения элемента. Первое — элемент не может быть разбит на два или несколько более простых субстанций (определение Бойля) и второе — элемент состоит из атомов с определённым атомным весом (определение Дальтона). [10]

    . не явится ли искусственное изготовление пищи человека утопией, раз должно приниматься во внимание происходящее при этом изменение некоторых химических элементов. Возможно, что некоторые химические элементы входит в пищу человека через растительные или животные вещества. [11]

    Даже в списке великого француза Лавуазье, которого считают основателем химии, наряду с действительными элементами фигурируют и невесомые элементы: теплотвор и световое вещество. [12]

    Для того чтобы осознать, что же такое «химический элемент», ученым потребовалось около 2200 лет. [13]

    Откуда берутся элементы? В течение многих веков в науке процветало заблуждение, что они ниоткуда не берутся. [13]

    . элементы были изготовлены быстрее, чем хорошая хозяйка зажарит утку с картошкой. [13]

    Странные элементы творят в нашем организме странные дела – зачастую во вред нам, но иногда и на пользу. Элемент, токсичный в одних обстоятельствах, в других может оказаться противоядием, которое спасет жизнь. [13]

    В научной и научно-популярной литературе [ править ]

    Далеко не все химические элементы встречаются в растении, и даже из тех, которые встречаются, мы упомянем только о главнейших, играющих выдающуюся роль в жизни растения. Для того, чтобы получить понятие о химическом составе растения, мы подвергаем его действию высокой температуры. Прежде всего улетит вода, и при температуре немного выше 100° мы получим так называемое сухое вещество растения. <. >
    Теплота и свет, развивающиеся от удара, от невидимых столкновений между частицами углерода и водорода с частицами кислорода, и есть та теплота и тот свет, которые мы наблюдаем в горящем пламени. Мы усматриваем, таким образом, причину, почему химическое соединение идет само собой и почему при этом развивается теплота. Соединяясь, химические элементы только повинуются своему взаимному стремлению, как наши падающие шары, а, столкнувшись, от удара нагреваются, освобождают теплоту. [1]

    Нельзя отрицать, что астрономические единицы периодичны, например, солнце остывает, потом взрывается, обращается в разреженную массу, которая снова дает блестящее солнце с планетами. Далее повторяется то же. При этом материя перемешивается, а химические элементы переходят друг в друга. [5]

    В звездах происходит, по выражению физиков, ядерное горение водорода, а гелий — это зола, остающаяся после сгорания. Однако гелиевая зола сильно отличается от обычной. Обычную выгребают из печки и выбрасывают, а гелиевая идет в дело: в звездной печи ядра гелия тоже могут сливаться, образуя постепенно другие, все более и более тяжелые элементы. Реакцию ядерного слияния можно назвать алхимической, потому что в средние века алхимики пытались превратить одни химические элементы в другие. Больше всего им, правда, хотелось научиться делать золото. Сейчас, однако, ясно, что ядерная алхимия способна давать нечто поважнее золота — например, энергию. [6]

    Дело в том, что выявилась возможность более глубокого отличия между составом, а следовательно, и пищей живых организмов и окружающей их среды, чем я тогда предполагал. Живые организмы, возможно, не только создают особые, нигде в других условиях не образующиеся на земле молекулы ― соединения элементов ― чрезвычайно сложного и своеобразного строения и не только избирают из окружающей среды определенные ― качественно и количественно ― химические элементы, но могут обладать способностью разлагать изотопические смеси, из которых состоят химические элементы, меняют атомный вес (меняют отношение между изотопами, составляющими химический элемент) и избирают из окружающей среды отдельные изотопы. Эта научная гипотеза, вытекавшая из данных наблюдения над живым веществом и над биосферой, была поставлена мной в 1926 г. конкретно, и с 1928 г. в этой области идет научная экспериментальная работа. <. >И можно поставить вопрос, не явится ли искусственное изготовление пищи человека утопией, раз должно приниматься во внимание происходящее при этом изменение некоторых химических элементов. Возможно, что некоторые химические элементы входит в пищу человека через растительные или животные вещества, которыми он питается, или в виде чистых изотопов, или в виде измененной по сравнению с обычным химическим элементом иной изотопической смеси. Если только процесс изменения изотопических смесей совершается в природе исключительно в живом веществе, то в таком случае человек не может избавиться от растительной и животной пищи, если, конечно, человек не сумеет сам извлекать из косной материи нужные ему для жизни химические элементы ― иные, чем в окружающей среде, их изотопические смеси, ― или получать чистые изотопы. [11]

    В 1661 году Роберт Бойль написал книгу под названием «Химик-скептик», где он объяснил суть элемента. Если всё мироздание действительно состоит из элементов, то каждый элемент должен являться простейшей, неделимой субстанцией, и тогда элемент нельзя создать из ещё более мелких субстанций. Если же субстанцию можно разбить на ещё более мелкие субстанции, то это уже не элемент.
    Землю можно легко разделить на более простые субстанции, значит, земля — не элемент. Век спустя вода и воздух были разделены на ещё более мелкие частицы, значит, вода и воздух — тоже не элементы. Что касается четвертой стихии, то химики пришли к выводу, что огонь — это вообще одна из форм энергии, значит, он не принадлежит к элементам. [10]

    Важный шаг вперёд в этом направлении сделал французский химик Жозеф Луи Пруст (1754–1826). Он работал, к примеру, с неким соединением (теперь мы называем его дигидроксокарбонатом меди, состоящим из трёх элементов: меди, углерода и кислорода). Сначала Пруст взял образец чистого дигидроксокарбоната меди, разложил его на эти три элемента и взвесил каждый из них. Он обнаружил, что все три элемента в составе вещества всегда находятся в одной и той же пропорции: 5 частей меди (по весу), 4 части кислорода и 1 часть углерода. То есть во всех образцах элементы складывались только в этой пропорции, и никак иначе.
    Пруст обнаружил, что и в других соединениях элементы также находятся в определённых пропорциях, и в 1797 году он объявил о своём открытии, получившем название «закон Пруста», или «закон постоянства состава». [10]

    Взять, к примеру, известь. В XVIII веке известь считалась элементом, так как ни одна химическая реакция не могла разложить её на составляющие. Однако у химиков возникло предположение, что известь состоит из какого-то металла и кислорода. И лишь в 1808 году английскому химику Гемфри Дэви (1778–1829) удалось разложить известь и выявить новый элемент — кальций (так по-латыни называется известь). Учёный применил для этого электрический ток — новую для того времени технологию.
    Для более легкого обозначения химических элементов шведский химик Йёнс Якоб Берцелиус (1779–1848) ввел в 1814 году для каждого элемента свой химический символ. Естественно, проще всего было использовать для этого первую и (как правило) вторую букву латинского названия элемента. Благодаря столь логичному подходу новые обозначения легко запоминаются и после некоторой тренировки не вызывают никаких затруднений при чтении. [10]

    В середине XIX века существовали два определения элемента. Первое — элемент не может быть разбит на два или несколько более простых субстанций (определение Бойля) и второе — элемент состоит из атомов с определённым атомным весом (определение Дальтона). Впрочем, все элементы удовлетворяли и первому и второму определению. Тем не менее определённые сомнения все-таки были, слишком уж много было химических элементов (в 1860 году было известно уже более 60 элементов).
    Эти элементы обладали самыми различными свойствами: здесь были и газы, и жидкости, больше всего было твёрдых веществ; были и неметаллы, и лёгкие металлы, и тяжёлые металлы, и полуметаллы; некоторые из них обладали высокой степенью активности, остальные средней, а какие-то были инертны; некоторые имели цвет, а некоторые были бесцветны.
    Все это очень разочаровывало учёных. [10]

    Для того чтобы осознать, что же такое «химический элемент», ученым потребовалось около 2200 лет – поиск начался примерно в 400 году до н. э. в Древней Греции и завершился к 1800 году в Европе. Дело в том, что большинство элементов очень редко встречаются в чистом виде. Сложно было понять, что делает углерод углеродом, так как этот элемент встречается в виде тысяч соединений, каждое из которых обладает особенными свойствами. Сегодня мы знаем, что, например, углекислый газ – не элемент, так как каждая молекула этого газа состоит из атомов углерода и кислорода. Но углерод и кислород являются элементами, так как их нельзя разложить на более простые составляющие, не разрушив атомы. [13]

    Откуда берутся элементы? В течение многих веков в науке процветало заблуждение, что они ниоткуда не берутся. Велись долгие метафизические споры о том, кто (или Кто) мог создать мироздание и почему Он это сделал, но все соглашались, что все элементы – ровесники нашей Вселенной. Они не появляются и не исчезают, а просто существуют. Более новые теории, в частности теория Большого взрыва, сформулированная в 1930-е годы, также принимали эту точку зрения за аксиому. [13]

    Один учёный подсчитал, что уже через десять минут после Большого взрыва сформировалась вся известная материя, а потом резюмировал: «элементы были изготовлены быстрее, чем хорошая хозяйка зажарит утку с картошкой». Опять же, здесь мы имеем дело с общепринятым мнением о том, что история всех элементов протекает исключительно стабильно и является, в сущности, «астроисторией». [13]

    При взрыве сверхновой в нашу Солнечную систему были вброшены все существующие в природе элементы, а благодаря перемешиванию пород на молодых незатвердевших планетах эти элементы равномерно распределились в скальных грунтах. Но эти процессы не позволяют ответить на все вопросы, связанные с распределением элементов на Земле. С тех пор как взорвалась сверхновая, многие элементы уже исчезли с лица Земли, так как их ядра оказались слишком непрочными, чтобы уцелеть в природе. Такая нестабильность поражала учёных, в периодической системе оказалось несколько необъяснимых пробелов, которые химики менделеевской эпохи не могли заполнить, несмотря на все поиски. В конце концов, эти клетки таблицы все же удалось заполнить, но сначала пришлось развить целые новые научные дисциплины. Освоив эти науки, мы научились создавать элементы самостоятельно и лишь потом осознали, что из-за непрочности некоторые элементы таят в себе страшную угрозу. Процессы синтеза и расщепления атомов оказались связаны гораздо теснее, чем кто-либо мог предположить. [13]

    Периодическая таблица полна переменчивых элементов, большинство из которых гораздо сложнее, чем прямолинейные агрессоры из «коридора ядов». Странные элементы творят в нашем организме странные дела – зачастую во вред нам, но иногда и на пользу. Элемент, токсичный в одних обстоятельствах, в других может оказаться противоядием, которое спасет жизнь. Элементы, участвующие в нашем метаболизме каким-то необычным образом, могут стать для врачей новыми диагностическими инструментами. Взаимосвязи между элементами и лекарствами даже помогают прояснить, как сама жизнь вызревает из неодушевленного химического материала, наполняющего периодическую систему. [13]

    В определённом смысле периодическая система практически бесполезна при изучении звездной истории элементов. Все звёзды состоят почти исключительно из водорода и гелия, это же можно сказать и о планетах-гигантах. Как ни важен водородно-гелиевый цикл для космологии, сам по себе он малоинтересен. Но чтобы осознать самые интересные детали нашего существования – роль сверхновых или углеродную основу жизни, – нужно изучать периодическую систему. Как писал философ и историк Эрик Скерри, «все элементы кроме гелия и водорода составляют лишь 0,04 процента Вселенной. Казалось бы, вся остальная периодическая система не имеет особого значения. Но, как бы то ни было, мы живём на Земле, а на этой планете набор элементов гораздо сложнее». [13]

    Видно, что проблемы с общепринятыми Периодическими Таблицами химических элементов довольно глубокие. Они связаны с тем, что до сих пор у Периодического Закона химических элементов нет логического обоснования. Для фундаментальных Законов Природы, каковым, безусловно, является Периодический Закон химических элементов, логическим обоснованием может и должно быть математическое обоснование на математических принципах.
    В истории систематизации химических элементов было множество попыток охватить все элементы математической формулой. Были попытки и с тригонометрическими, и с экспоненциальными, и со степенными функциями. Но все они потерпели неудачу. По-видимому, по причине того, что фундаментальные законы природы на самом деле просты, и выражаться должны простыми уравнениями. [14]

    Индуктивный (от частного к общему) подход к систематизации химических элементов по мере открытия всё новых элементов оправдан с исторической точки зрения. Но к сегодняшнему дню открытия и синтез новых химических элементов подошли к верхнему пределу множества химических элементов. Настало время для дедуктивной (от общего к частному) систематизации множества химических элементов. Это не означает пренебрежения индуктивным методом, в особенности результатами, полученными к сегодняшнему дню. Напротив, результаты дедуктивного выявления общих математических закономерностей в распределении химических элементов (номеров) должны сопоставляться с известным ныне порядком (нумерацией) распределения химических элементов, полученным индуктивно в течение более двухсот лет. [14]

    В публицистике и документальной прозе [ править ]

    Всякое излучение, видимое или невидимое, представляет из себя некоторую потерю энергии; следовательно принцип относительности Эйнштейна нам говорит что масса какого нибудь тела, излучающего тепловые, видимые или ультра-фиолетовые лучи ― уменьшается; если мы следовательно предположив, что когда-то, давно, различные элементы, азот, кислород, медь, свинец, золото и т. д. образовались из соединения элементарных атомов водорода и гелия, то с тех пор происходило постоянное излучение энергии и масса этих элементов должна была уменьшиться; вот почему атомные веса различных элементов не равны точно целым числам, а имеют значения, близко лежащие к целым числам. Мы можем из атомного веса узнать историю происхождения элементов. Эта гипотеза происхождения элементов, построенная знаменитым французским физиком Ланжевеном, получила в этом году замечательное подтверждение в опытах английского физика Рутерфорда, которому удалось показать, что под влиянием х-лучей азот распадается на водород и гелий. [2]

    Закон Менделеева в этом не имеет равных себе. Даже при самой первой формулировке закона ― при составлении первого варианта периодической таблицы ― Менделеев должен был основывать размещение элементов в таблице на предсказаниях, вытекающих из самого периодического закона. Это ― яркий пример диалектической логики познания. Для того чтобы расположить химические элементы на самом первом листочке в соответствии с периодическим законом и построить свою первую периодическую таблицу, Менделеев оставил в ней пустые места и принял новые значения атомных весов для многих элементов. По существу уже это было предсказанием. Эти пустые места и исправленные значения атомных весов, определяющие положение химических элементов в системе, были абсолютно недопустимы с точки зрения химика прошлого столетия ― и абсолютно необходимы для установления периодического закона. [9]

    Даже в списке великого француза Лавуазье (1743-1794), которого считают основателем химии, наряду с действительными элементами фигурируют и невесомые элементы: теплотвор и световое вещество. В первой половине XVIII века было известно 15 элементов, а к концу века число их возросло до 35. Правда, лишь 23 из них ― действительные элементы, остальные же ― или несуществующие элементы, или вещества, как едкие натр и калий, которые оказались сложными. К середине XIX века в химических руководствах описывалось уже свыше 50 неразложимых веществ. [12]

    . при упрощённом взгляде на историю легко переоценить вклад в науку, сделанный Менделеевым, Мейером и другими. Они, несомненно, проделали важную работу, соорудив каркас, на котором потомки смогли разместить все химические элементы. Но необходимо отметить, что в 1869 году было известно всего две трети элементов, и долгие годы многие из них находились не на своих местах даже в самых лучших таблицах. [13]

    Мир камней демократичнее, чем мир людей. Смешную иерархию элементов придумали люди. Золото они назвали «благородным» за то, что оно не подвержено коррозии, а ксенон с криптоном полупрезрительно окрестили «инертными газами» ровно за то же самое свойство ― нежелание вступать в случайные контакты с другими. [15]

    В мемуарах, письмах и дневниковой прозе [ править ]

    Для того, чтобы сделать Вам ясным, как обставлена здесь моя научная работа ― я хочу коснуться недавнего со мной происшествия, тем более, что по этому делу я обращаюсь за помощью к Вам. В своей лаборатории я поставил себе на решение вопрос ― являются ли химические элементы организмов (напр, железо или калий) такими же, какие мы видим в окружающей природе, или нет. Задача эта раньше никогда еще не ставилась. С величайшими усилиями я мог довести это дело до конца. [3]

    В художественной прозе [ править ]

    . в маленьком номере, отведенном дирижёру симфонического оркестра, спал Остап Бендер. Он лежал на плюшевом одеяле, одетый, прижимая к груди чемодан с миллионом. За ночь великий комбинатор вдохнул в себя весь кислород, содержащийся в комнате, и оставшиеся в ней химические элементы можно было назвать азотом только из вежливости. Пахло скисшим вином, адскими котлетами и еще чем-то непередаваемо гадким. Остап застонал и повернулся. Чемодан свалился на пол. [4]

    ― А кто вообще его избежит? ― выкрикнул Максимов. ― Человек подходит к концу и думает: ну, вот и все. И зачем все это было? Что это я делал здесь? Мы философствуем, боремся за передовые идеи, лепечем о пользе общественного труда, строим теории, а в конечном итоге разлагаемся на химические элементы, как растения и животные, которые не строят никаких теорий. Трагикомедия, да и только. В народе говорят: все там будем. Все! И передовики производства, и бездельники, и благородные люди, и подлецы. А где это «там»? Нет этого «там». Тьма. [7]

    Больше половины всего циркония добывают зарубежные страны у берегов Австралии. На берегах различных морей и крупных озер скопились огромные залежи черных песков. Шторм и прибой возвращают речные наносы, в которых очень много железа. Песчаные открытые «рудники» ― дешевое и притом почти неистощимое сырье. Реки и моря все время пополняют его запас. В прибрежных месторождениях нашли почти все химические элементы. В прибрежной отмели иной раз находили алмазы. Похоже, что и это ― дары подводных недр, кимберлитовые трубки выходят и на дно. [8]

    В поэзии [ править ]

    он зажег злоязычную спичку,
    потом аккуратно зажег фотопленку
    и прикуривает от фотопленки;
    третий ты наблюдает,
    как пылают узкие листья газа,
    и на фоне пыланья ―
    эмалированный контур кастрюли,
    в которой:
    в результате проникновенья молекул воды и пара
    в молекулы
    кипящей капусты,
    перловой крупы
    и бараньей ноги с мозговой костью
    образуется новый химический элемент ―
    несправедливо им пренебрег Менделеев ―
    щи с бараниной. [16]

    Источники [ править ]

    1. 12К.А.Тимирязев. «Жизнь растения» (по изданию 1919 года). — М.: Сельхозгиз, 1936 г.
    2. 12В. А. Анри. Современное научное мировоззрение. — М.: «Грядущая Россия», 1920 г.
    3. 12Вернадский В.И. Труды по всеобщей истории науки. Второе издание. ― Москва: «Наука», 1988 г.
    4. 12Ильф И., Петров Е., Собрание сочинений: В пяти томах. Т.2. — М: ГИХЛ, 1961 г.
    5. 12Циолковский К. Э. Ум и страсти. Воля вселенной. Неизвестные разумные силы. ― М.: МИП «Память», Российско-Американский Университет, 1993 г.
    6. 12М. П. Бронштейн «Солнечное вещество». — М.: Детиздат ЦК ВЛКСМ, 1936 г.
    7. 12Василий Аксёнов. «Апельсины из Марокко». — М.: Эксмо, 2006 г.
    8. 12Борис Ляпунов. «Неоткрытая планета». — М.: «Детская литература», 1968 г.
    9. 12И. В. Петрянов-Соколов «Закону Менделеева 100 лет». — М.: «Химия и жизнь» № 3, 1969 г.
    10. 123456789Айзек Азимов, Популярная физика. От архимедова рычага до квантовой механики. ― М.: Центрполиграф, 2005 г. — 752 стр.
    11. 12Вернадский В.И. «Автотрофность человечества». — М.: «Химия и жизнь», № 8, 1970 г.
    12. 12А. И. Китайгородский, Л. Д. Ландау. Физика для всех. — М.: Наука, 1984 г.
    13. 1234567891011Сэм Кин. Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева. — М.: Эксмо, 2015 г. — 464 с.
    14. 12Сен Гук Ким, Ирина Ким, Дмитрий Ким. Элементы. — Санкт-Петербург: ООО «СУПЕР Издательство», 2019 г.
    15. В. О. Авченко. Кристалл в прозрачной оправе. Рассказы о воде и камнях. — М.: АСТ, 2015 г.
    16. В. Соснора. Триптих. — Л.: Лениздат, 1965 г. — 154 с. Худ. М. А. Кулаков. — 10 000 экз. г.

    См. также [ править ]

    Химические элементы:

    • Статья в Википедии
    • Тексты в Викитеке
    • Медиафайлы на Викискладе
    • Новости в Викиновостях
    • Тематические статьи по алфавиту
    • Химия
    • Вещества
    • Химические элементы
    • Викицитатник:Ссылка на Википедию непосредственно в статье
    • Викицитатник:Ссылка на Викитеку непосредственно в статье
    • Викицитатник:Ссылка на Викисклад непосредственно в статье
    • Викицитатник:Ссылка на Викиновости непосредственно в статье

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *