Радиоуправляемая машинка на Arduino для преодоления мини-бездорожья
Привет, меня зовут дядя Вова. Вероятно, вы уже читали мои статьи про тестирование. Но сегодня хочу рассказать вам о проекте, не связанном с работой — о радиоуправляемой машинке, которую я разрабатываю с нуля.
Когда‑то в статью моих коллег про хобби на удаленке попало начало рассказа об этом проекте, но сегодня хочу осветить разработку целиком. Это не тиражируемый конструктор, не кит‑комплект и не готовая модель на продажу. Но бегает она очень неплохо и в отличие от аналогов лишена лага радиоуправления. Скорее всего проект будет развиваться дальше.
Разработка собственной радиоуправляемой машинки с нуля началась с исполнения одной детской мечты. Как я уже когда‑то рассказывал, дожив до 30 лет, так и не успел поиграться с игрушечным транспортом на дистанционном управлении. Поэтому, вполне успешно покоряя бездорожье на собственном автомобиле, все‑таки купил модельку на батарейках.
Поведение радиоуправляемой модели на препятствиях из одеяла и ковриков чем‑то похоже на обычную машину — ее можно заставить буксовать или вытащить в раскачку. Как автомобилисту, мне было интересно попробовать различные маневры без необходимости куда‑либо ехать. Плюс в том, что проверить свои теории можно практически сразу, как только они приходят в голову. Но покупной машинке явно не хватало мощности. С этого начались апгрейды.
Первым делом я высадил две пальчиковых батарейки, которые были установлены в корпусе, и заменил их одним аккумулятором 18 650. Уже на этом этапе пришлось избавиться от бутафорского кузова и корпуса механики, который и являлся держателем батареек. С последнего я тогда снял все размеры и перепечатал под форм‑фактор 18 650.
Мощности прибавилось процентов на 20 (не удивительно — минимум 3.7 В аккумулятора 18650 против 3 В двух пальчиковых батареек). А по субъективным ощущениям машинка поехала чуть ли не в два раза лучше. Но теперь уже не хватало сцепления с поверхностью — колеса слишком легко срывались и буксовали. Так что на следующем этапе я распечатал на 3D-принтере покрышки побольше из TPU.
Колеса большого размера вполне предсказуемо нивелировали прирост мощности. С этим надо было что‑то делать. Хотелось более низкой передачи, так что я начал задумываться о создании собственного редуктора. Этот агрегат легко напечатать, но он уже не влез бы в старый «заводской» корпус модели. Так что пора было начинать всю разработку с нуля. Как минимум потому, что некоторые вещи проще сделать заново, чем переделывать.
С этими мыслями я сел прототипировать.
Редуктор
Первым делом я собрал прототип редуктора с несколькими валами и понижением 1 к 14. Благодаря такому серьезному понижению я мог бы использовать в своем агрегате достаточно слабый моторчик от оригинальной машинки — рукой его было уже не удержать.
По мощности — то, что нужно, но габариты редуктора были слишком большими. Так что в итоге я остановился на более компактном варианте с прямой передачей и понижением 1 к 2.5.
Интересный факт про редуктор: шестерни я напечатал из разного пластика. Пришел к этому решению методом проб и ошибок. Ведущая шестерня — из SBS, а ведомая — из PLA. За счет того, что SBS более мягкий, существенно снижается шум и износ в процессе эксплуатации.
Рулевое управление
Кроме конструкции редуктора я экспериментировал с рулевой трапецией. Многие автомобилисты и не замечают, что колеса поворачиваются не параллельно. Они катятся вокруг общего центра (агрегат потому и называется трапецией, т.к. одно колесо поворачивает больше другого). Мне хотелось понять на практике, как вообще должен работать этот механизм именно на миниатюрных моделях — какие углы должна иметь трапеция на прототипе.
В своей радиоуправляемой модели я установил на рулевое сервопривод, который задает угол поворота. В покупном варианте был установлен обычный двигатель постоянного тока; как правило, его же ставят на более дешевые аналоги. Рулевую трапецию, управляющую поворотными кулаками с помощью двух тяг, после серии экспериментов реализовал по тому же принципу, что и на обычной машине.
Кстати, рулевое управление по сути является самой нагруженной частью, т.к. при ударе передним колесом в препятствие (это происходит если не постоянно, то очень часто) основная сила удара приходится либо в рулевой наконечник (уголок между резьбовой шпилькой и поворотным кулаком), либо в сервопривод.
Проблему решал в несколько этапов. До конца ее решить, конечно, невозможно (поэтому на внедорожные покатушки на реальном автомобиле я вожу с собой рулевую стяжку). Но мне удалось снизить частоту поломок:
- я напечатал наконечники из PETG — он более устойчив к разломам от ударов;
- перешёл на сервопривод с металлическими шестернями (на фото первая версия, с пластиковыми шестернями, у которых буквально «выбивало зубы»).
Рама и кузов
Проектируя раму, я исходил из того, что строить модель буду на моторе от подаренного мне на запчасти струйного принтера. Это двигатель постоянного тока, который перемещает каретку вправо и влево.
Кстати, пока не разобрал этот принтер, был уверен, что такую задачу должен решать шаговик, как на 3D‑принтере. Но в том струйном принтере стоял именно двигатель постоянного тока. А для позиционирования вдоль хода печатающий головки была размещена лента с контрастными полосками. Начиная движение головы вдоль ленты, принтер считывал с помощью оптического датчика полоски и останавливался около нужной. Для меня такая схема работы была откровением. Но зато мне достался вполне приличный двигатель постоянного тока.
Конструкция получилась рамная. Плюс я люблю унификацию, поэтому многие детали спроектированы так, чтобы в итоге в проекте было минимальное количество моделей. Так я сам для себя сформулировал техническое задание. Поэтому рама состоит из пар одинаковых элементов, которые можно напечатать вместе.
В пару оранжевых деталей за счет трения садится мотор. Еще две одинаковые голубые скобки, развернутые друг относительно друга, скрепляют части рамы воедино и одновременно фиксируют держатель для аккумуляторов и т. д.
Переднюю подвеску держат детали, напоминающие рычаги реальной подвески. Но функцию рычагов они не выполняют — подвеска здесь жесткая. А дополнительные ступеньки позволяют выровнять раму машинки относительно горизонта. Поворотные оси колес распирает оранжевая деталь (без нее оси заваливаются внутрь), она же держит сервопривод рулевого и контрит гайки осей поворотных кулаков.
Детали рамы и кузова я старался проектировать так, чтобы печатать без поддержек. Но не во всех случаях это имело смысл. Например, распорка поворотных осей спереди получилась довольно сложной формы и ее было проще сделать с поддержками, чем перерисовывать в несколько деталей (или увеличивать габариты для получения плоскости, размещаемой на столе).
Рама напечатана из ABS. Некоторые детали я изначально делал из PLA, но мотор в ходе эксплуатации машинки активно греется, а для PLA это бывает критично. После некоторой эксплуатации у деталей, которые контактировали с мотором, ушли диаметры, так что сам мотор перестал держаться. Поэтому в том, что касается кузова, рулевого и «подвески», я полностью перешел на ABS.
Колеса
Каждое колесо модели состоит из двух деталей — диска и покрышки, которая держится на нем за счет трения. Диски распечатаны из ABS. Покрышки — из SEBS. Я пробовал и другие «резиновые» пластики, но понял, что не так важно, какой именно материал используется. Гораздо важнее, чтобы модель была пустотелая.
Выше я уже говорил, что печатал колеса побольше еще на этапе переделки покупной модели. На тот момент я еще не отработал технологию печати TPU, поэтому ту версию колес я напечатал с заполнением. И хотя сам пластик — самый мягкий из тех, что у меня есть, машинка слишком легко проскальзывала.
Когда я сделал покрышки пустотелыми, результат оказался намного лучше.
С учетом небольшого веса машинки, такую покрышку не надо ничем заполнять — она держится за счет жесткости бортов.
Изначально из соображений унификации для крепления всех колес я использовал шпильки М3. Но выяснилось, что на задней оси такая шпилька гнется под весом мотора и аккумуляторов. Поэтому сначала сзади, а потом и спереди пришлось перейти на М5.
Внутри передних колес в поворотные кулаки запрессованы подшипники (покупные). В первой версии модели я запрессовал по одному подшипнику с каждой стороны. Но их ширина — не более 2,5 мм, поэтому колесо на такой узкой опоре начало болтаться. Чтобы этого избежать, я перешел на двухрядные подшипники. Увеличил ширину поворотного кулака, но тем самым убрал лишние люфты.
Питание, электрика и логика
В собственной модели я решил использовать не один, а четыре аккумулятора 18 650, которые выдают от 14.8 до 16.8 В (в зависимости от состояния заряда). Поскольку управляется машинка при помощи Arduino Nano, которому нужно 5 В, питание к ней поступает через понижающий конвертер. А двигатель постоянного тока подключен к Arduino через Н‑мост.
Для связи с пультом управления (подробнее о котором расскажу далее) используется радиомодуль 2.4 ГГц.
Помимо основного двигателя и сервопривода, осуществляющего повороты, Arduino через самодельную плату управляет светотехникой — габаритами, ближним светом, лампой заднего хода и стоп‑сигналами.
Тормоза
Отдельно хочу рассказать, как реализовал тормоза для модели. В ней нет ни дисков, ни барабанов, ни гидравлики, ни тросов, зато есть двигатель постоянного тока.
Логично было бы тормозить с помощью движения назад. Но в этом случае колеса будут прошлифовывать, а потом машина действительно поедет назад, а не остановится. Вместо этого у меня реализован своеобразный «ручник» (назовем его так, раз уж с мотором связана только задняя ось). При нажатии на него мотор начинает быстро переключаться вперед‑назад. Выглядит это как эпилептический припадок, сопровождающийся жужжанием, но машина при этом стоит на месте, а если до этого двигалась, то отлично тормозит. Ручник ведет себя прямо как настоящий — позволяет закладывать в повороты боком и выполнять аналогичные маневры.
Пульт управления
Я не стал проектировать для пульта управления красивый корпус, зато он получился довольно функциональным. Здесь также используется Arduino Nano, радиомодуль 2.4 ГГц и два покупных аналоговых джойстика. Оба они двухосевые, но для удобства управления я сделал так, что один отвечает за движение вперед / назад, а второй — за повороты влево / вправо.
У обоих джойстиков есть нажатия. Один отвечает за включение ближнего света, а на другом реализована своеобразная коробка передач. Дело в том, что с таким мощным мотором при старте сильным нажатием на газ, машинку срывает в букс. Поэтому я сделал программное ограничение. Изначально (на стоящей машине) вперед‑назад можно выжать только 50% мощности, т. е. максимальное отклонение джойстика соответствует только половине мощности мотора. При нажатии на джойстик это ограничение снимается. Получается своего рода цифровая вторая передача — максимальное отклонение джойстика начинает соответствовать 100% мощности.
Дополнительно на пульте есть кнопка ручника, о механизме работы которого я рассказывал чуть выше.
Питается пульт от одного аккумулятора 18 650. Соответственно здесь используется уже повышающий конвертер, который преобразует 3.7–4.2 В (в зависимости от состояния заряда аккумулятора) в 5 В для Arduino Nano.
Видел аналогичные разработки, в том числе в живую на фестивале 3D‑печати в Москве. Не без гордости за свой проект отметил, что моя машинка шустрее реагирует на команды и не лагает. Все потому что протокол радиосвязи для пульта я разрабатывал сам с учетом всех оптимизаций, а не скачал первую попавшуюся прошивку из интернета. Мне удалось добиться еще и очень низкого энергопотребления — не более десятка миллиампер. По примерным подсчетам одного аккумулятора 2 А‑ч должно хватить надолго.
А что дальше?
Машинка ездит и радует, и, конечно, у меня масса планов по развитию проекта. Правда в связи со строительством дома и работами по ремонту одной из моих полноразмерных машин (https://www.youtube.com/@fix‑and‑run/) на радиоуправляемую модель почти не остается времени.
Проект определенно требует эволюции. Как минимум, машинке нужна независимая подвеска. А еще хочется сделать честный полный привод — с карданами и т. п., а не с двумя моторами — хотя я уже понимаю, что его будет очень тяжело реализовать из‑за габаритов печатных деталей (на своем принтере я не могу распечатать сколь угодно малые крестовины).
Также машинку можно дополнить разными датчиками. Например, у меня есть для Arduino довольно точный датчик дистанции, который показывает расстояние до сантиметра. Изначально брал его для гаража, чтобы повесить на стене что‑то типа обратного парктроника — сделать экран с отображением расстояния от этой стены до бампера, заметный с водительского места. Но гараж поменял и теперь это уже не актуально.
Я не хотел разламывать существующую модель, чтобы сделать ее донором для следующей версии. Второго мотора от струйного принтера у меня не было, и я заказал аналог с Китая. Правда, ошибся с названием модели, и мне пришел мотор примерно в три раза больше по размерам и мощности. К нему потребовался другой Н‑мост, рассчитанный на более высокие токи. И он у меня уже есть. В итоге следующая модель будет довольно «злая». Но я уже знаю, как разместить компоненты, чтобы не сильно увеличивать ее габариты.
Автор: Владимир Васяев
P. S. Мы публикуем наши статьи на нескольких площадках Рунета. Подписывайтесь на нашу страницу в VK или на Telegram‑канал, чтобы узнавать обо всех публикациях и других новостях компании Maxilect.
- arduino
- радиоуправляемые модели
- радиоуправляемые машины
- машинка
- машинка на управлении своими руками
- машинка на управлении
Запуск нитро двигателя радиоуправляемой модели
Запуск нитро двигателя радиоуправляемой модели достаточно прост, но только в случае, когда у вас есть необходимые знания и опыт. В этой статье мы постараемся описать все основные моменты, которые необходимо знать. Обращаем ваше внимание на то, что информация, представленная в данном разделе описывает основные принципы и особенности запуска ДВС модели, а вам при запуске необходимо изучить инструкцию именно к вашей модели.
Первое что нужно запомнить, если это ваша первая радиоуправляемая модель с нитро мотором, то нужно набраться терпения и не торопиться. Просто взять модель залить топливо и устроить гонки не получится. Не торопясь, все работы по первому запуску, обкатке и настройке можно выполнить за один день. Крайне важно помнить, что это не игрушка, а серьезная модель, требующая определенных знаний.
С чего стоит начать запуск двигателя новой ДВС модели?
Первое что нужно сделать, это изучить инструкцию к вашей модели, т.к. она может иметь свои особенности. Найдите карбюратор и, прочитав инструкцию, определите где находятся регулировочные винты, как правило, это регулировка иглы высоких оборотов, иглы низких оборотов, и винт регулирующий холостой ход. Осмотрите дроссельную заслонку, для этого вам потребуется снять с карбюратора воздушный фильтр и патрубок, на котором он установлен.
Второе, что нужно сделать, это проверить и при необходимости закрутить все основные винты, т.к. они могли ослабнуть при транспортировке. Желательно проверить не только крепеж двигателя и его компонентов, но и крепеж остальных узлов вашей радиоуправляемой машины, т.к. после запуска двигателя, начнется процесс обкатки, который включает и обкатку в движении.
Далее следует изучить основные комплектующие нитро мотора и принцип работы, это поможет вам понять и ускорить процесс настройки. Питание мотора осуществляется через карбюратор, в котором смешивается нитро топливо поступающее из бака и воздух поступающий из воздушного фильтра. Общая конструкция нитро двигателя схожа с конструкцией больших моторов, применяемых, к примеру, на мотоциклах, но с одним существенным отличием, в нитро моделях нет системы зажигания со свечой дающей искру, но есть свеча накаливания, именно поэтому такие моторы ещё называют калильными. Принцип работы калильного двигателя очень прост, в камере сгорания воспламеняется топливно-воздушная смесь, а возникающая при этом энергия толкает поршень который связан с коленвалом, который через сцепление передает вращение коробке передач. Нитро мотору для работы двигателя нужна правильная топливно-воздушная смесь и работающая свеча накала для ее воспламенения. Есть множество других факторов влияющих на работу мотора, таких как компрессия в цилиндре, тип топлива, чистота воздушного фильтра, но для нового мотора их можно не учитывать.
Основная функция карбюратора это подготовка (смешивание) воздуха с топливом, а также подача этой смеси в двигатель. От соотношения объема воздуха и топлива в смеси в первую очередь и зависит работа двигателя. Для регулировки этого соотношения необходимо крутить в одну или другую сторону винты регулировки иглы высоких и низких оборотов. Дроссельная заслонка регулирует объем смеси, которая попадает в двигатель, за счет этого меняются обороты двигателя. Только правильно настроенный двигатель будет выдавать максимальную мощность, плавный разгон без рывков, правильную рабочую температуру и расход топлива.
Основные комплектующие карюратора нитро модели
Игла высоких оборотов предназначена для регулировки количества топлива поступающего в двигатель на средних и больших оборотах. Поворачивая иглу по часовой стрелке вы уменьшаете количество топлива, происходит обеднение смеси. При этом происходит увеличение скорости воспламенения смеси, а также увеличения температуры двигателя. Поворачивая иглу против часовой стрелки вы увеличиваете количество топлива, происходит обогащение смеси.
Игла низких оборотов предназначена для регулировки количества топлива поступающего в двигатель на холостых и низких оборотах. Обычно двигатель отлично работает с заводской установкой иглы низких оборотов, но при необходимости можно настроить двигатель более точно. Также как и с иглой высоких оборотов, поворот иглы по часовой стрелке — уменьшает долю топлива, против часовой стрелки — увеличивает.
Упорный винт регулировки холостого хода предназначен для механического ограничения минимального зазора, который остается при закрытии дроссельной заслонки. Поворачивая винт по часовой стрелке вы увеличиваете минимальный зазор, при повороте против часовой стрелки, зазор уменьшается.
Подготовка к первому запуску нитро двигателя
При первом запуске нового мотора не меняйте заводские настройки карбюратора, как правило они установлены в нужное положение, но все же лучше их проверить, сравнив с инструкцией к модели. Базовые настройки подходят для первого запуска, а также для того чтобы вернуть их в случае когда настройка прошла неудачно и вы больше не можете запустить мотор. Базовые настройки обеспечивают безопасный режим работы двигателя, топливная смесь сильно обогащена, в результате чего двигатель лучше смазывается и охлаждается, но при этом не развивает максимальную мощность. В этом режиме двигатель склонен к переливу и может глохнуть, это нормальная ситуация. Если это произошло, просто запустите двигатель заново.
При первом запуске вам нужно выполнить несколько основных действий:
- Полностью зарядите накал свечи, после чего выкрутите свечу из двигателя и вставьте её в накал. Спираль должна сразу накалится. Будьте предельно осторожны чтобы не обжечься!
- Вставьте аккумуляторы или батарейки в пульт и модель.
- Залейте порцию нитро топлива в бак.
Желательно приобрести инфракрасный термометр, это не обязательное, но рекомендуемое дополнение. С помощью инфракрасного термометра вы сможете легко контролировать температуру двигателя, это позволит не перегреть двигатель, а также очень поможет в определении правильности настройки, т.к. температура это главный показатель правильности регулировки.
Запуск нового двигателя желательно проводить при температуре около 20C, но может проводится и при более холодной температуре, в этом случае перед запуском нужно прогреть модель в теплом помещении.
Первый запуск нитро двигателя
- Включите питание на пульте. После этого включите бортовое питание модели. Проверьте работу системы радиоуправления, для этого понажимайте на курок газа и убедитесь, что сервопривод модели работает.
- Убедитесь что нейтральное положение дроссельной заслонки не ограничено триммером газа на пульте управления, т.е. дроссельная заслонка при отпущенном газе должна полностью закрываться до упора в ограничительный винт.
- Подкачайте топливо в двигатель. Это можно сделать несколькими способами, на некоторых моделях на баке есть специальная кнопка для подначивания, если такой кнопки нет, то необходимо закрыть выхлопную трубу, после чего несколько раз потянуть пулл-стартер или на несколько секунд запустите рото-стартер. Топливные шланги идущие от бака в карбюратор прозрачны, поэтому вы увидите когда топливо будет накачено. Крайне важно не перелить топливо! Это может осложнить запуск или вообще сделать его невозможным.
- Подключите накал к свече.
- Плавно но быстро потяните за ручку пулл-стартера или вставьте вал рото-стартера и нажмите кнопку запуска. Новый необкатанный нитро мотор скорее всего не запуститься с первого раза, поэтому повторите запуск несколько раз.
Если несмотря на все попытки, двигатель так и не завелся, то можно попробовать выполнить следующие действия:
- Дополнительно приоткройте дроссельную заслонку для увеличения объема смеси поступающей в двигатель. Это можно сделать триммером газа на пульте, немного повернув регулятор или немного нажав на курок газа. После этого повторите попытки завести двигатель, но помните, что как только это произойдет, нужно сразу же снизить обороты т.к. высокие обороты очень вредны для необкатаного мотора.
- Вторая достаточно часто встречающаяся причина это перелитый двигатель, это может произойти когда в двигатель накачали слишком много топлива до момента подключения накала. В этом случае нужно выкрутить свечу, просушить ее и проверить, но прежде чем закручивать обратно нужно удалить из двигателя лишнее топливо, для этого с выкрученной свечей покрутите двигатель пулл-стартером или рото стартером. Когда из цилиндра перестанут вылетать капли топлива, закрутите свечу и повторите попытку запуска.
- Ещё одна возможная причина это недостаточно заряженный накал свечи, который можно проверить выкрутив и подключив свечу.
После того как двигатель будет запущен, дайте ему поработать на минимально устойчивых оборотах! Не раскручивайте его до больших оборотов и не перегревайте!
Дальше можно переходить к обкатке и настройке нитро мотора.
Как снять электродвигатель с радиоуправляемой машинки
- ���������� ��� ���������� (36)
- ���������� ��� ���� (18)
- ���������� ��� ���������� (689)
- ˳����� ����� (17)
- ������� (13)
- ³������ ����� (55)
- ������ (8)
- �������� ����� (10)
- ���������� ����� (4)
- ϳ������ ����� (49)
- ������� (43)
- ������� (44)
- ���������� ��� ����� (859)
- ���� (32)
- ����� (17)
- ������� (93)
- �������� �� ���� (28)
- ����-���� (63)
- ������ (19)
- ������ (37)
- ��� (9)
- � �������� ����������� ��������
- � ���������������
- ������ ������� (72)
- ���������� ��� ����������� (3879)
- �������� �� (8)
- ����� � �������������� (13)
- ̳��� ����� (9)
- ���������� ��� ����� (8)
- ��������� ������������� (2)
- �������� ��������� (5)
- ���������� ��� ��������� (5)
- ����������� �� ������ (364)
- ������ ������� (141)
- ����� �������� (24)
- ���������� �� ������� �������� (218)
- ���������� ������ (3)
- ������ �� ����� (104)
- ���’��� �� ����������� (320)
- ������� ������� (303)
- ������� ����������� �������� (9)
- ���������� ��� (29)
- ���������� ��� ������� (65)
- ������ �� ��’������ (100)
- �������, �������, ������ (30)
- ���������� � �������� FPV (46)
- ϳ���� �� �������� (38)
- ��������� OSD (28)
- ³�������������, ���������� (5)
- 433��� (433MHz) (10)
- 900��� (900MHz) (21)
- 1,3��� (1.3GHz) (10)
- 2,4��� (2.4GHz) (20)
- 5,8��� (5.8GHz) (52)
- GNSS (3)
- RF ��������, ���’��� (65)
- ������������� (221)
- ������� ���������� (44)
- ������������ (199)
- �������� GNSS (48)
- ����� (4)
- ��������� RC (16)
- ���������� ������� (34)
- ����������� (60)
- ���, ���������, �������� (12)
- ��������� (28)
- ����-, ����-, ����-
- �����������
- ������������ �� ��������
- ����������������
- ����������
- ������
- ������ ������
- ���������� �� ���������
- ��� ������
- ����������
- ����� �� ������
- ֳ��� �����
Интернет-магазин радиоуправляемых моделей «ТЯГА»
Драйв, адреналин, захватывающие дух эмоции — все это модели на радиоуправлении, Тяга которых не знает предела. Они никого не оставляют равнодушными, начиная от пятилетних мальчишек и заканчивая взрослыми мужчинами, разбирающимися в технике и знающими толк в развлечениях. Для кого-то это увлечение станет хобби, а кто-то из вас захочет испытать свои силы в спортивном моделировании. Где можно приобрести эти «игрушки» для взрослых и детей? Ответ прост: нужно посетить интернет магазин радиоуправляемых моделей в Киеве — «Тяга». На нашем сайте вы найдете в полном ассортименте всю необходимую вам продукцию от мировых модельных брендов и сможете без проблем купить радиоуправляемые модели в Киеве и по всей Украине.
Радио модели и их виды
Вас непременно покорит разнообразие уменьшенных копий моделей на управлении настоящей техники в разных масштабах, представленных в магазине «Тяга»:
- Автомашины на управлении. Ничто не может быть круче дрифта гоночного миниавто или его форсажа. Все эти эмоции будут возможны с раллийными авто, баггами, монстрами и траггами.
- Вертолеты на радиоуправлении. Вы сможете почувствовать себя настоящим пилотом моделей на управлении: мини-вертолеты, вертолетов для новичков, 3D пилотируемых моделей, а также мультикоптеров.
- Авиамодели на радиоуправлении. Ценители самолетов не пройдут мимо этого раздела, ведь кто не мечтает подняться в небо, пусть это будет и не настоящий самолет, зато впечатления от полета будут вполне реальными с самолетами-тренерами, мини-самолетами, самолетами для акробатических трюков или полетами по камере (FPV).
- Cудомодели. Романтики и искатели водных приключений всегда смогут покорять морские пучины при помощи катеров и белоснежных яхт на радиоуправлении.
- Иная управляемая техника. Поиграть в войнушки или стать на время гонщиком-мотоциклистом можно с радиоуправляемыми моделями танков либо мотоциклов.
- Разнообразные аксессуары и двигатели. В этом разделе сможете выбрать детали для апгрейда ваших моделей.
Продажа радиоуправляемых моделей в интернет-магазине «Тяга» гарантирует доставку любой выбранной вами модели за оптимальный промежуток времени и обеспечит полный пакет услуг в процессе приобретения техники. Это будет профессиональная консультация по всем интересующим вопросам и послепродажное обслуживание выбранных вами моделей. Конкурентная цена — приоритет для покупки именно в нашем магазине. У нас работают ценители данной техники, которые всегда рады вам помочь.
Как выбрать модель на радиоуправлении
Мнение, что купить в интернет магазине радиоуправляемые игрушки можно только для мальчиков, ошибочно. И дети, и взрослые, независимо от пола приходят в восторг от этого чуда техники. Комплект состоит из нескольких обязательных частей – непосредственно самого автомобиля, элементов питания, зарядки, пульта и дополнительных компонентов. Самым бюджетным вариантом являются пластиковые машинки, однако срок из эксплуатации не долгий, хоть и зависит от активности ребенка и того, насколько бережно он обращается с игрушкой.
В нашем магазине есть радиоуправляемые модели, корпус которых изготовлен из металла целиком или содержит в себе металлические детали для упрочнения. Самые дорогие машинки изготавливаются из углепластика, легкого и очень прочного.
На вкус и цвет все радиомодели разные
Автомобили на радиоуправлении имеют разный дизайн и оттенок. Чем дороже модель, тем ее исполнение реалистичнее, она максимально похожа на реальный прототип. Если ребенок часто теряет свои игрушки, путает их с другими, не проблема – отдайте предпочтение ярким авто, которые он не потеряет из виду. Для творческих личностей можно подобрать радиоуправляемые машинки в интернет-магазине «Тяга», являющиеся одновременно трансформерами. Одно нажатие кнопки, и авто превращается в робота с массой индивидуальных характеристик, а затем обратно. Производители продумали все до мелочей, с такой задачей справится малыш, которому едва исполнилось три годика.
Наш магазин запчастей для радиоуправляемых моделей предлагает яркие и красочные игрушки для детей любого возраста. Выбор зависит от личных предпочтений малыша, а также события, к которому приурочен подарок. На день рождения и другие знаменательные даты лучше подбирать такие авто, которые запомнятся надолго и вызовут феерию эмоций.