Что можно сделать из водорода
Перейти к содержимому

Что можно сделать из водорода

  • автор:

Применение водорода в промышленности

Водород является востребованным компонентом для большого количества производственных процессов, относящимся к промышленности. Чтобы его использовать для решения технических задач количество примесей в составе вещества не должно превышать 0, 05%, относится к марке, А и 0,01% — марка Б.

Популярность и востребованность химического элемента связана напрямую с его положительными особенностями:

  • универсальность;
  • высокая химическая активность;
  • малый вес;
  • хорошая теплопроводность;
  • большое количество тепла, образовывающееся в процессе горения;
  • безопасность использования.

Востребованность водорода для промышленных целей

Водород требуется для получения аммиака, выступающим неотъемлемым компонентом для добычи удобрений азотного типа, производства пластмассы, волокон из синтетических материалов и лекарств. Сочетание его с хлором дает возможность получить хлороводород и соляную кислоту. Также благодаря нему изготавливается множество веществ, относящимся к органическим.

Для пищевой промышленности водород используется во время изготовления маргарина , состоящего из твердых жиров растительного происхождения. Гидрогенизация дает возможность жидкие растительные масла превратить в затверделый жир. Химический элемент может выступать как пропеллент — защитная среда упаковки с пищевыми продуктами.

Использование водорода в металлургии

С помощью водорода удается восстановить первоначальные свойства определенных металлов, состоящих из их оксидов (вольфрам). При его горении в кислороде достигается температура в среднем 3000 °C. Данные условия позволяют выполнять плавление и сваривание металлов тугоплавкого типа.

Использование водорода в промышленности можно наблюдать на примере металлургии. данной отрасли он задействуется с целью восстановительного процесса металлов из оксидов. В результате удается получить сплавы, относящиеся к тугоплавким. Затем водородно-кислородное пламя, отличающееся высокой температурой, обладает способностью расплавлять их и сваривать. Для таких целей задействуется горелка, спроектированная по аналогии ацетиленокислородной.

Наша продукция

Лазерная резка

Фармацевтика

Микроэлектроника

Пищевая пром-сть

Преимущества применения водорода

Водород, пребывающий в жидком состоянии, является отличным вариантом топлива для ракет. Также активно идет работа, чтобы в будущем использовать его в виде горючего для силового агрегата машин. Воплощение в жизнь данной идеи положительно скажется на экологической ситуации, так как при сгорании водорода в атмосферу не попадают опасные компоненты, наносящиеся непоправимый вред окружающей среде.

Одним из основных потребителем химического элемента являются предприятия, работающие в сфере нефтехимии и занимающиеся переработкой нефти. Здесь расход водорода, который добывается промышленным методом, достигает отметки 50% от общего числа. Большое количество полимеров, соединений углеводородного типа и масс, с пластическими свойствами, получают исключительно из водорода.

Газообразное вещество благодаря отличной теплопроводности и отсутствию в составе вредных компонентов оптимально подходит для снижения уровня нагрева турбогенераторов, характеризующихся высоким запасом мощности. В условиях повышенной температуры водород демонстрирует регенерацию, беря на себя атомы кислорода, находящиеся в оксидах металлов. Это дает возможность применять его для прямого восстановления руды.

В зависимости от отрасли газообразная консистенция выступает как основной элемент, дополнительный материал либо горючее.

Cогласно статистическим данным востребованность водорода стремительно растет и его использование каждые 15 лет удваивается в несколько раз.

На водороде в будущее

На водороде в будущее

П равительство РФ утвердило план мероприятий «Развитие водородной энергетики в Российской федерации до 2024 года». Его цель — организация первоочередных работ по формированию в стране высокопроизводительной экспортно ориентированной отрасли водородной энергетики, развивающейся на основе современных технологий и обеспеченной высококвалифицированными кадрами.

В преамбуле плана отмечается, что одним из вызовов энергетической безопасности для Российской Федерации является изменение структуры спроса на энергоресурсы, включая замещение углеводородов другими видами энергетических ресурсов, в том числе водородом. Наша страна в этом смысле следует всемирной тенденции: практически все развитые страны — США, Япония, Китай, страны ЕС — в целом приняли свои стратегии развития водородной отрасли и ставят перед собой весьма амбициозные цели. Так, министр экономики и энергетики ФРГ Петер Альтмайер выразил уверенность, что благодаря принятию национальной водородной стратегии Германия будет играть ведущую роль в водородном развитии, как это было двадцать лет назад, когда началось продвижение использования возобновляемых источников энергии.

Наша страна тоже обладает серьезным потенциалом для организации масштабного производства водорода, развития водородной энергетики и использования водорода в самых разных областях экономики. Можно вспомнить, что именно в нашей стране еще в 1980-е годы был создан и уже летал первый в мире самолет с водородным двигателем. Водород широко используется в российской космической отрасли, для этого были созданы и производственные мощности, и средства доставки и хранения этого газа. Сейчас в стране ведутся серьезные научные и технологические разработки по применению водорода в различных видах транспорта и энергетике.

Мы встретились с одним из ведущих специалистов в этой отрасли, руководителем Центра компетенции НТИ по технологиям новых и мобильных источников энергии, доктором химических наук Юрием Добровольским, чтобы обсудить перспективы развития водородной энергетики в нашей стране.

ТУ155.jpg

Водородный Ту-155 был оснащён двумя турбовентиляторными двигателями «НК-8-2» общей тягой в 21 тонну и турбореактивным «НК-88», работающим на водороде. Мог пролететь до 3000 км, при максимальной скорости около 1000 км/ч, и «потолке» до 12 км. Первый полёт Ту-155 состоялся весной 1988 года

— Для чего нужна водородная стратегия и чего можно ждать от развития водородной промышленности?

— Наверное, всем уже ясно, что мир так или иначе переходит к «зеленой» энергетике, в первую очередь от углеводородной — к возобновляемым источникам энергии (ВИЭ).

Понятно, что быстро это сделать невозможно: нельзя построить за десять-двадцать лет столько ветряков, солнечных батарей, приливных и геотермальных станций, чтобы мир прямо завтра перешел к полностью углеродно нейтральной экономике. Но есть возможность принять промежуточные решения, на основе которых можно это сделать, и водород может стать промежуточным энергоносителем на период перехода к возобновляемым источникам тока.

Для этого необходимо постепенно внедрять водород в те области промышленности и техники, где это возможно. Например, в производство удобрений, в металлургию, где всегда присутствуют углеродсодержащие соединения, в нефтехимию, потому что нефтехимия — это не только горючее, но и много полезных вещей, которые мы получаем из нефти. Более того, в отличие от большой энергетики в этих отраслях водород, скорее всего, останется надолго и будет потребляться как химическое сырье в достаточном количестве.

И конечно, существуют большие возможности применения водорода на транспорте. Так или иначе, мы постепенно будем переходить на электрический транспорт, это экологически и климатически обоснованно. Сейчас такой транспорт в основном использует аккумуляторные системы, но у них есть масса недостатков. Во-первых, это не очень большая энергоемкость. Для литий-ионного аккумулятора это максимум 250 ватт-часов на килограмм, а для большого электротранспорта требуется емкость минимум 600–700 ватт-часов на килограмм. Вряд ли это удастся сделать с аккумуляторами в ближайшее время, если не будет какого-то фантастического прорыва в области совершенно новых аккумуляторных материалов. А водородные топливные элементы на автомобилях уже сейчас имеют большую энергоемкость и действительно могут заменить практически любой транспорт, которым мы сейчас пользуемся.

Постепенно двигаясь к возобновляемой энергии, мы можем благодаря водороду не только менять энергетику, но менять все сферы производства, переводя их на более «зеленые» рельсы

Кроме того, недостатком аккумуляторного электрического транспорта является то, что его приходится довольно долго заряжать. Есть быстрые зарядки, но они, как правило, приводят к быстрой деградации аккумуляторов. А водородом автомобиль заряжается так же, как обычным горючим: за несколько минут.

То есть, с одной стороны, водородная автотехника не сильно отличается с точки зрения потребительских свойств от привычной нам, а с другой стороны, она абсолютно экологически и климатически нейтральна.

Таким образом, постепенно двигаясь к возобновляемой энергии, мы можем благодаря водороду менять не только энергетику, но и все сферы производства, переводя их на более «зеленые» рельсы. А транспорт, наверное, единственная отрасль, в которой это уже сейчас экономически оправданно. Во всех остальных, о которых я сказал, такой переход пока так или иначе будет удорожать производство.

Правда, мы пока не видим решения, как заменить аккумуляторами или топливными элементами маршевые двигатели на больших самолетах. Но можно заменить керосиновый двигатель внутреннего сгорания на водородный, и эти технологии известны в России. Единственный в мире летавший на водороде самолет Ту-155 был сделан в нашей стране в конце советского периода. И крупные авиастроительные фирмы собираются к 2035 году показать большие самолеты на водороде. Так что давайте резюмируем, и это очень важно повторить: мир сейчас вступает в переходный период на пути к полностью «зеленой» энергетике и транспорту. И водород в этот период играет ключевую роль. Причем если в самой энергетике он будет важен именно в переходном периоде, то в области транспорта водород останется навсегда.

— А чего вы ждете от концепции, которую правительство предполагает принять в первом квартале следующего года в соответствии с планом мероприятий «Развитие водородной энергетики в Российской Федерации до 2024 года»?

— У нас сейчас в экспертном сообществе и среди ответственных лиц есть три разные позиции по вопросу, как развивать водородную энергетику и нужно ли вообще ее развивать. Крайняя консервативная позиция: нас обманывают наши зарубежные партнеры, водород слишком дорог, поэтому он никогда никому не будет нужен и заниматься этим не надо. У нас много углеводородов, и они важнее. Удивительно, но этой позиции придерживаются некоторые известные ученые, которые активно участвовали в разработке водородной дорожной карты.

Вторая позиция — промежуточная: если мы хотим сохранить свой экономический потенциал в то время, когда Европа и Азия собираются уменьшать количество потребляемого углеводородного топлива, то давайте производить и транспортировать водород, тем более что самый дешевый водород сейчас получается из углеводородов.

И третья точка зрения, которой придерживаюсь я: вне зависимости от возможностей поставки водорода на экспорт, чтобы уменьшить риски нашего экспорта, нам надо в первую очередь научиться самим потреблять водород. В какой-то момент его зарубежные покупатели могут нам сказать, что больше водорода им не надо, и это станет возможным, когда они перейдут на ВИЭ. Такие источники можно поставить везде, исчезнет необходимость в логистике водорода: его не надо будет подвозить, его будут производить на месте, там же, где используют. Но если есть внутреннее потребление, своя техника, свои металлургические и другие производства, транспорт, энергетика и городское хозяйство на водороде, то мы будем его производить в первую очередь именно для себя.

Вот три точки зрения, и какая победит в ближайшее время, мне до сих пор непонятно. Я слежу за этими обсуждениями, сам в них участвую, но не могу предсказать результат этой борьбы экспертных мнений: политических, научных и технических.

Причем водородная энергетика — это одна из тех отраслей, где мы в ближайшее время можем стать лидерами, и не столько в экспорте водорода как сырья, сколько в его применении. Мы еще сохранили шансы стать лидерами, поскольку в области водородных технологий не утратили своих компетенций, что признают и многие европейские страны, и тем более азиатские. Это позволит нам в перспективе занять достойное место не только на рынке водорода, но и на рынке высоких водородных технологий.

ЦВЕТНЫЕ ВОДОРОДЫ.jpg

Градация водорода в зависимости от его производства

— То есть, по вашему мнению, концепция должна предусматривать максимальные варианты развития не только и не столько экспорта, сколько внутреннего потребления водорода?

— Совершенно верно. Тем более что с экспортом водорода могут быть и климатические, и политические проблемы. Дело в том, что отношение к водороду на зарубежных рынках определяется способом его производства, в зависимости от которого ему условно присваивается разные цвета: зеленый, серый, оранжевый, голубой, бирюзовый.

«Зеленый» водород — это водород, полученный электролизом исключительно с помощью ВИЭ — энергии ветра, солнца, воды, любых других источников, которые не использует углеводороды, кроме атомных электростанций. Если водород получен с помощью АЭС, тут же подключаются политики, которые говорят, что он уже не «зеленый», а «оранжевый». И в Европе начинаются политические споры: «оранжевый» — это экологичный водород или нет, можем ли мы его импортировать?

Моя точка зрения такова: экологичность производства водорода надо оценивать по тому, сколько диоксида углерода при полном цикле его производства выбрасывается в атмосферу. Хорошо считать водород, полученный с помощью ВИЭ, «зеленым», забывая, что на строительство таких систем получения энергии мы тоже потратили углеводороды и выбросили в атмосферу довольно много углекислого газа.

«Серый» водород — это тот, который получается из углеводородов методом парогазовой конверсии, при этом углекислый газ выбрасывается в атмосферу, а «голубой» водород получается тем же способом, но углекислый газ при этом захоранивается или перерабатывается, а не выбрасывается в атмосферу.

Аналогично «бирюзовый» водород, но он получается методом пиролиза. При этом надо учитывать, что «серый» водород от электролизного «зеленого» водорода по себестоимости пока отличается более чем в десять раз.

— Не получается ли так, что затраты энергии на производство самого чистого — «зеленого» — водорода больше, чем стоимость энергии, получаемой при его использовании?

— Конечно, такой водород сейчас дороже, как ни считай. Но вопрос, какие цели человечество ставит перед собой. Моя позиция в том, что человечество наконец доросло до того, что начинает отвечать за свои поступки и несет коллективную ответственность перед будущими поколениями, в том числе за сохранение климата. Я не большой сторонник теории антропогенного загрязнения окружающей среды, хотя вероятность того, что именно мы повлияли на климат, есть, и даже если она минимальная, мы все должны с этим бороться. Что мы оставим нашим детям? Хотим ли мы, чтобы наши дети жили в условиях постоянных наводнений, пожаров и ураганов? Если нет, то человечество просто обязано заняться решением этой проблемы. Хотя бы в техносфере, в которой от него что-то зависит.

Водородная энергетика — это одна из тех отраслей, где мы в ближайшее время можем стать лидерами не столько в экспорте водорода как сырья, сколько в его применении

Причем это вопрос не только экономический. Сейчас, когда весь мир, по крайней мере развитые страны, стал достаточно богат, мы можем часть накопленных богатств потратить на то, чтобы восстановить климат и экологически безопасную окружающую среду.

Тем более что технологии не стоят на месте. Вспомните, что еще десять-пятнадцать лет назад, когда строились первые солнечные электростанции, они были дороги, им была необходима серьезная поддержка государства. Прошло всего десять лет — и государственная поддержка солнечной энергетики во многих странах существенно снизилась, эти направления вполне развиты, себестоимость солнечной электроэнергии упала настолько, что она стала вполне конкурентоспособной. И я думаю, что со временем электролиз станет экономически более выгодным, чем другие виды производства водорода, как за счет совершенствования самой технологии, так и потому, что его можно производить на месте потребления электричества, что позволит достичь существенной экономии за счет логистики и самого водорода, и электричества.

Вывод простой: чтобы водородные технологии начали активно применяться и подешевели, необходима государственная поддержка, какая раньше существовала в отношении других ВИЭ.

ПРОИЗВ И ПОТРЕБЛ ЗЕЛЕНОГО ВОДОР.jpg

Производство и потребление «зеленого» водорода

Газ из газа

— Насколько Россия готова к серьезному производству водорода в том числе на экспорт? И насколько она готова реализовывать свои научно-технологические заделы, которые, как вы говорите, у нас есть?

— Если вы посмотрите водородные стратегии Европы до 2050 года, то увидите, что в них на этот период заложены только пятьдесят процентов «зеленого» водорода, а пятьдесят процентов — «голубого». То есть половина всего потребляемого водорода будет получаться из углеводородов. Нам это выгодно, все-таки мы углеводородная держава. Но нужна логистика. К сожалению, основная стоимость водорода лежит не столько в его производстве, сколько в транспортировке. Потребуется огромная система газопроводов, хотя некоторые из существующих у нас трубопроводов уже сейчас пригодны для транспортировки водорода. Например, «Северный поток — 2»: можно просто подключать на входе водород и качать его прямо в Германию. И это самый дешевый способ передачи водорода. То есть у нас уже есть трубопроводы в Азию и Европу — туда, где водородные программы развиваются, и, на мой взгляд, преимущества наши очевидны: дешевые углеводороды и самый дешевый трубопроводный способ поставки водорода в эти страны.

— То есть на данном этапе, на ваш взгляд, самое перспективное производство водорода — из природного газа?

— Да. До 2050 года мы обеспечены потребителями такого водорода, если успеем встроиться в цепочку поставок. Но понятно, что после 2050-го доля такого водорода будет падать и падать, пока «зеленый» водород не займет все сто процентов потребления, это для меня очевидно. Эта программа точно будет выполнена, и нам нужно уже сегодня искать способы производства «зеленого» водорода. Источником электричества для такого производства у нас может стать малая гидроэнергетика, которая, в отличие от большой, считается «зеленой», потому что не нарушает биобаланс. Во-вторых, у нас в России много мест, где может активно использоваться солнечная и ветровая электроэнергия. При правильном планировании мы можем у себя потихоньку замещать наш «голубой» водород на «зеленый». У нас на это есть тридцать лет.

— А у нас есть серьезные компании, которые занимаются этой технологией?

— Сейчас пытается эти компетенции у себя собрать «Росатом». У них есть на это специальная программа. Там нет уже большой науки — научные основы получения водорода более или менее разработаны. там нужно отработать технологии.

Я не могу не сказать и о последнем нашем собственном проекте: мы собственными силами с одной небольшой компанией «Поликом», расположенной у нас же в Черноголовке, делаем первую российскую заправку с электролизером внутри. Сейчас идут испытания электролизера. А одна немецкая фирма по нашему техзаданию сделала заправочный блок, чтобы, взяв от этого электролизера водород, можно было сразу заправить, например, автомобиль или другую технику.

Я участвую в заседаниях Немецкого энергетического общества, и на них говорят, что примерно к 2030 году в Германии сумеют произвести всего четырнадцать тераватт-часов энергии в водороде, а им нужно по плану девяносто. Чувствуете разницу? Германия честно говорит, что сама не может стать производителем водорода, поэтому выделяет огромные деньги на развитие водородных технологий в странах, которые могут экспортировать водород, — на воспитание будущих экспортеров водорода.

ЭЛИТАР СИГМА.jpg

Электрический самолет создан на платформе «Сигма-4» с энергетической установкой на водородных топливных элементах

Успеть поделить пирог

— На что в первую очередь делается упор в водородных стратегиях других стран?

— Именно на внутреннее потребление как составную часть «зеленой» энергетики. Цель понятна: сделать так, чтобы там, где более выгоден водород, был именно водород, но чтобы он был «зеленый». На решение этой задачи направлено все: как его транспортировать, как его получать, как создавать инфраструктуру. Но европейские страны — и, кстати, еще и Азия — в основном рассматривают себя в качестве импортеров водорода, что важно для России.

Но медлить нельзя! Уже через пять лет, гарантирую, водородный рынок будет поделен полностью. И при таком, как сейчас, отношении нашего правительства и нашей общественности к водороду мы можем не попасть в число игроков этого рынка.

— Казалось бы, правительство занялось этим…

— Огромный плюс, что все экспортно ориентированные компании начинают заниматься водородными технологиями, особенно получением водорода и его транспортировкой. В отличие от государственных кабинетов, где споры продолжаются, бизнес понимает, что водородный рынок обязательно возникнет.

Пример таких компаний — «Газпром» и «НоваТЭК», которые начинают заниматься водородными технологиями и активно финансировать НИОКР в этой области.

К сожалению, позиция «Газпрома» не всегда последовательна. Например, они создали компанию «Газпром водород», которая, по замыслу авторов идеи, должна на территории Германии строить заводы по получению водорода из наших углеводородов. При этом заводы будут выбрасывать там углекислый газ, а мы будем компенсировать эти выбросы тем, что в России будем захоранивать такое же количество углекислого газа. Понятно, что и Германия, скорее всего, на это не пойдет.

Действительно, странная идея: строить заводы в другой стране.

— С другим нашим газовым гигантом — «НоваТЭКом» — у нас пока ведутся только предварительные переговоры. А я вам напомню, что перевозка СПГ и перевозка жидкого водорода — это, по большому счету, одна и та же технология. Ведь водород тоже можно возить танкерами. То есть у «НоваТЭКа» уже готова технологическая основа для экспорта водорода, не так сильно ее придется переделывать.

Но самую активную позицию занимает «Росатом», о котором я уже сказал. Государство еще только планирует начать разрабатывать программу развития водородных технологий, а «Росатом» уже вовсю реализует собственную программу.

— Но все-таки правительство решило этим заняться, опубликовало дорожную карту, и предполагается уже в первом квартале будущего года разработать концепцию развития отрасли. Значит, движение идет.

— В первом квартале 2021 года мы только узнаем, какая точка зрения победит и чем будет наполнена эта концепция, которую пишут несколько разных групп.

Трагично, если реализуется «усредненный» вариант: давайте мы пока поизучаем проблему и займемся НИРами и какими-то экзотическими способами получения водорода. Поэтому я всеми силами борюсь за то, чтобы победил хоть какой-то вариант развития водородной энергетики, а лучше, конечно, если бы возник полномасштабный вариант такой концепции. И я не одинок в этой борьбе, моими союзниками выступают те компании, о которых я сказал, которые понимают, что пришло время строить водородную энергетику. И у нас пока есть возможность продвинуть наш вариант концепции.

Должен напомнить, что Россия была одним из лидеров этой технологии. У нас прекрасно работали топливные элементы в космосе, под водой, у нас, как я уже сказал, летал первый в мире водородный самолет. За двадцать пять лет мы утеряли большинство технологий и лидерство в науке во многих других областях, но в водородных технологиях мы находимся вполне на мировом уровне.

Россия может стать лидером на рынке производства и потребления водорода

Да, у нас нет пока водородных автомобилей, которые колесят по Европе уже двадцать лет. Но мы владеем всеми технологиями и можем у себя сделать такие автомобили даже на лучшем уровне, чем на Западе. Мы просто этим не занимались. И это сочетание оставшихся научных школ, научных компетенций в разных областях, промышленного потенциала и желания реализовать эти технологии может стать сильнейшим драйвером развития именно водородной отрасли. Скажем, в производстве литий-ионных аккумуляторов догнать Китай, США или Европу нам уже сложно, если, конечно, мы ничего революционного не изобретем. А вот в водороде у нас пока остался последний шанс вскочить в этот вагон. И это окно возможностей в несколько лет.

— А что нужно делать, чтобы стимулировать внутренний спрос у нас, в России?

— Тут много чего надо. В первую очередь нужна воля государства. Сейчас мы у себя в Центре компетенций НТИ занимаемся в большой степени водородным автотранспортом. Но, вы понимаете, перед нами стоит извечная проблема яйца и курицы: не будет у нас водородного транспорта, пока нет заправок, а заправки не нужны, пока нет водородного транспорта. Понятно, что инфраструктура — это ответственность государства. Частные компании точно не возьмут на себя задачу построения сети автозаправочных станций на данном этапе.

А экспортные компании, и не только углеводородные, должны помнить, что сейчас в Европе разрабатывается так называемый углеродный налог на импортируемую продукцию. Импортеры должны будут платить налог, размер которого будет зависеть от того, сколько углекислого газа было выброшено в атмосферу при производстве их продукции.

Пока неизвестны объем и механизмы начисления этого налога, но то, что этот налог будет, уже очевидно. Этот налог призван стать международным драйвером развития «зеленых», в том числе водородных, технологий. Значит, и в России необходимы правовые механизмы и государственная поддержка, чтобы подтолкнуть собственную промышленность к внедрению водородных технологий. Этого пока нет, но разработка таких мер уже начинается. И я счастлив, что, проработав более двадцати лет в водородной отрасли, я сейчас наконец вижу, что дело чуть-чуть начинает сдвигаться, не только на словах, но и в некоторых действиях.

АВТОПЛАТФОРМА.jpg

Универсальная электрическая автономная автомобильная платформа с источником энергии на основе водородного топливного элемента разработки Центра компетенций НТИ

Центр компетенций НТИ

— А какие у нас есть проекты в разных отраслях промышленности по применению водородной техники?

— Таких проектов уже немало. Сейчас по заказу «Росатома» мы заканчиваем работу по первому и далеко не полному анализу технологий, которые существуют в России. И сейчас есть от тридцати до пятидесяти больших проектов. Например, КамАЗ начинает заниматься водородными автобусами, ГАЗ — водородными грузовиками, «Автотор» начинает думать о выпуске легковых автомобилей на водороде. С «Росатомом», как я уже сказал, мы ведем в том числе работы по электролизу.

РЖД и Трансмашхолдинг начинают с того, что закупают маленькие водородные локомотивы за рубежом и создают вместе с «Росатомом» водородный кластер на Сахалине. А их следующая цель — и мы все будем им в этом помогать — научиться производить такой транспорт в России.

Причем водородный электротранспорт, в том числе железнодорожный, может стать уже сейчас экономически оправданным — не через пять лет, а в ближайшее время и даже без особой поддержки государства.

Таких локомотивов, причем больших, уже пятнадцать штук в Германии ходит. А водородные автобусы по Европе ездят уже двадцать лет, и там есть достаточное количество заправок для того, чтобы их обеспечивать. Например, в Германии имеется порядка 120–130 водородных автозаправочных станций.

— А в каком состоянии ваши собственные разработки? У вас же и самолет был, и автомобили были водородные.

— Работы идут. К сожалению, коронавирус нас здорово подкосил. А летом значительная часть коллектива не работала, была полностью на карантине. Поэтому мы решили сосредоточиться на тех проектах, которые надо закончить в первую очередь. Мы пока отодвинули, например, плановые летные испытания водородного самолета, еще и потому, что аэродромы были закрыты. Но зато мы довели до ума беспилотную электротранспортную платформу, и она совсем недавно демонстрировалась на открытии участка ЦКАД. Там же стояла и наша заправка. И мы раздумываем над тем, как дальше развивать нашу платформу, поскольку она оказалась весьма популярной. И даже есть шанс, что, задуманная как прототип, она станет после небольших доработок вполне коммерческим продуктом. Причем будет иметь свой искусственный интеллект, отечественный, оригинальный, разработанный специально под эту платформу Институтом проблем управления РАН вместе с фирмой «Электротранспортные технологии». Полезная нагрузка платформы — почти две тонны, и пробег внушительный: 500 километров — легко. По крайней мере, уже в эксперименте она столько проходила.

Водород: подборка того, что успели сделать на ноябрь 2021 года

Последний год в новостях очень много говорят про применение водорода в качестве топлива или компонента эдакого «аккумулятора» для долгосрочного хранения энергии. Но разговоры все больше о будущем. В этом посте я хочу просуммировать то, что уже пошло в серию или можно «пощупать руками». Плюс немного осязаемых перспектив, в том числе и для России.

Почему водород

Этот пост — продолжение предыдущей статьи «От сжигания до электролиза: история водородного транспорта и проблемы массовой эксплуатации», где речь шла об истории применения водорода на транспорте и связанных с этим проблемах. Часть этих проблем в том, что водород сложно хранить в чистом виде. Вдобавок он крайне взрывоопасен, и для работы с ним далеко не всегда можно использовать оборудование, ориентированное на ископаемое топливо. И самый главный недостаток на сегодняшний день — высокая цена для потребителя.

Несмотря на недостатки, на водород сейчас делают ставку практически все: ученые, политики, бизнес. Потому что весь мир держит курс на декарбонизацию, и альтернатив водороду не так много: ядерной энергетики побаиваются, «термояд» будет лет через 30, а большинство возобновляемых источников без технологий хранения способны выдавать энергию лишь 20% времени.

Поэтому пока водород. Вдобавок всю осень новости и события по этому направлению сыплются как из рога изобилия.

Транспорт

В классическом понимании автомобиль, работающий на водороде, — это электромобиль, который, помимо небольшого аккумулятора, оснастили электрохимическим генератором — водородной топливной ячейкой (FCEV — Fuel Cell Electric Vehicles). Ее мощность обычно заметно ниже мощности установленных электромоторов, поэтому аккумулятор служит своеобразным буфером, восполняющим недостаток энергии, когда водитель «вдавил тапку» на полную.

У идеи полно и сторонников, и противников. Тот же Илон Маск считает технологию топливных ячеек бесполезной, поскольку КПД обычного электрокара чуть ли не вдвое выше, чем КПД авто на водородной тяге, если считать эффективность использования именно первоначально выработанной энергии. И он не один выражает скепсис. Тем не менее.

Легковые автомобили

Если говорить не о тестовых моделях или малых сериях, то начать стоит с 2014 года, когда стартовали продажи первых массовых водородомобилей Toyota Mirai и Hyundai Tucson Fuel Cell. Массовость довольно условная: к 2020 году даже с поддержкой государства японский производитель продал всего 6 тыс. машин. Не много. Правда, 2021 год стал переломным. К осени по всему миру разошлись уже около 11 200 водородомобилей разных производителей.

Toyota Mirai 2021 модельного года

Кроме Toyota, свои водородные автомобили выпустили почти все крупные компании: Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler. Сейчас на первое место по продажам вырвался Hyundai Nexo, заняв примерно половину рынка. Но это благодаря стимуляции продаж в Южной Корее. В целом же до спроса на обычные электромобили им пока очень далеко.

По данным аналитиков Canalys, классических «электричек» только за первое полугодие 2021 года продали порядка 2,6 млн.

Кстати, насмотревшись роликов про то, как люди подставляют под выхлопную трубу водородомобиля стакан и наполняют его водой, стала гуглить решение проблемы с водородным выхлопом зимой — а именно обледенением выхлопной системы и дорожного полотна. Увы, тишина. Возможно, что проблема не так остра.

Пассажирские перевозки: автобусы и поезда

С середины 2020 года 10 водородных автобусов курсируют по улицам немецкого города Вупперталя. Пассажировместимость каждого из них — порядка 75 человек. В конце 2020 в шотландском Абердине появились двухэтажные автобусы на водороде от компании Wrightbus. Впоследствии они начали возить пассажиров и по Лондону, правда, их раскритиковали за космическую стоимость (650 тыс. долларов) и сомнительную экологическую эффективность. Вероятно, из-за того, что водород для них получают из природного газа, при разложении которого выделяется тот же самый CO2.

Администрация шотландского города Абердина и топ-менеджеры Wrightbus позируют на фоне первого водородного автобуса

Кстати, в прошлом году в Китае продали 993 водородных автобуса. Так что эксперименты в Европе в этом плане выглядят бледно.

Чуть лояльнее общественность смотрит на водородные поезда. На железной дороге водородные топливные ячейки позволяют отказаться от электрификации тех участков, где до сих пор курсируют дизели, — получается формальное сокращение выбросов. Например, с 2018 года поезда Coradia iLint от компании Alstom ездят по Германии. Также на пробу по несколько штук их взяли Австрия, Швеция и Франция.

Водородный Alstom Coradia iLint во Франции

На одной заправке такой поезд проезжает около 600 км. И в перспективе должен заменить почти четыре тысячи дизельных региональных поездов по всей Европе.

Магистральные грузоперевозки

Возможно, чуть больше краткосрочных перспектив у водорода в сегменте грузовых перевозок. Учитывая мощности и энергозатраты, грузовикам на электричестве нужны более емкие аккумуляторы. Они стоят дороже и заряжаются дольше, чем аккумуляторы легковушек. В итоге перевозка грузов становится слишком дорогой. Как раз тут могут быть полезны водородные топливные элементы. Хотя однозначно ставку в пользу водорода пока не сделал ни один автопроизводитель — многие одновременно развивают и водородный, и электрический грузовой транспорт, иногда даже на одной платформе.

Из последних громких проектов — во Франции Gaussin представил водородный грузовик, который примет участие в ралли «Дакар-2022». Он оснащен двумя электродвигателями по 402 л. с. и топливным элементом, генерирующим непрерывно эквивалент 510 л. с. Емкость аккумулятора 82 кВт·ч. Для сравнения: мощность двигателей внутреннего сгорания КАМАЗов, участвующих в «Дакаре», — 1150 л. с. Но новый водородный грузовик будет помещен в отдельную категорию, так что КАМАЗ ему не соперник.

Кстати, аккумулятор у Gaussin весьма компактный — всего 82 кВт·ч, примерно как у старших моделей Tesla

С грузовиками экспериментируют многие крупные производители, причем не только европейцы вроде Daimler, но и китайцы — FTXT Energy Technology (подразделение Great Wall Motor).

Водородный грузовик FTXT Energy Technology с топливными элементами мощностью 111 кВт (~151 л. с.)

В августе FTXT поставили на внутренний рынок 100 грузовиков, которые будут работать на одной из масштабных строек. И установили для них десяток заправочных станций.

Водный транспорт

Как и в случае с грузовыми магистральными перевозками, на судах водородные топливные элементы могут обеспечить ту автономность, которой не хватает обычным аккумуляторам. Наиболее активно эту идею сейчас применяют в подводных лодках.

Как правило, электрические подводные лодки заряжают аккумуляторы от дизелей, для запуска которых необходимо всплыть. Замена дизеля на водородный топливный элемент делает процедуру зарядки воздухонезависимой (при условии использования смеси газов). Лодка становится тише и автономнее.

Германия уже эксплуатирует подводные лодки U-212 (и U-214, как экспортный вариант) на базе водородных топливных элементов FC2G AIP (Air-Independent Propulsion Fuel Cell 2nd Generation), разработанных компанией Naval Group. Топливные элементы получают водород из синтетического газа: смеси дизельного масла, рециркулируемого кислорода и пара — см. ссылку выше. Так что на борту не приходится хранить чистый водород. Сегодня технология распространилась шире. Свои разработки есть и в России, но на них мы остановимся чуть позже.

Есть и надводные суда с водородной установкой. Например, Energy Observer, спущенный на воду во Франции еще в 2017 году.

Фактически это плавучая лаборатория, которая среди прочего «обкатывает» водородные технологии. И на результаты этих тестов есть спрос. Например, Исландия собиралась перевести на водородное топливо свои рыболовецкие суда. Правда, о сроках проекта ничего не известно.

Energy Observer обслуживает команда из восьми человек. Максимальная скорость от двух электромоторов составляет 18 км/ч

Воздушный транспорт

Электросамолеты развиваются не так бурно, как электромобили. Литий-ионные аккумуляторы здорово ограничивают возможности летательного аппарата: в пересчете на километры полета аккумуляторы весят в десятки раз больше, чем ископаемое топливо. Но проектов все равно появляется довольно много. Водородные топливные ячейки, как и в случае с грузовым транспортом, раздвигают границы их применения.

И не только стартапы тестируют идеи, авиагиганты тоже не хотят остаться за бортом. В 2008 году Boeing провел испытания двухместного водородного самолета на базе модели Dimona.

В одном из тестовых полетов Boeing поднялся на высоту одного километра и в течение 20 минут поддерживал скорость в 100 км/ч, питаясь только от электрохимического генератора

Airbus в 2020 году представил сразу три концепта самолетов на водороде. Правда, все они будут напрямую сжигать водород, а не превращать его в электроэнергию с помощью топливных элементов.

Концепт Airbus ZEROe с газотурбинными силовыми установками похож на модель A320neo

Hyundai в октябре этого года создала профильное подразделение, а к 2028 году собирается выпустить гибридные электросамолеты. Но пока о них рано говорить.

Альтернативный подход к применению водорода на транспорте

Помимо использования топливных ячеек, есть и другие способы задействовать водород.

Во-первых, можно преобразовать водород в синтетический метан, метанол или аммиак (самое интересное направление) и уже их использовать в качестве топлива. Тут есть перспективы в судоходстве и авиации, так как в этих отраслях сложно использовать обычный сжатый водород.

Во-вторых, водород можно использовать в двигателях внутреннего сгорания. Уже на Олимпиаде 1980 года в СССР работали подобные гибридные микроавтобусы, где в цилиндры при малых нагрузках вместо бензина подавался водород или их смесь. А еще раньше из-за нехватки бензина под водород переоборудовали двигатели грузовиков в блокадном Ленинграде, про которые мы писали в предыдущем посте.

В теории водород можно использовать в ДВС и без серьезных изменений в конструкции. Но он реагирует со смазочными материалами и повышает износ двигателя, а также требует более интенсивного теплоотвода из-за повышенной температуры горения.

Водород в ДВС использует выпущенный в 2007 году BMW Hydrogen 7. А еще — Mazda RX-8 Hydrogen RE, автобус Ford E-450. И в каком-то смысле это направление развития транспорта все еще актуально. Например, недавно появилась новость о том, что Yamaha Motor адаптировала пятилитровый V8 от Toyota под водород — разработка заточена под гонки. Да и вообще производители ДВС сдаваться в экогонке не намерены.

Переделанный компанией Yamaha под водород пятилитровый Toyota 2UR-GSE. Мощность — 456 л. с., крутящий момент — 540 Нм

К сожалению, использование водорода в ДВС все же подразумевает выбросы в атмосферу: при горении водорода кислород и азот из воздуха тоже вступают в реакцию, так что побочным продуктом горения будет оксид азота. И выбросы будут тем больше, чем выше температура в камере сгорания.

Инфраструктура

Вопрос развития транспорта FCEV напрямую зависит от распространения водородных заправок. И это проблема. К началу 2020 года в мире было всего 470 заправочных станций (более свежих данных мне не удалось найти, поделитесь, если знаете). Большая часть из них располагалась в США, Канаде, Китае, Японии и Германии.

Много стран и компаний пытались улучшить ситуацию. Например, в начале 2021 года в Корее вступил в силу закон, регулирующий развертывание инфраструктуры под водородные автомобили. К 2040 году они планируют построить 1,2 тыс. заправок, чтобы ими пользовались 80 тыс. такси, 40 тыс. автобусов и 30 тыс. грузовиков (которых пока нет).

Daimler собирается к 2030 году построить 150 заправочных станций в Германии, Нидерландах, Бельгии, Люксембурге и Франции. Освоить этот рынок обещает и Hyundai. В середине прошлого года компания заявила о том, что строит водородную заправку в Корее — в Чханвоне, — после чего «растиражирует» ее по другим регионам.

Энергетика

В разрезе новой водородной экономики обычно речь идет о применении водорода для хранения энергии в течение длительного времени. Например, при энергоснабжении удаленных изолированных объектов.

Возможность запасать энергию при помощи водорода может быть особенно полезна в случае с возобновляемыми источниками энергии, где генерация электричества прерывистая. Излишки электроэнергии можно использовать для производства водорода и хранить его в надземных или подземных резервуарах — например, в выработанных нефтегазовых месторождениях (этот способ пока не пробовали, и с ним есть много проблем). Когда потребность в электроэнергии возрастет, водород будут выкачивать из хранилища и использовать в топливных элементах либо добавлять к природному газу, питающему электростанции, для получения электричества.

Сжигание водорода отдельно или в смеси

Развитие электростанций, где можно энергоэффективно и безопасно сжигать водород в смеси с природным газом, упирается в разработку турбин. В Mitsubishi Hitachi Power Systems (MHPS) не так давно отмечали, что существующие турбины могут «переварить» до 20% водорода в смеси. И таких проектов много, а корейцы так и вовсе собираются идти именно этим путем.

Из живых примеров — еще в 2010 году в пригороде Венеции энергетическая компания Enel запустила маломощную электростанцию на чистом водороде.

Правда, она использовала не «зеленый» водород, а продукт с газоперерабатывающего завода, расположенного по соседству. Стоимость электроэнергии получилась в пять раз дороже, чем у ТЭС. Плюс никто не отменял повышенные выбросы в атмосферу оксидов азота. Вдобавок при разложении природного газа методом паровой конверсии выделяется то же количество СО2, что и при обычном его сжигании.

Топливные ячейки

Такой формат отлично подходит для резервного питания удаленных объектов, к которым нет смысла прокладывать электрические сети: от сотовых вышек до полярных станций. Все, что нужно, — это раз в год заправлять газгольдеры. И такие проекты тоже существуют. Но есть и куда более интересные.

В Чили в 2017 году запустили солнечную электростанцию мощностью 125 кВт, где для накопления энергии используют литиевые батареи (на 132 кВт·ч) и систему хранения на основе водорода (на 450 кВт·ч). Проект принадлежит компании Enel Green Power, подразделению того же энергетического гиганта, который запускал электростанцию в пригороде Венеции.

А уже в этом году в городе Инчхон в Южной Корее ввели в эксплуатацию крупнейшую в мире электростанцию на водородных топливных элементах.

Ее построила компания Doosan Fuel Cell. Максимальная выработка — до 78,96 МВт. Еще один аналогичный объект строят неподалеку от Сеула.

Водородная электростанция в Инчхоне обошлась в 292 млн долларов

Хранение и транспортировка

В этой области есть проблемы на всех уровнях. И их еще предстоит побороть.

Хранение у потребителя

Водород в газообразной форме чрезвычайно летуч и занимает огромный объем. Энергия, запасенная на единицу объема, слишком мала, чтобы убедить конечного потребителя держать такие емкости.

Логичный путь — сжижать. Но это дорого: сжижают водород при температуре около 20 градусов по шкале Кельвина (ниже –252 по Цельсию). Для хранения и транспортировки водорода при этих температурах нужны специальные (дорогие!) сосуды и оборудование. Так что остается только максимально сжимать в баллоны — именно так заправляют газом водородные автомобили. Но объемное содержание водорода все равно не так велико, как хотелось бы.

Перспективный способ хранения водорода — в соединениях с другими элементами в виде гидридов. Некоторые сплавы металлов способны поглощать и отдавать при нагревании большие объемы водорода, что позволяет хранить и перевозить топливо в твердом виде.

Альтернативный путь — связать водород в какое-либо жидкое соединение, например в аммиак, чтобы его можно было налить в канистру или цистерну.

Подбор подходящих методов — одна из ключевых проблем водородной энергетики. И коммерчески успешных примеров пока нет.

Доставка

До конечного потребителя водород еще надо как-то доставить. Наш мир опутан сетями газопроводов, но под водород их задействовать проблематично. Дело в несовместимости материалов с водородом, особенно при высоких давлениях.

Водород просачивается практически через все. И вдобавок вступает в реакцию с металлами, делая их более хрупкими.

Существующие распределительные (до конечных пользователей) сети низкого давления можно использовать, если водорода в смеси будет небольшое количество. Эту идею на практике проверил проект GRHYD во Франции, который начал подмешивать 6% водорода еще в 2018 году, а в 2019 году довел это значение до 20%.

А вот магистральные газопроводы однозначно придется модернизировать. Проект Snam в Италии успешно экспериментировал с подмешиванием 10% водорода в природный газ без модернизации, но информации о результатах тестирования на более высоких концентрациях пока нет.

По аналогии с природным газом большие объемы водорода на дальние расстояния можно перевозить в танкерах. На практике существует только один подходящий корабль — его построила компания Kawasaki для рейсов из Австралии. Второй корабль они планируют построить только к 2023 году.

Танкер Kawasaki Suiso Frontier, предназначенный для перевозки жидкого водорода. Первый коммерческий рейс запланирован на 2022 год. В отдаленных планах — построить еще 80 подобных судов

Перспективы

Китай, Япония, Евросоюз, США и Канада, а также ряд других стран, включая Россию, уже имеют собственные стратегии развития водородной экономики. Например, КНР хочет, чтобы к 2030 году по дорогам страны катались два миллиона водородных автомобилей. Европа планирует полностью отказаться от авто с двигателями внутреннего сгорания к 2040 году и часть из них заменить водородомобилями.

Реалистичность этих прогнозов оценить сложно. За последние сто лет водород несколько раз уже привлекал к себе внимание. Но каждый раз интерес к нему падал из-за того, что ряд технологических вопросов так и не решили. И сейчас нет ответов на все вопросы. Вдобавок к вышеперечисленному встает вопрос безопасности. Например, в Норвегии в 2019 году на заправке произошел взрыв, в результате чего все водородные проекты в стране приостановили до окончания разбирательств. Разобрались, но проблема безопасности так и не решена.

Последствия взрыва на водородной заправке в Норвегии

Но самый главный барьер — это цена водорода. Переход на недорогой водород, полученный по «грязной» технологии из ископаемого топлива, не имеет смысла. В контексте декарбонизации нужен так называемый «зеленый» водород, при производстве которого не выделяется CO2 или когда весь углерод удалось уловить. Сейчас применяют несколько таких технологий. Например, электролизом из воды, щелочного раствора или электролизом с протонообменной мембраной (Proton Exchange Membrane, PEM).

Диапазоны стоимости получения одного килограмма водорода в долларах США в зависимости от способа. Больше 90% водорода сейчас производят из природного газа или угля с выделением углекислоты

В любом случае каждая из этих технологий требует электроэнергии из других источников, в том числе для сжатия, то есть углеродный след не нулевой. А полностью «безуглеродных» методов промышленного масштаба пока нет.

В итоге бизнес высказывается, что если через 5–10 лет технологии производства станут существенно дешевле, то логичнее немного подождать. А потом начать внедрение с тех областей, где водород наиболее оправдан: с магистральных перевозок на грузовых автомобилях, железных дорог, водного транспорта.

Потребности остальных сегментов даже лет через 10 вполне можно будет удовлетворить электромобилями. Европа активно развивает электрозаправки, а создавать инфраструктуры сразу под несколько видов альтернативного топлива государствам слишком накладно.

Тем временем в России

Совсем недавно водородную энергетику у нас объявили одной из 42 стратегических национальных инициатив и собрали консорциум из 30 компаний, которым предстоит реализовывать подобные проекты. Но пока мы далеко не в лидерах.

У нас есть наработки по производству, хранению и транспортировке водорода. В конце концов, его десятилетиями используют в качестве ракетного топлива и еще во времена СССР доставляли из Подмосковья на Байконур.

Но при этом в России работает только одна водородная заправка — в подмосковной Черноголовке. Находится она на территории НИИ, который экспериментирует с данными технологиями.

Ее построили, чтобы заправлять экспериментальные автомобили, но в целом считают общедоступной, сейчас ей пользуется около 20 организаций. Водород на нее привозят с предприятия Linde Gas в Балашихе в баллонах под давлением 150 атмосфер. Станция доводит давление до 500 атмосфер, чтобы можно было заправлять автомобили. Полная заправка Toyota Mirai на ней займет шесть минут и обойдется в 9 тыс. руб. Это по себестоимости.

Из того, что еще можно пощупать руками, — это производство водородных топливных элементов — AT Energy, которое работает с 2014 года. По части транспорта есть примеры с водородным трамваем в Санкт-Петербурге.

Экспериментальный трамвай на водороде (фото: fontanka.ru)

Как оказалось, сооружение контактной линии и кабельной сети для трамваев обходится в 35 млн руб. за километр. Плюс подстанции по 100–150 млн за штуку через каждые 2,5 км. На этом фоне водород уже не кажется таким бесперспективным.

В Москве с 2022 года планируют тестировать водоробус — автобус на водородной тяге. «КАМАЗ» и «Роснано» уже подписали соглашение.

По слухам, стоимость одного экземпляра составит 150 млн руб. Понятно, что такие жертвы — ради эксперимента и обкатки технологий

Из прочего — в 2007 военные успешно экспериментировали с проектом подводной лодки Б-90 «Саров» со вспомогательной водородной установкой, помогающей продлить автономное подводное плавание.

До этого было много попыток в автотранспорте. Например, в начале 2000-х годов «АвтоВАЗ» экспериментировал с ВАЗ-2131 и ВАЗ-2111. Первый прототип создали в 2003 году в Королеве, он мог разгоняться до 80 км/ч, работая на водороде и кислороде. Второй автомобиль использовал водород и воздух и развивал скорость до 100 км/ч. По экономическим соображениям в серию автомобили так и не пошли.

Сейчас пилотный проект есть у «Группы ГАЗ» совместно с ElektrofahrzeugeStuttgart (EFA-S), правда, в Германии. Они планируют выпустить водородную ГАЗель NEXT.

Про водород задумался и Aurus — российский бренд автомобилей для первых лиц государства. В этом году он анонсировал модель Hydrogen на топливных элементах, но технических подробностей пока нет.

Что еще есть у России? Планы. Очевидно, что водородный пузырь бум уже начался, и хочется понимать, насколько мы будем в игре. В целом водородная стратегия РФ вполне гуглится, но представляет собой громоздкие документы, требующие долгого изучения и расшифровки. Я их качнула и даже пообещала себе все прочитать. Однако мне повезло: увидела презентацию выступления профессора Южно-Российского ГУ экономики и сервиса Ивана Бринка, по совместительству президента и основателя НП ИТЦ «ИнТех-Дон», в наших Точках. В ней оказалась отличная выжимка. Далее — тезисно, чтобы не загромождать пост.

Будут автобусы, заправки, мини-электростанции и экспорт

В правительстве поставили три вехи: 2021, 2024 и 2030 годы. По 2021 году в основном идут всякие бумажные истории — разработка ТУ, анализы перспектив, технико-экономические обоснования и прочее, с назначением крайних и ответственных. А вот дальше интереснее.

2024

  • Планируют запуск пилотных когенерационных (электричество + тепло) установок на топливных элементах мощностью до 1 МВт. По сути — водородные мини-ТЭЦ;
  • обещают запуск серийного производства водородных автобусов, автомобилей коммунальных служб и локомотивов для РЖД;
  • ввод в тестовую эксплуатацию водородных заправок в пяти регионах;
  • ввод в эксплуатацию промышленных кластеров по производству «бирюзового» водорода (с конденсацией чистого углерода при крекинге метана), «голубого» (со сбором и утилизацией CO2) и «зеленого» (из ВИЭ) на востоке России, экспорт водорода не менее 200 тыс. тонн.

2030

  • 10% работающих мини-ТЭЦ мощностью до 1 МВт будут водородными;
  • в крупных городах 50% автобусов и 20% авто коммунальных служб будут водородными;
  • крупномасштабное производство водорода и экспорт 1 млн тонн;
  • открытие производств различного оборудования и установок для работы с H2.

Очевидно, что за неимением более простых альтернатив весь мир сейчас пойдет в эту сложную и дорогую историю с водородом. Судя по данной стратегии, мы опять хотим стать поставщиком энергоресурсов. Благо у нас есть большой потенциал в «зеленом» плане с теми же сибирскими ГЭС, а также в освоении производства водорода из природного газа с одновременной утилизацией СО2.

Как я понимаю, дальнейшие пути развития будут зависеть от того, насколько это все окажется выгодным. Вдруг нас ждет прорыв в аккумуляторных технологиях (сверхбыстрая зарядка) или термоядерном синтезе (про ITER мы писали уже)? Тогда водород останется нишевой историей. А может, и вовсе повторит судьбу биотоплива, о котором за несколько лет все уже забыли. Хотя ставки на водород сейчас куда масштабнее, ведь большинство стран планируют стать углеродно нейтральными.

  • Блог компании Leader-ID
  • Научно-популярное
  • Энергия и элементы питания
  • Экология

Извлечение водорода

На сегодняшний день водород активно используется в различных отраслях химической и нефтехимической промышленности. Водород применяют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород необходим для производства жидкого топлива гидрогенизацией углей и мазута. К сожалению, водород в чистом виде практически не встречается в природе, поэтому задачи его получения, концентрирования и очистки от примесей имеют огромное значение.

Основными способами получения чистого водорода в промышленности являются электролиз воды и конверсия кокса или метана. Кроме того, водород получают извлечением и концентрированием из различных газовых смесей нефтехимических процессов.

На протяжении многих лет совершенствовались технологии извлечения и концентрирования, позволяющие получать водород из различных источников сырья. В результате ученным удалось создать оборудование, которое может извлекать водород из газовых смесей. Благодаря этому водород можно вернуть в производственный цикл, существенно уменьшив потери. Помимо этого, извлечение водорода из газовой смеси положительно сказывается на экологии окружающей среды. Получая водород из топливных, остаточных и сбросных газов, можно значительно повысить экономическую эффективность процессов производства.

Извлечение водорода Установка по извлечению водорода Извлечение водорода от «Грасис»

Эффективные способы получения водорода

В настоящее время извлечение водорода чаще всего выполняется двумя способами:

  • Концентрирование водорода при помощи мембранных установок. Данный метод разделения газообразных смесей позволяет с минимальными потерями выделять водород из газовых потоков. К основным преимуществам мембранных установок, позволяющих концентрировать водород в, можно отнести низкие расходы на техническое обслуживание, простое аппаратурное оформление и длительный срок службы мембран. Стоит отдельно отметить, что мембранные установки отличаются высокой гибкостью, которая реализуется при создании модульных систем, позволяющих быстро изменять масштаб производства водорода. Еще одним важным достоинством этого способа получения водорода является доступная стоимость оборудования, обусловленная целым рядом особенностей производства и монтажа мембранных установок;
  • Извлечение водорода с помощью адсорбционных установок. В основе этого метода получения чистого водорода лежит технология короткоцикловой или сверхкороткоцикловой адсорбции при переменном давлении. Эта технология использует принцип поглощения примесей водородсодержащего газа на поверхности специально разработанных адсорбирующих материалов. Количество удерживаемых адсорбентом примесей напрямую зависит от давления, поэтому данные установки по производству водорода позволяют проводить процесс адсорбции примесей и регенерации адсорбента изменением давления. Этим способом получают очень чистый водород, с минимальными потерями давления. Единственным минусом этого способа получения водорода можно назвать достаточно высокую стоимость.

Выбор метода получения водорода зависит от состава сырья, необходимой чистоты водорода, а также от режима эксплуатации, производственной мощности и других факторов, связанных со спецификой работы конкретного предприятия.

Проектирование и создание установок для получения водорода

Научно-производственная компания «Грасис» выполняет разработку и производство установок, способных осуществлять получение водорода в промышленных масштабах. Мы осуществляем свою работу, используя комплексный подход к решению задачи, которую ставит перед нами заказчик. Это означает, что наши квалифицированные специалисты способны выполнить все работы, начиная от конструирования, проектирования, изготовления и заканчивая вводом в эксплуатацию полностью укомплектованных установок, необходимых для получения водорода. Помимо этого, мы предлагаем своим клиентам услуги по сервисному обслуживанию оборудования по производству водорода. Регламентные работы по ремонту и техническому сопровождению установок по извлечению водорода проводятся в сроки, установленные заказчиком. Такой подход выгодно отличает нас от большинства компаний, работающих в данном сегменте рынка.

Отличительные особенности нашего оборудования для получения водорода:

  • компактные габаритные размеры, позволяющие осуществлять производство водорода на весьма скромных площадях;
  • высокая монтажная готовность, которая значительно сокращает время на ввод оборудования для получения водорода в эксплуатацию;
  • адаптация к использованию установок по извлечению водорода в сложных температурных и климатических условиях;
  • длительный срок службы установки для производства водорода, обусловленный использованием материалов высочайшего качества;
  • автоматический режим работы, простота эксплуатации и минимум обслуживающего персонала.

Получение водорода Получение водорода

Каждый заказчик, которому требуется надежное оборудование для получения водорода, может рассчитывать на внимательное отношение и высокий уровень обслуживания. Мы гарантируем индивидуальный подход к клиентам, желающим заказать мембранные или адсорбционные установки, позволяющие получать водород из сбросных, топливных или остаточных газов.

Основные преимущества сотрудничества с научно-производственной компанией «Грасис»:

  • гибкая ценовая политика. Даже в условиях экономического кризиса мы продолжаем удерживать цену на разработку и производство установок по извлечению водорода на приемлемом уровне. Наши цены на оборудование для производства водорода вполне доступны для многих российских предприятий, выполняющих переработку нефти и природного газа. Кроме того, мы всегда предоставляем выгодные скидки для постоянных клиентов, которые заинтересованы в налаживании и поддержании сотрудничества на долгосрочной основе;
  • высокий уровень подготовки специалистов. Мы очень тщательно подходим к вопросам отбора персонала, поэтому у нас работают только опытные инженеры, досконально изучившие все нюансы технологий, которые дают возможность извлекать водород с минимальными потерями. Они ответственно подходят к каждому заданию, создавая в кратчайшие сроки все необходимое оборудование, с помощью которого наши клиенты могут получать водород, содержащийся в газовой смеси.

Для того чтобы заказать оборудование для извлечения водорода или получить подробные ответы на все вопросы, достаточно позвонить нашим консультантам по телефону: +7 (495) 777-77-34.

Не является публичной офертой

Получите больше информации
Отправьте запрос и наш менеджер свяжется с Вами в ближайшее время

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *